На правах рукописи

Халитов Фарит Гусманович

Lub

ЭЛЕКТРОННОЕ СТРОЕНИЕ И ПРОСТРАНСТВЕННАЯ СТРУКТУРА СОЕДИНЕНИЙ ТРЕХ- И ЧЕТЫРЕХ-КООРДИНИРОВАННОГО МЫШЬЯКА

02.00.04 - физическая химия

Автореферат диссертации на соискание ученой степени доктора химических наук

Казань - 2000

ББК 24.4

X17

Работа выполнена в Казанском государственном технологическом университете.

Научный консультант:

доктор химических наук,

профессор В.И.Гаврилов

Официальные оппоненты - доктор химических наук,

НАУЧНАЯ БИБЛИОТЕКА

0000947698

профессор Л.В.Вилков

доктор химических наук,

профессор Э.А.Ишмаева

доктор химических наук,

профессор В.А.Наумов

Ведущая организация - Институт физиологически активных веществ Российской академии наук, г. Черноголовка

Защита состоится 6 июня 2000 года в 14 часов на заседании диссертационного совета Д 063.37.03 в Казанском государственном технологическом университете по адресу: 420015, г. Казань, ул. К. Маркса, 68, зал заседаний Ученого совета

С диссертацией можно ознакомиться в библиотеке Казанского государственного технологического университета.

Автореферат разослан

апреля 2000 г.

Ученый секретарь диссертационного совета

А.Я.Третьякова

ВВЕДЕНИЕ

Актуальность работы. Известно, что для дальнейшего развития новых путей синтеза в органической химии необходима информация о строении и электронных свойствах молекул. Пространственное, в частности, конформационное строение влияет на химические, физические и другие свойства. Каждой конформационной структуре соответствует свое распределение электронной плотности. Поэтому должны различаться и такие свойства как реакционная способность, физиологическая активность.

К моменту начала наших исследований (1975 г.) данные о конформациях и внутримолекулярных взаимодействиях в мышьякорганических соединениях (МОС) имелись в весьма ограниченном объеме и представляли собой единичные работы по отдельным молекулам. Такая ситуация не позволяла провести обобщающие выводы для широкого круга соединений. В настоящее время, если для соединений фосфора, ближайшего соседа мышьяка по периодической системе, наблюдается интенсивный рост числа исследований, то для МОС число публикаций, посвященных изучению конформационного строения в жидкости и растворах, его взаимосвязи с внутримолекулярными взаимодействиями и с распределением электронной плотности остается явно недостаточным.

Накопление такой информации актуально и для проведения сравнительной характеристики производных мышьяка с соединениями элементов пятой группы периодической системы, для установления их общих и различающихся свойств.

<u>Цель работы.</u> Основной целью работы являлось выявление закономерностей внутреннего вращения вокруг связей, в которых участвует атом мышьяка. Для достижения этой цели требуется исследование взаимного влияния природы заместителей на распределение электронной плотности по связям и неподеленной паре атома мышьяка, выявление роли различных внутримолекулярных взаимодействий, стабилизирующих устойчивость реализующихся конформеров.

Для достоверной идентификации пространственной структуры сложных молекул, в задачу работы входило также использование и развитие возможностей метода дипольных моментов.

<u>Научная новизна.</u> Для соединений трехкоординированного мышьяка с широким набором заместителей методами дипольных моментов и УФ-спектроскопии установлены закономерности распределения электронной плотности в мышьяксодержащей группе.

Выявлена взаимосвязь потенциалов ионизации элементов пято группы (Э=N,P,As,Sb) с валентными углами, дипольными моментами и энергиями межмолекулярных взаимодействий.

Развит метод графического анализа дипольных моментов замещенных ароматических производных мышьяка и фосфора. Показана его применимость для конформационно равновесных систем, содержащих молекулы с несколькими осями внутреннего вращения.

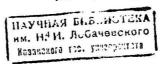
Проведена идентификация пространственной структуры молекул в различных рядах трех- и четырехкоординированных производных мышья-ка.

Установлены закономерности конформационного строения широкого ряда МОС, охарактеризованы различные внутримолекулярные взаимодействия, стабилизирующие реализующиеся поворотные изомеры.

Выполнен эмпирический и теоретический анализ характеристических колебаний различных функциональных групп при мышьяке в колебательных спектрах большинства исследованных соединений.

<u>На защиту выносятся.</u> Результаты анализа пара-замещенных ароматических соединений методами дипольных моментов и УФспектроскопии, позволившие установить закономерности внутримолекулярных распределений электронной плотности при взаимном влиянии групп R_1R_2As и $As-C_{ap}$ в ряду производных, содержащих фрагменты $R_1R_2As-C_{ap}$.

Метод графического анализа дипольных моментов ароматических производных мышьяка и фосфора, разработанный для конформационно равновесных систем.


Установленные функциональные зависимости между разностью (ΔE) первых потенциалов ионизации атомов ($\Im=N,P,As,Sb$) и молекул $\Im X_3$ с валентными углами $X\Im X$, дипольными моментами и энергиями межмолекулярных взаимодействий.

Выявленные закономерности, определяющие углы поворота вокруг связи C_{ap} -As плоскости пара-, мета- и орто-замещенных ароматических групп в зависимости от природы заместителей при атоме мышьяка.

Результаты исследования конформационного строения методами колебательной спектроскопии и дипольных моментов соединений, содержащих As-C(sp 3), As-N, As-O и As-S связи.

Установленные закономерности конформационного строения в рядах соединений с одинаковой осью вращения. Данные о влиянии на углы поворота электронных эффектов заместителей, о вкладе стерических и электростатических взаимодействий в энергетическую устойчивость реализующихся конформаций.

Интерпретация ИК- и КР-спектров четырехчленных циклических соединений мышьяка различной координации. Идентифицированные в

растворах цис- и транс-структуры диазадиарсетидинов и их зависимость от природы заместителей при атомах As и N.

Теоретическая и практическая значимость. Обобщение влияния заместителей различной природы на электронные эффекты и конформационные свойства широких рядов МОС расширяет теоретические представления о строении и свойствах молекул, содержащих элементы пятой группы периодической системы. Выявленные закономерности являются основой для исследования стереохимии сложных мышьякорганических соединений, для поиска взаимосвязи между структурой, реакционной способностью и механизмом реакций. Полученные экспериментальные результаты составляют базу данных для дальнейших исследований и прогнозирования пространственного и электронного строения ЭОС.

Найденные величины спектральных, электрических и электрооптических параметров применимы в работе аналитических и химических лабораторий для идентификации и установления строения новых веществ.

В совокупности полученных данных и их интерпретации просматривается развитие научного направления в области теоретического и экспериментального исследования электронного строения и пространственной структуры соединений трёх- и четырёхкоординированного мышьяка.

Апробация работы. Основные результаты работы докладывались на: I и II Всесоюзных конференциях по синтезу и использованию мышьякорганическихсоединений в народном хозяйстве. (Казань, 1980, 1989г.г.)., У Всесоюзном симпозиуме по межмолекулярному взаимодействию и конформациям молекул. (Алма-Ата, 1980 г.)., III Всесоюзной конференции по электрическим свойствам молекул (Казань, 1982 г.), Всесоюзном совещании "Металлоорганические соединения непереходных металлов в синтезе и катализе" (Пермь, 1983 г.), Научно-технической конференции "Перспективы развития производства мышьяка и его соединений, в том числе особо чистых, в XI пятилетке и до 2000 года" (Кутаиси, 1983 г.), У Всесоюзной конференции по динамической стереохимии и конформационному анализу (Одесса, 1984 г.), 2 семинаре "Исследование электронного строения органических и элементоорганических соединений методами ФЭС, РЭС и РС" (Новосибирск, 1986 г.), Всесоюзном совещании по химии и применению органических соединений серы (Казань, 1987 г.), ХХ-Всероссийской конф. по химии и технол. органических соединений серы. (Казань, 1999 г.), IV Всесоюзной конференции по металлоорганической химии (Казань, 1988 г.), Всесоюзном совещании-семинаре "Стереоэлектронные эффекты в соединениях непереходных элементов IV - VI -групп" (Анапа, 1989 г.), XI Международной конференции по химии соединений фосфора (JCCPC -XI) 1996 г.), Научной (Казань, сессии, посвященной памяти проф. И.М.Шермергорна (Казань, 1997 г.), Симпозиуме по химии и применению

фосфор-, сера- и кремнийорганических соединений (С.-Петербург, 1998 г.).

<u>Публикации</u>. Основное содержание диссертации опубликовано в **6**5 научных работах, включая 42 статьи и тезисы 23 докладов.

Объем и структура работы. Диссертация изложена на 397 страницах, содержит 85 таблиц, 82 рисунка и библиографию, включающую 389 ссылки. Материал диссертации состоит из введения, пяти глав, выводов, списка цитируемой литературы и приложения. Поскольку в диссертации рассматривается различный круг вопросов, было целесообразно не предпосылать обсуждению результатов единый литературный обзор, а рассматривать необходимые литературные данные непосредственно перед каждой главой, а также по ходу обсуждения полученного материала.

В первой главе рассмотрены электронные свойства и строение молекул мышьяка и их сравнительная характеристика с производными элементов V группы периодической системы. Во второй главе обсуждается вопрос о влиянии заместителей на ориентацию плоскости ароматического кольца в мышьякорганических соединениях. В третьей главе содержатся результаты исследования заторможенного вращения вокруг связей As - C, As - N, As - O и As -S. В четвертой главе представлены данные о строении четырехчленных циклических соединений мышьяка. Пятая глава диссертации представляет собой экспериментальную часть.

Диссертация выполнялась в соответствии с координационными планами в рамках научного направления "Теоретическое и экспериментальное исследование пространственной структуры молекул" (№ гос. регистрации 76039275) и по направлению 2.12 "Химия элементоорганических соединений".

СОДЕРЖАНИЕ РАБОТЫ

1. Электронные свойства и строение молекул мышьяка и их сравнительная характеристика с производными азота, фосфора и сурьмы.

В первой главе диссертации анализируются литературные и полученные нами данные о дипольных моментах, УФ- спектрах и потенциалах ионизации (ПИ) рядов молекул элементов V - группы периодической системы.

Дипольные моменты (ДМ) молекул и связей есть непосредственная количественная мера асимметрии распределения электронного облака относительно ядерного остова. Поэтому влияние заместителей на полярность каких-либо связей или групп атомов в определенных рядах есть прямая характеристика проявляемых ими различных эффектов.

Обычно используемое при исследовании пространственной структуры разложение молекулярного ДМ на связевые производится для симмет-

ричных молекул типа $3X_3$ (3=N, P, As). Дополнительные трудности возникают для несимметрично замещенных производных типа $R_2 3X$. Обычно моменты связей 3-X считаются такими же, как в молекулах $3X_3$. Эффекты взаимного влияния вызывают отклонения от строгой аддитивности. Число уравнений, связывающих ДМ связей с экспериментально определенными величинами, увеличивается, если известна не только абсолютная величина, но и направление молекулярного ДМ. Для простых соединений такая информация доступна из данных микроволновых спектров. Если молекула имеет плоскость симметрии, то легко могут быть вычислены компоненты ДМ в системе координат, привязанной к химическим связям. Наиболее удобно преобразование к такой системе координат, в которой одна из составляющих не содержит вклада диполя 3-X, т.е. перпендикулярна этой связи. Пример разложения момента

молекулы дан на рисунке:

Тогда

$$m(\Im - X^1) = \mu_2/2\cos\gamma\sin\beta$$

$$m(\Im - X^2) = \mu_1 - \mu_2\operatorname{ctg}\beta$$

Таким образом, можно установить полярности

связей в молекулах, имеющих различные заместители. Нами проанализированы опубликованные данные по величинам и ориентациям ДМ ряда аминов, фосфинов для выяснения возможности строгого определения дипольных моментов связей и установления их степени изменения в

Таблица 1. Дипольные моменты связей Э-Х в аминах и фосфинах, Д

Соеди-	Формула	m(3-H)	m(3-CH ₃)
нение			
1	NH ₃	-1.33	
2	CH3NH2	-1.35	-1.55
3	(CH ₃) ₂ NH	-1.12	-0.97
4	(CH ₃)N		-0.59
5	NF ₃		
6	NHF ₂	-1.65	
7	CH ₃ NF ₂	- 1 - 1	-2.26
8	PH ₃	-0.36	
9	CH ₃ PH ₂	-0.38	-1.07
10	(CH ₃) ₂ PH	-0.18	-0.91
11	(CH ₃) ₃ P		-0.84
12	PF3		
13	PHF ₂	-0.61	
14	CH ₃ PF ₂		-1.53
15	CF ₃ PH ₂	-0.56	
16	H ₃ SiPH ₂	-0.40	

различно замещенных соединениях (табл.1). Как показывают данные табл.1, ДМ связей Э-Н меняются в незначительных пределах (\sim ±0.1 Д), если только при атомах N или P не находятся сильно электроотрицательные заместители, такие как атомы F или группа CF3. Напротив, ДМ групп Э-СН3 сильно зависят от характера замещения. Изменение величин ДМ связей в молекулах метилпроизводных закономерно: увеличение числа донорных групп CH3 обуславливает взаимное понижение их моментов. Введение атомов F, вызывающих противоположно направленный сдвиг электронов (7, 14), сильно увеличивает ДМ связей Э-СН3

Другим путем определения направления молекулярных ДМ является сопоставление ДМ ароматических производных, содержащих заместители различной полярности в пара-положении к исследуемому фрагменту.

Пусть μ_l , μ_2 μ_3 - экспериментальные ДМ молекул 1, 2 и 3, содержащие одинаковые группы с моментом μ_0 и отличающиеся ДМ m_i (рис.1). При этом направление векторов m_i относительно фрагмента μ_0 одинаково.

При известных экспериментальных ДМ μ_i , величины и направления m_i для каждой молекулы можно составить уравнения типа:

$$\mu_i^2 = \mu_0^2 + m_i^2 - 2 \cdot \mu_0 \cdot m_i \cdot \cos(180^\circ - \alpha),$$
 где μ_0 и α - неизвестны (1).

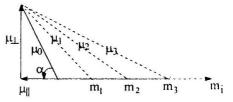


Рис. 1. К вычислению дипольных моментов групп $Cap \ni R_2$ в соединениях $p-XC_6H_4 \ni R_2$.

Определение угла α позволяет групп Сар $3 \kappa_2$ в соединениях р-ХС₆H₄ з разложить ДМ μ_0 на составляющие μ_{\parallel} и μ_{\perp} вдоль и перпендикулярно направлениям m_i и найти направление вектора μ_{\parallel} относительно оси О- m_i .

Если для ряда соединений R^1R^2 Э- C_6H_4 -X-p с одинаковыми R^1 и R^2 изменяются известные моменты связей C_{ap} - $X(m_i)$ (X=Me, H, I, Br, CI, NO $_2$), то из решения системы уравнений легко определить величины и направления ДМ группы R^1R^2 ЭСар - μ_0 . При известных валентных углах у атома Э можно рассчитать ДМ связей Э-R и Э- C_{ap} .

В литературе имеется достаточно большое число работ по дипольным моментам соединений элементов 5 группы периодической системы (ПС) с ароматическими производными. Обсуждаемый метод для определения связевых ДМ в этих работах не использовался. Задачу можно решить аналитически либо графическим путем.

Нами были расчитанны направления и величины ДМ групп R_2 Э- C_{ap} и связей C_{ap} -Э, Э-R для рядов соединений p-X- C_6 H₄-ЭR 1 R 2 (Э=As, P), приведенных в табл. 2 и 3.

Наличие одной и той же связи C_{ap} -As во всех рядах соединений позволяет объединить их в единый ряд и проследить степень влияния природы заместителей R^1 и R^2 на ДМ этой связи. В табл.2 приведены ДМ связей C_{ap} -As по мере убывания их величин. Приведены также ДМ связей m(As-Cl), m(As-Br), m(As-I) и m(Et-As). Для сравнения указаны ДМ для симметричных производных AsR_3 . Из табл.2 следует, что изменение электроотрицательности группы R^1 и R^2 при атоме As приводит к закономерному изменению ДМ связи C_{ap} -As. Так, если для дигалоидов момент этой связи равен 1.01-1.02 Д и направлен к атому As, то для диэтилфениларсинов он уже направлен противоположно. Эти данные позволяют получить количественную меру сдвига электронной плотности от атома мышьяка к C_{ap} , т.е. величину электроотрицательности группы R^1R^2 As относительно ароматического фрагмента в зависимости от природы заместителей R^1 и R^2 .

Таким образом, электрофильность группы R^1R^2As относительного ароматического фрагмента уменьшается в ряду:

 $AsCl_2 \approx AsBr_2 \approx AsJ_2 \approx ClAsC_{ap} > JAsC_{ap} > ClAsEt > As(C \equiv CH)_2 > As(Cap)_2 > As(OR)_2 > C_{ap}AsEt > As[NEt_2]_2 > AsEt_2.$

 $\label{eq:Tadinuta 2} \mbox{ Таблица 2.}$ Полярность связей соединений мышьяка вида As $\mbox{R}^1\mbox{R}^2\mbox{ R}^3(\mbox{\sc I}).$

N	R ¹	R ²	R^3	$m(C_{ap}-As)$	m(As-Cl)	m(As-Br)	m(As-J)	m(Et-As)
1	Cl	CI	CI	-	1.37	- ,		
2	Cl	Cl	C_{ap}	1.01	1.56	-	*	
3	Br	Br	Br	-	-	1.18		-
4	Br	Br	C_{ap}	1.01	-	1.49	-	-
5	I	I	I	-	-		0.69	-
6	1	I	Cap	1.02	-	-	1.09	-
7	CI	Cap	C_{ap}	1.02	1.61	-		-
8	1	Cap	Cap	0.89	-	-	1.43	
9	Cl	Et	C_{ap}	0.50	1.66	-	-	1.55
10	C≡CH	C≡CH	C_{ap}	0.26	-		-	-
11	Cap	Cap	Cap	0.18	•		-	-
12	OR	OR	Cap	0.12	-	-	-	-
13	Et	C_{ap}	Cap	0.08	-		-	1.44
14	NEt ₂	NEt ₂	Cap	-0.04	-	•	-	
15	Et	Et	Cap	-0.15	-	-	-	1.14
16	Et	Et	Et	-	-	-		0.73

Электроноакцепторная способность группы Cl_2As значительно больше, чем $AsEt_2$. ДМ $m(C_{ap}-As)$ для первого ряда направлен в сторону атома мышьяка (1.01 Д), а второго - противоположно (-0.15 Д). Группа Cl_2As сильный электроноакцептор, а $(C_2H_5)_2As$ - донор электронов. Для групп 10, 11 и 15 (табл.2) моменты $m(C_{ap}-As)$ меняются закономерно, согласно электроотрицательности атома углерода у мышьяка. При замещении C(sp), $C(sp^2)$ и $C(sp^3)$ электроотрицательность группы R^1R^2As уменьшается и как следствие происходит сдвиг электронной плотности к атому $C_{ap}(R^3)$. Такая же картина наблюдается и для других связей. Так для всех связей As-Hlg последовательная замена R^1 и R^3 от (Hlg) $_2$ к (Hlg, C_{ap}) и да-

лее $(C_{ap})_2$ приводит к увеличению полярности связей. При этом эффект наиболее выражен для связи As-I с наибольшей поляризуемостью. В противоположном направлении происходит сдвиг электронов связи Et-As. Величина его меняется на 0.82 Д при замене R^1 =Cl, R^3 = C_{ap} (9-группа) на R^1 =Et, R^2 =Et (16-группа, табл. 2). В табл.3 приведены полученные нами полярности связей для соединений фосфора. Для них также с увеличением электроотрицательности группы PR^1R^2 происходит закономерное уменьшение ДМ $m(C_{ap}$ -P) в ряду: PCI_2 < $P(OR)_2$ < $P(C_{ap})_2$ < PL_2 < PEI_2 .

Для производных фосфора , как и для соединений мышьяка, замена электроноакцепторной группы PCl_2 на электронодонорную PEt_2 приводит к сдвигу электронной плотности от атома P к C_{ap} , при этом меняется не только величина, но и знак диполя $m(C_{ap}-P)$.

				Ta	іблица 3	
Пол	ярность с	вязей Сар	-Р в мо	леку	nax PR ¹ R ²	\mathbb{R}^3 .
-	-		1 .0	D. T	(D. Ot)	-

R ¹	R ²	R ³	$m(C_{ap}-P)$	m(P-C1)	m(H-P)
Cl	C1	Cl		0.57	
CJ	Cl	C_{ap}	1.43	-1.87	-
OR	OR	C_{ap}	0.95	•	-
Cap	Cap	Cap	0.38	-	-
Н	Н	Н	-		0.36
Н	H	Cap	0.07		0.72
Et	Et	Cap	-0.15		-

С целью сравнения относительных способностей мышьяксодержащих групп R^1R^2As - к электронным взаимодействиям относительно ароматического фрагмента и сопоставление их с изменениями ДМ связей As- C_{ap} были исследованы $Y\Phi$ -спектры рядов пара-замещенных соединений: p- $XC_6H_4As(Cl_2, p$ - $XC_6H_4As(Cl)C_2H_5, p$ - $XC_6H_4As(C_2H_5)(p$ - $CH_3C_6H_4)$, где X = Me,H, Cl, Br, OCH_3 , $N(CH_3)_2$

Дауб и Ванденбельт показали, что пара-заместители в бензольном кольце как доноры, так и акцепторы электронов распологаются в ряд по величине смещения $\Delta\lambda$ максимума первой первичной полосы (К-полосы). Для комплементарных заместителей (донор-акцептор) наблюдается значительный батохромный сдвиг К-полосы, который связан с величинами $\delta\lambda'_{o}$ и $\delta\lambda''_{o}$ смещений монозамещенных соединений (от значения 180 нм) следующим соотношением:

$$\Delta \lambda = \lambda_{\text{marc.}} - 180 = \frac{\delta \lambda'_{\circ} \cdot \delta \lambda''_{\circ}}{24.05} \text{ [HM]}$$
 (2)

Константы $\delta\lambda'_{o}$ и $\delta\lambda''_{o}$ рассматриваются как мера смещающего эффекта заместителя. Из уравнения (2) следует, что при фиксированном $\delta\lambda''_{o}$ для комплементарных заместителей имеется прямо пропорциональная зависимость между $\Delta\lambda = \lambda_{\text{макс}} - 180$ и $\delta\lambda'_{o}$.

Полученные нами экспериментальные графические зависимости между сдвигом К-полосы $\Delta\lambda$ и $\delta\lambda'_0$ - константами варьируемого пара-заместителя X, описываются прямыми. Фиксированными являются группировки AsCl₂, AsEtCl и AsEt(p-CH₃C₆H₄), характеризуемые константами $\delta\lambda''_0$.

Из анализа полученных данных следует, что группировки, содержащие атом мышьяка, в изученных соединениях являются акцепторами электронов по отношению к бензольному кольцу.

Учитывая литературные данные величин $\delta \lambda''_{o}$ для групп $As(C \equiv CH)_{2}$ и $AsEt_{2}$, рассматриваемые группы можно расположить в ряд по уменьшению электрофильности $(\delta \lambda''_{o})$:

$$\delta \lambda''_{o} = 52.8 \quad 41.6 \quad 40.1 \quad 37.2 \quad 35.4$$

 $AsCl_{2} > AsEtCl > As(C \equiv CH)_{2} > AsEt(p-CH_{3}C_{6}H_{4}) > AsEt_{2}$

На рис.2 сопоставлены величины m(Cap-As) и $\delta\lambda''_{o}$. Из него следует,

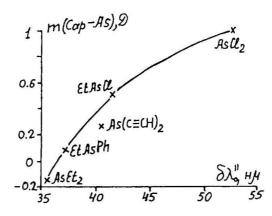


Рис. 2. Сопоставление величин полярности связей As-Cap с константами $\delta\lambda^{\prime\prime}{}_{o}$

что полученные обоими методами параметры, характеризующие способность группы R_1R_2As влиять на сдвиг электронной плотности фрагмента (НЭП)As-Сар пропорциональны. Тенденция их изменения для групп R^1R^2 As одинакова.

Аналогичную картину зависимости полярности связей от электроотрицательности заместителей можно ожидать для соединений фосфора и азота. Действительно по данным табл. 1. величины ДМ m(P-Me) и m(N-Me) увеличиваются с возрастанием электроотрицательности R^1 и R^2 в группе

 R^1R^2P - и R^1R^2N - в ряду $Me_2 \rightarrow (H, Me) \rightarrow H_2 \rightarrow F_2$. По данным табл. 3 ДМ связи m(Cap-P) так же уменьшается в ряду $Cl_2 > O_2 > Ph_2 > H_2 > Et_2$. Эти результаты хорошо согласуются с литературными данными, полученными из смещения частот в УФ- спектрах ряда $p-(H_2N)C_6H_4PR^1R^2$ ($R^1=R^2=Et$, NMe_2 , OEt, CI). Последовательность электрофильной способности группы R^1R^2P относительно ароматического фрагмента: $PCl_2 > P(OEt)_2 > P(NMe_2)_2 > PEt_2$.

В литературе имеются работы, посвященные корреляциям между первыми потенциалами ионизации (ПИ) молекул (обычно приписываемым к ПИ НЭП) элементов пятой группы периодической системы с различными физико-химическими свойствами.

С целью расширения числа молекул, участвующих в корреляционных зависимостях молекул элементов пятой группы периодической системы (ПС) нами рассмотрены взаимосвязи значений первых ПИ с валентными углами, дипольными моментами и энергиями межмолекулярных взаимодействий в рамках модели отталкивания электронных пар на валентной оболочке (ОЭПВО). Согласно ей, для соединений элементов пятой группы ПС, НЭП находится под воздействием притяжения ядра и отталкивания трех связывающих электронных пар (СЭП) (рис. 3). При увеличении электроотрицательности X, СЭП смещается от Э к X. Как следствие, НЭП притягивается

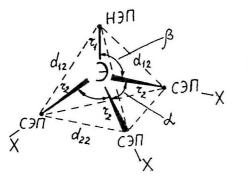


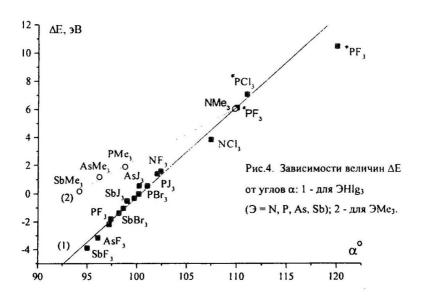
Рис.3. Обозначения НЭП и СЭП, расстояний и углов в соединениях $ЭX_3$

 κ Э, а угол α уменьшается. Методика количественных рассчетов углов α основанна на минимизации полной энергии отталкивания U, получаемой суммированием энергий отталкивания по всем парам связей и НЭП:

$$\sum_{ij} U_{ij} = \sum_{ij} a_n d_{ij}^{-n} = a_n X r^{-n}$$
 (3)

где a_n - коэффициент пропорциональности, X - коэффициент энергии отталкивания, являющийся функцией показателя степени n и геометрии координационного полиэдра, d_{ij} - расстояние между двумя эффективными центрами отталкивания i и j [1].

Для характеристики угла α в молекулах $\Im X_3$ вводится эмпирический параметр $R=r_1/r_2$. r_1 и r_2 эффективные расстояния от центра атома \Im до точечных $H\Im\Pi$ и $C\Im\Pi$ (рис.3). В расчетах r_2 принято равным 1 [1]. Отношение $R=r_1/r_2$ связано с d_{12}/d_{22} и соответственно с U_{12} и U_{22} . Иначе говоря, относительная энергия отталкивания связи \Im -Xi и $H\Im\Pi$ определяется «отношением эффективных длин связей» $R[r_1/r_1]$.


Можно предположить, что энергия первого потенциала ионизации молекулы (НЭП), согласно модели ОЭПВО, будет зависеть от строения молекулы, т.е. от валентных углов α в производных $ЭХ_3$.

Если построить зависимость $\Delta E = E_i^9 - E_H^9$ от α т.е. разности первых потенциалов ионизации центрального атома $\Im (E_i^9)$ и молекулы $\Im X_3 (E_H^9)$ от α , то все тригалогениды $\Im X_3 (\Im = N,P,As,Sb; X=F,Cl,Br,I)$ описываются единой прямой (1) (рис.4):

$$E_r^3 - E_H^3 = -64.451 + 0.642\alpha$$
 (4)
 $r = 0.984$, $S_0 = \pm 0.370$, $n = 14$.

Данные для возбужденных молекул и иона (* PCl_3 , * PF_3 , * PF_3) тоже неплохо укладываются на эту прямую (рис.4).

На том же графике приведена прямая (2) для триметилпроизводных: $E_c^3 = -34.639 + 0.370\alpha$ (5) r=0.999, $S_0=\pm0.075$.

Общая прямая зависимости ΔE от α для 16 соединений $\Im X_3$ ($\Im = N,P,As,Sb$) с заместителями $X = CH_3, C_6H_5$, SiH_3 и H (включая ионы $^+\Im H_3$) описывается функцией:

$$E_i^3 - E_H^3 = -36.001 + 0.381 \cdot \alpha$$

r=0.988; S₀=±0.611; n=16.

Т.е. в уравнениях для рядов с $X=CH_3, C_6H_5, SiH_3, H$ коэффициенты при α близки и существенно отличаются от тригалогенидов.

Аналогичные прямолинейные зависимости наблюдаются и для рядов:

$$\mathfrak{I}(\mathsf{CH}_3)_2$$
 $\mathfrak{I}=\mathsf{O},\mathsf{S},\mathsf{Se},\mathsf{Te}$ $E_i^{\,\mathfrak{I}}-E_H^{\,\mathfrak{I}}=-12.111\pm0.140\cdot\alpha,$ $r=0.996;$ $\mathsf{S}_0=\pm0.117;$ $\mathfrak{I}(\mathsf{SiH}_3)_2,\,\mathfrak{I}=\mathsf{O},\mathsf{S},\mathsf{Se}$ $E_i^{\,\mathfrak{I}}-E_H^{\,\mathfrak{I}}=-3.146\pm0.039\cdot\alpha$ $r=0.9996;$ $\mathsf{S}_0=\pm0.042;$ для $\mathfrak{I}(\mathsf{GeH}_3)_2$, $\mathfrak{I}=\mathsf{O},\mathsf{S},\mathsf{Se}$ $E_i^{\,\mathfrak{I}}-E_H^{\,\mathfrak{I}}=-6.100\pm0.074\cdot\alpha$ $r=0.999;$ $\mathsf{S}_0=\pm0.007.$

Зависимости $\Delta E = E_i^{(3)} - E_H^{(3)}$ от α для рассмотренных рядов качественно согласуются с теорией ОЭПВО об изменении сил отгалкивания электронных пар и соответственно углов α при варьировании электроотрицательности атомов X и Э. Из [1] зависимости R от углов α в рассматриваемом диапазоне (110÷95°), при любом значении степеней n (n=1,6,12), прямолинейны. При n=6 в уравнении (3), для ЭНІ g_3 можно написать:

$$R = -3.699 + 0.0428 \cdot \alpha$$
 (6)
 $r = 0.993$, $S_0 = \pm 0.017$.

Из сопоставления двух графиков зависимости ΔE от α и R от α (соответственно экспериментально и теоретически полученные уравнения (4) и (6)) следует, что изменение разности потенциалов ионизации ΔE и относительных энергий отталкивания электронных пар на валентной оболочке R, расчитанных по электростатической модели, в соединениях OHg_3 прямо пропорциональны:

$$\Delta E = E_L^{9} - E_H^{9} = -8.966 + 15.00 \cdot R \tag{7}$$

Метильные заместители являются донорами по сравнению с галогенами, а СЭП связи Э-Ме расположен к центральному атому ближе, чем в связи Э-Hlg. Но по модели ОЭПВО более близкое расположение электронных доменов описываются функцией (3) с большим значением степени n [1]. На графике (рис.4) прямая 2 для триметилпроизводных ЭМез (уравнение 5) расположена с меньшим углом наклона к оси α по сравнению с ЭHlgз. Теоретические зависимости α от α , приведенные в [1],

расположены на графике под разными углами (для неравных степеней п). При увеличении значения степени п (в функции 3) прямолинейные зависимости R от α , в диапазоне углов α =95-110°, также распологаются под меньшим углом наклона к оси α . Все прямые пересекаются в точке (α =109.5°, R=1), соответствующей равновесному состоянию. Поэтому можно предположить, что для рядов ЭМе₃, ЭРh₃, Э(SiH₃)₃, т.е. для заместителей X четвертой группы ПС для описания геометрии молекул в формуле (3) нужно брать величину n>6, которая была использована для обсуждения рядов ЭHlg₃. В этом случае прямые на экспериментальном графике (рис.4) должны пересекаться в точке, близкой к α =109.5°. Аналитическое решение двух уравнений 4 и 5 для рядов тригалогенидов и триметилпроизводных дает для точки пересечения ΔE =+5.91 эВ, α =109.6° (рис.4).

Из вышеизложенного материала следует, что замена заместителей X приводит к изменению относительного расположения электронных пар (СЭП и НЭП) при центральном атоме, характеризуемого величиной R. Поэтому можно ожидать качественной аналогии в ходе зависимостей величин ΔE от α и изменением типа гибридизации S и P орбиталей от α . Для интерпретации ДМ фосфинов, арсинов и аминов обычно используют валентное состояние $\Im(t^2_{\text{нэп}}, t, t, t)$ [2]. Данные вкладов (процентное соотношение) S и P- орбиталей в гибридную орбиталь $t^2_{\text{нэп}}$ в зависимости от углов α приведены в [2].

На рис.5 приведен график зависимости разности содержания s и рорбиталей в гибридной орбитали НЭП от угла α . Зависимость близка к прямой в диапазоне углов 95-109.5°. При этом, если грубо провести прямую, то функция зависимости

$$B^{2}(p) - A^{2}(s) = -6.75(101.8 - \alpha)$$
 (8)

весьма схожа с уравнением 4. При этом B^2 - A^2 =0 при α =101.8°. Углы α в уравнениях (4) и (8) близки при ΔE =0 и B^2 - A^2 =0. Из сопоставления двух зависимостей $R(\alpha)$ и B^2 - A^2 = $f(\alpha)$ точки при α =109.5° соответствуют равновесию электростатических отталкиваний R=1 (уравнение 6) [1] и гибридной орбитали $t_{\text{нэп}}^2$ с 25/75% участием s и р-орбиталей. В таблице 4 приведены параметры ΔE , R и [B^2 (p) - A^2 (s)] при различных предельных углах α . Из табл.4 следует, что для всех параметров наблюдается закономерное изменение величин от значений угла α . Зависимость разности вкладов P- и S - орбиталей [B^2 (p)- A^2 (s)] в гибридную орбиталь НЭП от угла α изменяется пропорционально функции $\Delta E(\alpha)$. Для обоих функций в области $90^\circ \div 101.5^\circ$ значение увеличиваются от минусовых значений

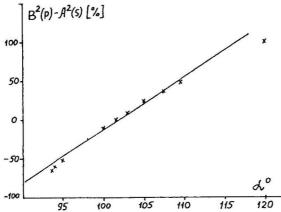
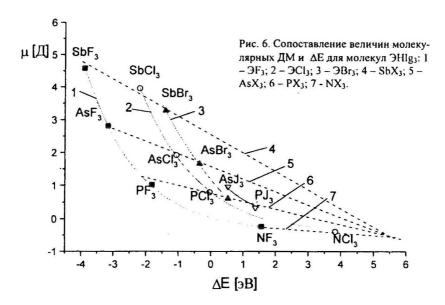


Рис. 5. Зависимость разности относительных вкладов s- и p-орбиталей в гибридную орбиталь НЭП от углов α .

до ~0(для первого от -100% до 0, для второго от -6.09 до +0.69 эВ), в области $101.5\div120^\circ$ увеличиваются (от 0 до 100% и от +0.69 до+11.5 эВ). Обе величины $\Delta E=E^3_{i-}E^3_{H}$ и $[B^2(p)-A^2(s)]$ являются разностями. Пропорциональность наблюдается также между величинами $R=r_1/r_2$ и $B^2(p)/A^2(s)$. Эти параметры характеризуют отношения двух взаимосвязанных

Таблица 4 Сравнительные параметры Δ*E*, *R*, B^2 - A^2 и B^2/A^2 в зависимости от угла α

α	ΔE , $3B$	B^2 - A^2 (%)	$R=r_1/r_2$	B^2/A^2
90°	-6.09	-100	-	0
94°		-60.8	~0.25	0.24
101.5°	~0	0	0.65	1
109.5°	+5.91	+50	1	3
120°	~+11.5	+100	→∞	00


величин и увеличиваются от 0.25(0.24) до бесконечности в интервале $94 \div 120^{\circ}$ (табл. 4).

Таким образом, три различные величины ΔE , R и $[B^2(p)-A^2(s)]$ характеризуют один и тот же процесс перераспределения центра тяжести четырех электронных пар центрального атома $\mathfrak I$ при изменении значения $\mathfrak a$ (изменении относительных электроотрицательностей заместителей $\mathfrak X$) в молекулах $\mathfrak I \mathfrak X_1$.

На рис.6 приведены зависимости значений молекулярных ДМ от ΔE для рядов $3Hlg_3$. Кривые 1 и 2 можно описать функциями:

$$\mu = \mu_0 + Ae^{\frac{\Delta E - x_0}{I}} \qquad , \tag{9}$$

где μ_0 , t, A, x_0 соответственно равны для рядов ЭF₃ $\rightarrow \mu_0$ =-0.4304, t=1.68341, A=3.2454, x_0 =-3.01700 (10) ЭCl₃ $\rightarrow \mu_0$ =-0.61635, t=1.85903, A=4.4947, x_0 =-2.17052 (11)

При возрастании ΔE (увеличение α) согласно уравнениям (10) и (11) уже при $\Delta E \approx +5-6$ эВ ($\alpha = 109^\circ$) дипольный момент молекулы для обоих рядов близок к μ_0 . При дальнейшем увеличении ΔE $\mu \rightarrow \mu_0$.

Для рядов с одинаковыми центральными атомами Э: AsF₃, AsCl₃, AsBr₃, AsJ₃ (прямая 5), PF₃, PCl₃, PBr₃, PJ₃(прямая 6, рис.6) и NF₃, NCl₃ (прямая 7) μ как функцию от ΔE можно приближенно описать прямолинейной зависимостью. При этом три прямые пересекаются в области $\Delta E \approx 5-6$ эВ ($\alpha = 109.5$ °).

Наблюдаемую на рис.6 картину можно попытаться объяснить из качественного рассмотрения изменений ДМ молекул $ЭX_3$ по модели, приведенной на рис.7. Пусть молекулярный ДМ состоит из момента $\mu_1 = 2e\,r_1$, трех моментов $\mu_2 = 2e\,r_2$ и трех моментов μ_0 . Момент μ_1 определяется расстоянием от центра ядра до центра НЭП, момент μ_2 - расстоянием от центра ядра до центра СЭП. Момент μ_0 определяется суммой моментов трех НЭП галоидов X и моментом СЭП. μ_0 всегда направлен к центральному

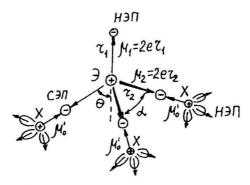


Рис.7. Направления ДМ НЭП и СЭП в молекулах ЭНІдз

Э, т.к. центры суммарных электронных зарядов при X смещены к Э. Тогда молекулярный ДМ равен

$$\mu = -2e \cdot r_1 + 3 \cdot 2e \cdot r_2 \cdot \cos \Theta - 3\mu_0' \cdot \cos \Theta,$$

где e - заряд электрона, Θ - угол между связью \Im - X и осью симметрии молекулы.

Так как $r_1/r_2=R$, то

$$\mu = 2e \cdot r_1 \left(\frac{3 \cdot \cos \Theta}{R} - 1 \right) - 3\mu_0' \cdot \cos \Theta. \tag{12}$$

При α =109.5° Θ =70.56°, $\cos \Theta$ =0.33286, а $3\cos \Theta$ =1; R=1.

Тогда μ (109.5°)= - μ 0 направленный к атому Э. Из экспериментальных функций (10,11) величина μ 0≈0.56 Д (при α =109.5° и Δ E=5.91 эВ)

Исследование теоретической функции (12) указывает на то, что при $\alpha \to 90^{\circ}~\mu \to +\infty$, при $\alpha \to 120^{\circ}~\mu \to -2 \cdot er_1$.

Первый член в формуле (12) $2er_1\left(\frac{3\cdot\cos\Theta}{R}-1\right)$ характеризует изме-

нение суммарных ДМ μ_1 и μ_2 при центральном \Im (рис. 7) с изменением угла α и R. Функция (12) при допущении μ_0 =const зависит от двух параметров α и R. Исследование экспериментальной функции (9) показывает, что при $\alpha \rightarrow 90^{\circ} \ \mu \rightarrow +\infty$, при $\alpha \rightarrow 120^{\circ} \ \mu \rightarrow \mu_0$. Если уравнять формулы (9) и (12) и соответственно рассчитать значения при $\alpha = 109.5$, то $\mu_0 = \mu_0$.

Таким образом, из сравнения результатов исследования экспериментальных кривых (формулы 10,11 и рис.6) и теоретической функции (12) качественно следует, что при $\alpha \rightarrow 90^{\circ}$ значение молекулярного μ увеличивается за счет увеличения трех моментов μ_2 , уменьшения угла Θ и уменьшения значения μ_1 . При угле $\alpha = 109.5^{\circ}$ четыре диполя μ_1 и μ_2 полностью

компенсируют друг друга, а ДМ молекулы определяется моментом μ_0 . При дальнейшем увеличении угла α до $120^{\rm O}$ ($\Theta \rightarrow 90^{\rm O}$) момент суммарных ДМ μ_1 и μ_2 направлен противоположно (от X к Э), т.е. $|\mu_1| > |3 \cdot \mu_2 \cdot \cos\Theta|$ и возрастает с увеличением угла $\alpha(\Theta)$. Однако вклад трех моментов $3 \cdot \mu_0 \cdot \cos\Theta$ в молекулярный момент при этом уменьшается.

Для качественной оценки величин r_1 и r_2 можно попытаться решить обратную задачу по формуле (12). Преобразовав ее получим

$$2er_1 = \frac{\mu - 3 \cdot \mu_0' \cdot \cos \Theta}{3 \cdot \cos \Theta / R - 1} = \mu_1 \quad , \tag{13}$$

где $2er_1 = \mu_1$ - дм нэп.

Подстановкой соответствующих величин μ , Θ и R получены значения $2er_1 = \mu(H \ni \Pi)$, $2er_2$, r_1 и r_2 (табл.5). μ_0 принято равным 0.56 Д. Из табл.5 видно, что для всех рассматриваемых соединений с валентными углами меньше 109.5° центр тяжести всех четырех электронных пар при центральном \ni смещены к атомам галогенов.

Таблица 5 Рассчитанные значения параметров r_1 , r_2 , μ_1 и μ_2 по формуле (13) для молекул ЭНІ g_3

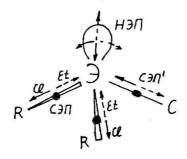
		$r_2(A)$	$\mu_1(Д)$	<i>μ</i> ₂ (Д)	α
NF ₃	0.0566	0.083	0.544	0.797	102.4
NC ₁₃	0.045	0.049	0.433	0.470	107.4
PF ₃	0.0892	0.190	0.857	1.824	97.3
PC13	0.104	0.179	1.015	1.718	100.2
PBr ₃	0.1186	0.191	1.139	1.834	101.0
PJ_3	0.1154	0.172	1.108	1.65	102
AsF ₃	0.1326	0.323	1.273	3.105	96.1
AsC13	0.148	0.279	1.482	2.678	98.6
AsBr ₃	0.167	0.287	1.60	2.759	99.7
AsJ_3	0.128	0.214	1.23	2.053	100.2
SbF ₃	0.1740	0.483	1.67	4.64	95.0
SbCl3	0.220	0.468	2.12	4.493	97.2
SbBr ₃	0.2363	0.454	2.269	4.362	98.2

Величина ДМ НЭП μ_1 (табл.5) изменяется в пределах 0.54÷2.27Д и хорошо согласуется с литературными данными. Во всех соответствующих рядах ЭХ₃ при X=const Э=N, P, As, Sb наблюдается повышение значения μ_1 . Это может быть связано с увеличением r_1 в зависимости от увеличения размеров центрального атома Э, хотя по модели ОЭПВО при уменьшении углов α в последовательности N \rightarrow P \rightarrow As \rightarrow Sb r_1 должно уменьшаться. Т.е. первая тенденция увеличения $r_{\text{ков}}$ (ковалентный радиус атома Э) в этих рядах превалирует, что ведет к увеличению r_1 и μ_1 . Для рядов с постоянным Э и варьированием X=F, Cl, Br, J для Э=P, As, Sb, согласно

ожидаемому по модели ОЭПВО, так же происходит увеличение μ_1 для X=F, Cl, Br.

Из вышесказанного вытекает, что величина ΔE , являющаяся аддитивной мерой изменения углов α , отражает степень изменения гибридизации НЭП элемента Э. В диссертации обсуждаются результаты корреляций величин ΔE с энергиями слабых водородных связей для молекул ΔE и с энергиями донорно-акцепторных взаимодействий для ΔE . Можно ожидать, что энергии межмолекулярных взаимодействий НЭП, например прочности водородных связей с учетом водорода фенола или спиртов ΔE , будут изменяться с варьированием значений ΔE .

Зависимость между энергией слабой водородной связи для ЭЕt₃ с фенолом (Э=N, P, As, Sb) связаны с ПИ выражением:


$$\Delta H$$
=-2.393(ккал/моль) - 1.097(ккал·эВ/моль)· ΔE (14)
 r =0.996; S₀=±0.323.

Из уравнения (14) ΔH =0 при ΔE =-2.18 эВ, т.е. по уравнению 5 $\alpha \approx 88^{\circ}$, а из данных [2] гибридная орбиталь НЭП имеет 100% S-характер.

Близкая зависимость наблюдается и для ряда $\Im(C_4H_9-H)_2$ и $\Im Et_2$ ($\Im = O$, S, Se, Te)с фенолом. Аналогичная прямая зависимость наблюдается и для ряда $\Im(C_4H_9-H)_2$ с HSPh. Во всех рядах с увеличением главного квантового числа для \Im происходит уменьшение энергии водородной связи и понижается величина ΔE и соответственно угол α , а для ряда $\Im X_3$ происходит увеличение S-характера $H\Im \Pi$.

Таким образом, для всех рассмотренных рядов при уменьшении α (уменьшении ΔE) и соответственном повышении относительного притяжения НЭП к ядру Э, энергия водородной связи уменьшается. Наиболсе сильному притяжению НЭП к ядру Э соответствует наименьшее связывание НЭП с протоном лиганда.

По электростатической модели можно ожидать, что при замене заместителей R = Alk на Hlg CЭП связи Э-R оттягивается на галогены и приводит к смещению как электронов CЭП' связи Э-C, так и HЭП

к атому Э. Можно провести сравнительный анализ динамики изменения дипольных моментов и ΔE НЭП при варьировании Э = N, P, As, в однотипных рядах с различными R, например, соединений:

Из этих схем видно, что как для производных азота, так и фосфора, согласно ожидаемому, при замене двух метильных групп на фторы происходит сильное увеличение полярности связи Э-С и притяжение электронов НЭП к центральному атому Э. Изменение ДМ связей при переходе от одного соединения к другому, в производных азота значительно больше. Аналогичная ситуация наблюдается в рядах фосфора и мышьяка:

$$\Delta E = +2.17 \text{ B}$$
 $E = +2.17 \text{ B}$
 $E = +2.17 \text{ B}$
 $E = +0.85 \text{ B}$
 Cap
 Cap

При этом полярности связей при фосфоре также изменяются сильнее, чем для мышьяка. Т.о., для несимметричных молекул типа $R_2 \Im - X$ увеличение электроотрицательности заместителей R приводит к сдвигу электронных пар НЭП и СЭП связи $\Im - X$ к атому $\Im - X$. Сравнение однотипных рядов при варьировании $\Im - X$ указывает, что величина сдвига электронной плотности от X к X через X уменьшается в ряду производных X

2. О влиянии заместителей на ориентацию плоскости ароматического кольца в мышьякорганических соединениях

Из изложенного в предыдущей главе следует, что электронное строение мышьяксодержащего остова достаточно сильно зависит от природы заместителей при атоме As. В частности, существенно изменяются характеристики НЭП и связей C_{ap} - As. Поэтому можно ожидать и определенных закономерных изменений конформационного строения, т.е. углов поворота плоскости бензольных колец при атоме мышьяка.

Нами исследованы ряды соединений с связью C_{ap} - As вида: $R_1R_2As-C_6H_4$ -X-огt, $R_1R_2As(S)-C_6H_4$ -X-огt, где X=CH₃, Cl, Br, NO₂,OCH₃. Используя найденные величины и направления ДМ групп $R_1R_2As-C_{ap}$ для этих рядов, были рассчитаны ДМ различных конформаций. Проведенный графический анализ для всех соответствующих рядов орто-замещенных производных указывает на то, что изменение положения заместителей X при переходе от пара- к орто-аналогам не меняет величины суммарного ДМ группы $R_1R_2As-C_{ap}$. При расчетах за исходную конформацию ϕ = 0° принята структура, при которой биссектриса угла R_1AsR_2 лежит в плоскости ароматического фрагмента (биссекторная форма), а орто-заместитель X имеет цис-ориентацию по отношению к НЭП атома As или As=S связи. Сравнение рассчитанных значений с экспериментальными

величинами показало, что для производных $Hlg_2As-C_6H_4$ -X-оrt угол поворота бензольного кольца близок к $\phi\approx0^\circ$ (биссекторная цис-форма). Для производных R_1 = R_2 =Et и NMe $_2$ - $\phi\approx90^\circ$, т.е. реализуется перпендикулярная форма. Для несимметричных производных R_1 =Cl, R_2 =Et ($\phi\approx50^\circ$), R_1 = R_2 =OBu-tr ($\phi\approx60^\circ$) наблюдается гош-форма. Для рядов соединений с сильно полярной связью $R_1R_2As(S)$ - C_6H_4 -X-ort R_1 = R_2 =Et и R_1 =Et,

 R_2 =Ph-Me-п плоскость кольца ориентирована в биссекторной конформации с заместителями As=S и C_{ao} -X в транс положении ($\phi \approx 180^{\circ}$).

Для пара- и мета-производных $Cl_2As-C_6H_4-X$, где $X=H,Me,Cl,Br,I,NO_2$ дополнительно использовался метод, основанный на измерении констант Керра (КК). Анализ КК для пяти пара-производных дихлорфениларсинов показал, что значение среднего угла поворота $\phi=25\pm10^\circ$. Т.е. конформация близкая к биссекторной.

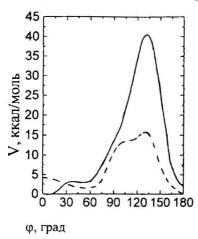


Рис.8. Зависимость потенциальной энергии вращения вокруг связи As-Cap для: $Cl_2AsC_6H_4$ -Cl-о - сплошная линия; $Me_2As(S)C_6H_4$ -Cl-о - пунктирная линия

Для мета-производных дихлорфениларсинов вместное решение методами ДМ и КК показывает, что у всех соединений реализуется примерно равные количества син- $(\phi = 0)$ и анти ($\phi = 180^{\circ}$) конформеров с биссекторным строением. Аналогичная картина наблюдается и в ряду $I_2AsC_6H_4-X-m$. Таким образом для пара- и метапроизводных дигалогенарсинов реализуются одинаковые, близкие биссекторной форме конформации.

Удаленность пара- и мета-

заместителей X от группы R_2As не влияет на форму потенциальной кривой вращения.

приведены результаты расчетов для орто-производных Cl₂AsC₆H₄-Cl-ort методом ППДП/2 (SP-базис). Наиболее устойчивое положение соответствует конформации с $\phi = 0^{\circ}$ (цис форма). Транс-форма (180°) менее стабильна, на 2 ккал/моль. На этом же графике приведена кривая для Me₂As(S)C₆H₄-Cl-ort . Минимумы на кривой находятся при 60 и 180°. Вторая форма выгоднее, на 1.6 ккал/моль, и соответствует экспериментальным результатам. Расчеты позволяют оценить заряды на атомах Увеличение (puc.9). положительного As заряда на атоме дихлорфениларсине по сравнению с диметиларсином приводит относительно большему смещению σ - электронов As - C_{ap} связи к мышьяку. Следствием этого является увеличение ДМ этой связи при переходе от дихлор- к диметиларсину. Для этилхлорфениларсина эта величина имеет промежуточное значение. Из рис.9 следует, что для всех соединений

реализуется та конформация, в которой отрицательно заряженный хлор в орто-положении отдаляется от наибольших отрицательных зарядов групп R^1R^2As .

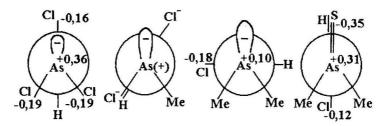


Рис.9. Экспериментально наблюдаемые конформации молекул $R_1R_2AsC_6H_4$ -Cl-о в проекции Ньюмена. На атомах указаны рассчитанные методом ППДП/2 эффективные атомные заряды.

Исследование рядов производных с двумя арильными группами RAs(C_6H_4 -X-ort)₂, где R=Cl, I, Et, S- показало, что для фрагмента As(C_6H_4 -X)₂ в растворе реализуется структура, близкая к C_2 – симметрии. В этой конформации плоскости обоих бензольных колец расположены друг за другом и отклоняются от плоскости $C_{ap}AsC_{ap}$ на ~40° и 50° соответственно. Таким образом, для молекул типа RAs(C_6H_4 -X)₂ замена заместителей R (Cl,I,Et,S), в отличии от производных $R_1R_2AsC_6H_4$ -X, мало влияет на ориентацию плоскостей бензольных колец, а их углы поворота определяются в основном взаимным влиянием ароматических групп.

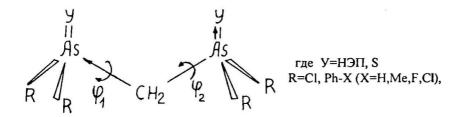
В этой же главе на примере соединений фосфора и мышьяка показано, что графический анализ замещенных ароматических производных можно применить для конформационно равновесных систем. Теоретический анализ уравнений типа (1) для равновесия изомеров позволил показать, что в этом случае данные, полученные из графиков, описываются такими же уравнениями, а полученные величины $\mu_{\rm o}$ и α соответствуют «эффективной конформации». Эта конформация определяется соотношением количеств отдельных изомеров в равновесии.

3. Заторможенное вращение вокруг связей $As - C(sp^3)$, As - N < , As - O , As - S.

Экспериментальной информации о характере конформационных превращений, их термодинамике, об относительных расположениях вращающихся групп в молекулах с осями вращения вокруг связей As-C(sp³), As-N, As-O, As-S крайне мало. С целью расширения этих данных и установления определенных закономерностей конформационного

поведения, нами методами колебательной спектроскопии и дипольных моментов изучены производные мышьяка, содержащие группы $As-C(sp^3)$, As-N, As-O и As-S. Литературные данные для молекул, вращение в которых может происходить вокруг связей $As-C(sp^3)$, ограничены лишь исследованием этилпроизводных. Вместе с тем, для выяснения закономерностей внутреннего вращения вокруг связи >As-C(- необходимы данные о конформационном строении молекул, которые отличаются заместителями при атомах $As-C(sp^3)$.

В данном разделе нами исследованы следующие молекулы:


```
\begin{split} & J_2AsCH_2CH_3 \quad (XCVII); \quad (H-C\equiv C)_2AsCH_2CH_3 \quad (XCVIII); \\ & (p-XC_6H_4)_2AsCH_2CH_3, \quad \text{rae } X=H(XXI), \quad CH_3(XX), \quad Cl(XXII), \quad Br(XXIII); \\ & (C_6H_5)_2AsCH_2CI \quad (XCIX); \\ & (C_6H_5)_2AsCH_2CH_3, \quad \text{rae } R=Cl(XXVIII), \quad J(C), \quad C\equiv N(CI); \\ & (C_1AsCH_2AsCI_2 \quad (CII); \\ & (p-XC_6H_4)_2AsCH_2As(C_6H_4X-p)_2, \quad \text{rae } X=H(CIII), \quad CH_3(CIV), \quad F(CV), \\ & Cl(CVI); \\ & (p-XC_6H_4)_2As(S)C_2H_5, \quad \text{rae } X=H(XCI), \quad Cl(XCII); \\ & (p-XC_6H_4)_2As(S)CH_2As(S)(C_6H_4X-p)_2, \quad \text{rae } X=H(CVII), \quad CH_3(CVIII), \\ & Cl(CIX), \\ & F(CX); \quad (C_2H_5)_3As(Se) \qquad (CXI). \end{split}
```

(Нумерации исследованных соединений в автореферате и диссертации совподают).

Для этилпроизводных XCVII и XCVIII (R=I,C \equiv CH) реализуется равновесие гош- (ϕ =60°) и транс- (ϕ =180°) форм. Энергия гош-формы выгоднее на 0.2-0.4 ккал/моль. Для производных XXI-XXIII и XCIX R=Ph-X наблюдается

лишь одна гош-форма (ϕ =60°). В этом случае стерические объёмные фенильные группы полностью вытесняют из транс-формы связи C-CH₃ и C-Cl (XX-XXIII, XCIX). Аналогичная ситуация наблюдается для четырехкоординированных соединений (XCI), Cl(XCII), (CXI).

Результаты исследования соединений вида:

также указывают на существенную роль природы заместителей на конформационное строение. Так, по данным ИК-спектров (рис.9) бис(дихлорарсино)метана СІІ (Y=HЭП, R=Cl) ряд одиночных полос для кристалла, в жидкости и растворах расщепляются. Варьирование диэлектрической проницаемости среды указывает на сильное изменение относительных интенсивностей компонент этих полос. Исследование спектров в интервале температур 273-

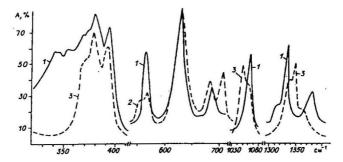
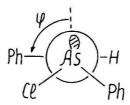


Рис. 9. ИК- спектры (СІІ): 1- кристалл, 2- раствор в CS2, 3- раствор в CCl4.

213° К позволило определить разность энтальпий конформаций. Отнесение полос к определенным группам молекулы проведено на основании расчета частот и форм нормальных колебаний. Для идентификации дополнительно использовали метод ДМ. Анализ полученных данных позволяет сказать, что для бис(дихлорарсино)метана СІІ (Y=HЭП, R=Cl) реализуется равновесие гош-гош – (ϕ_1 = ϕ_2 =60°) и гош-гош- (ϕ_1 =60°, ϕ_2 =-60°) форм. При замене R=Cl на C₆H₄-X в бис(диариларсино)метанах (СІІІ - CVI) равновесие полностью смещается в сторону одной гош-гош формы (ϕ_1 = ϕ_2 =60°).

В четырехкоординированных бис(диариларсинотионо)метанах (CVII- CX) одна из As-C связей разворачивается в транс-положение (ϕ_1 =180°, ϕ_2 =60°), что свидетельствует о значительном электростатическом взаимодействии полярных связей As=S и As-C, способных конкурировать со стерическими отталкиваниями двух арильных групп.

Качественный анализ внутримолекулярных взаимодействий различных заместителей при атомах As и C указывает, что энергия вращения вокруг связи $As-C(sp^3)$ определяется торсионными, стерическими и диполь-дипольными взаимодействиями.


Нами исследованы 24 соединения с As - N связью:

Для СХІІ - СХVІ, XL - XLІІІ в ИК-спектрах наблюдается расщепление ряда полос, а при кристаллизации происходит упрощение спектра. Вариации температуры и диэлектрической проницаемости среды свидетельствуют о незначительной разности энергий и полярности реализующихся конформеров. Из анализа данных ИК- спектров и ДМ следует, что производные CXIV-CXVI, с одной группой As-N(Et₂), существуют в виде

Для СХІІ, СХІІІ, XL-XLІІІ, XCVІІ-XСІХ с двумя группами As-N($\rm Et$)₂, данным ИК спектроскопии удовлетворяет равновесие гош - транс-конформаций - либо 1 с 2, либо 1 с 3:

равновесия гош и транс конформаций:

Для амидогалогенарсонитов CXX-CXXXI наличие различных паразамещенных рядов с фиксированными X и У, позволило провести графический анализ и определить направления молекулярных дипольных моментов всех производных. По данным ИК-спектров не обнаружено равновесия поворотных изомеров. Для всех соединений реализуется конформация с близким к перпендикулярному расположением связи N- C_{ap} и биссектрисы угла $ClAsC_{ap}$:

Литературные данные указывают на ограниченный объем имеющейся экспериментальной информации о характере конформационных превращений для молекул со связями As-O- и As-S-.

Нами были исследованы следующие ряды соединений:

 $As(OR)_3$, где R=CH₃, (CXXXII), C₂H₅ (CXXXIII), н-C₄H₉ (CXXXIV), i-C₃H₇ (CXXXV), tr-C₄H₉ (CXXXVI);

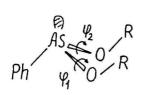
 $p-X-C_6H_4$ As(OR)₂, где R=CH₃, X=H (CXXXVII): R=CH₃, X=Br (CXXXVIII); R=CH₃, X=NO₂ (CXXXIX); R=i-C₃H₇, X=H (CXL); R=tr-C₄H₉, X=H (CXLI); R=tr-C₄H₉, X=Br (CXLII); R=tr-C₄H₉, X=NO₂ (CXLIII).

 $o-X-C_6H_4As(OR)_2$, где R=CH₃, X=Br (CXLIV); R=CH₃, X=NO₂ (CXLV); R=tr-C₄H₉, X=Br (CXLVI); R=tr-C₄H₉, X=NO₂ (CXLVII).

X=OCH₃-orto (CLX). (O)As(OR)₃, rge R=CH₃ (CLXI); C_2H_5 (CLXII); $i-C_3H_7$ (CLXIII).

 $p-XC_6H_4As(O)(OR)_2$, где X=H, R=C₂H₅ (CLXIV); X=CH₃, R=C₂H₅ (CLXV); X=NO₂, R=C₂H₅ (CLXVI); X=H, R=C₃H₇ (CLXVII).

CH3(O)As(OCH3)2 (CLXVIII).

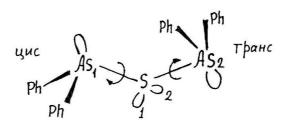

Проявление поворотной изомерии в этих соединениях изучено по ИК- и КР-спектрам полученным в жидкой и кристаллических фазах, средах различной полярности, в различных температуратурных интервалах. Из сопоставления параметров полос и линий в ИК- и КР-спектрах оценена симметрия конформаций. Для дополнительной идентификации структуры применялся метод ДМ.

Для соединений $As(OR)_3$, где $R=CH_3$, C_2H_5 , $H-C_4H_9$, (CXXXI-CXXXIV) реализуется одна конформация с C_5 – симметрией (рис.10,а), в которой две группы O-R ориентированы в ±синперипланарном (цисоидном) положении, а третья — в ±антиперипланарной ориентации. Для CXXXV и

CXXXVI (R=i-Pr и tr-Bu) наряду с этой конформацией в равновесии существует изомер с \pm синперипланарной ориентацией всех трех OR групп с $C_3(C_{3V})$ - симметрией (рис. 10, в).

Рис.10. Различные конформации соединений As(OR)3 и (O)As(OR)3.

Для соединений CXXXVII-CXLVII при замене R=Me на tr-Bu-


группы также изменяются углы поворотов ϕ_1 и ϕ_2 . Для метилпроизводных реализуется гошгош конформация C_1 -симметрии ($\phi_1 = \phi_2 = 60^\circ$), а у третбутильных — C_s — симметрия (близкая к цис-ориентации $\phi_1 \approx 20^\circ$, $\phi_2 \approx -20^\circ$).

Согласно ИК- и КР-спектрам у циклических соединений

CXLVIII-CLII при R=Cl и Br наблюдается одна конформация, а при $R=C_6H_4-X$ равновесие двух конформеров. Согласно литературным данным (полученных методами ДM и SMP-спектроскопии) для R=Cl и Br реализуется конформация кресло с аксиальным (AK) расположением атомов Cl или Br.

Замена R на объемные фенильные радикалы приводит к появлению в равновесии с этой формой конформации типа твист (Т). При этом первая, по нашим данным, энергетически выгоднее на 0.16 ккал/моль.

Для всех соединений CLIII-CLV и CLVII- CLIX реализуется один изомер с цис-транс- расположением As-O(S) связи относительно НЭП мышьяка:

Все четырехкоординированные соединения CLXI-CLXIII с сильно полярной связью существуют в виде изомера с тремя \pm син-перипланарно расположенными OR группами (C_3 или C_{3V} симметрия) в равновесии с конформером с двумя \pm син-перипланарно и одним \pm антиперипланарно расположенными связями O-R относительно As=O (C_5 симметрия), рис.10, б. На рис.11 приведены ИК и КР спектры (O)As(O-iPr)3 для жидкости и различных кристаллов в области V_5 и V_{as} (AsO3) колебаний. Видно, что при кристаллизации происходит сильное упрощение спектров, что свидетельствует о равновесии двух измеров в жидкости.

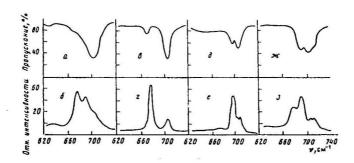


Рис.11. ИК- и КР-спектры CLXIII: а,б – жидкость; в,г- кристалл А; д,е – кристалл В; ж,з – смесь кристаллов.

Аналогичные исследования для триметиларсонита CLXVIII (Z=Me) указывают на равновесие (рис. а и б) изомеров с C_s — симметрией (обе OR группы в \pm син-перипланарном) и с C_1 - симметрией (одна в \pm син- другая в \pm анти-перипланарном положении) :

$$Z$$
 AS
 O
 R
 Z
 O
 Z

Замена метильной группы при мышьяке на арильную в ряду CLXIV-CLXVI ($Z=C_6H_4$ -X) приводит к полному вытеснению одной из предыдущих форм с антиперипланарным положением OR-группы. Для этих соединений реализуется одна конформация с гош-гош структурой.

На основе полученных экспериментальных данных можно провести качественный анализ влияния природы заместителей при атомах As и O на изменение углов поворота плоскостей групп As-O-R. В изученных рядах при центральном атоме As варьируются заместители с различными объемами CH₃, OCH₃, Ph. Существенные изменения полярностей связей происходят при переходе от трехкоординированных к четырехкоординированным производным. Анализ относительных ориентаций в пространстве неподеленных электроннных пар при атомах As и O(S), находящихся с разных сторон от оси вращения As-O- (As-S-), может дать дополнительную информацию о роли взаимодействия НЭП в стабилизации реализующихся конформаций в трехкоординированных производных.

В [3] методом ААПФ проведены расчеты энергий внутримолекулярных взаимодействий для молекул $Me_2As(O)OMe$, $MeAs(O)(OMe)_2$. (O)As(OMe)₃. Потенциальная кривая внутреннего вращения вокруг оси As-O имеет минимумы при гош ($\pm 60^{\circ}$) и транс (180°). Т.е. в цис — положении имеется барьер при переходе от гош⁺ к гош⁻ — конформеру. Барьер перехода через цис-форму мал и его величина - порядка RT при комнатной температуре. Как отмечают сами авторы, экспериментально должна наблюдаться усредненная цис - конформация. При расчетах были учтены стерические и торсионные взаимодействия. Кроме того, учитывались взаимодействия НЭП атомов кислорода.

Следует отметить, что при таких расчетах в случае двух сильных диполей m(As=O) и m(O-C) необходимо учитывать и диполь – дипольные

взаимодействия. Для этой молекулы взаимодействия двух диполей уменьшают энергию цис-формы, что приводит к смещению потенциального минимума к $\phi = 0^\circ$. Поэтому экспериментально полученные нами результаты об ориентации OR групп в ±син- и ±анти - перипланарном положении относительно связи As=O в MeAs(O)(OMe)2 и (O)As(OR)3 можно объяснить совокупностью энергий стерических, диполь-дипольных взаимодействий и торсионного барьера. О роли дипольных взаимодействий свидетельствует смещение конформационного равновесия при переходе от (O)As(OMe)3 (CLXI) к As(OMe)₃ (CXXXII) (рис.10 а,б). Отсутствие сильного диполя m(As=O) во втором соединении (CXXXII) приводит к полной дестабилизации одной из двух форм с тремя ±син-перипланарными ориентациями, выгодной электростатически, в (CLXI). В (CXXXII) остается лишь одна форма с C_S - симметрией (рис.10, а), имеющаяся в (CLXI). Вторая ОМе группа в (CXXXII) не может повернуться в анти-перипланарное положение из-за стерических отталкиваний метильных групп. При замене метильных групп на t-Bu в трехкоординированном производном (CXXXVI) в равновесии обнаруживается второй изомер с тремя ±син-перипланарными расположениями O-tr-Ви групп (симметрии C_3 или C_{3v}), рис.10 а,в. Т.е. увеличение объема заместителя R приводит к повышению энергии в анти – перипланарном положении и как следствие выравниванию энергий конформеров C_S и C_3 (C_{3v}) симметрии.

Таким образом, для триметиларсенита наблюдается одна форма с C_S симметрией (рис.10, а), а наличие дополнительной сильно полярной связи в m(As=O) в (CLXI) приводит к появлению второго изомера C_3 (C_{3v}) симметрии (рис.10 б), выгодного по диполь – дипольным взаимодействиям. Существование этой же формы в тритретбутиларсените (CXXXVI) определяется уже стерическими взаимодействиями (рис.10, в). Действительно, расчеты проведенные нами по формуле Хилла, показывают, что увеличение объема радикала R=Me, i-Pr, tr-Bu ведет к значительно более быстрому росту молекулярной энергии с ориентацией OR-группы в транс-, чем в цис или гош – положениях, при взаимодействии с атомами кислородов соседних эфирных групп.

О влиянии арильной группы на конформационное строение свидетельствует сравнение $MeAs(O)(OMe)_2$ и $X-PhAs(O)(OR)_2$. В первом соединении отсутствие фенильной группы приводит к развороту одной из OR связей в антиперипланарное положение.

Аналогичная ситуация наблюдается и в ряду CXLVIII-CLII. Для производных (CXLVIII, CXLIX) с хлор и бром — заместителями при мышьяке наблюдается одна форма с аксиальным (АК) расположением цикла (ориентация двух О-С связей кольца близка к транс - положению). Замена заместителей при Аз на фенильные группы (CL-CLII) приводит к появле-

нию, наряду с АК-конформацией, твист – формы. Т.е. отталкивающее влияние фенильного кольца выравнивает энергии форм АК и Т.

В ряде работ обсуждается влияние НЭП атомов, находящихся с разных сторон оси вращения, на конформационную устойчивость. В этом случае решающим фактором в стабилизации наиболее энергетически выгодной конформации является взаимное отталкивание НЭП, приводящее к их ориентации в пространстве до угла $\approx 90^{\circ}$. В диссертации приведены результаты расчетов значений углов ориентации НЭП атомов As и двух НЭП кислорода и серы для цис, гош и транс ориентации группы As-O(S)-R. Во всех случаях наиболее выгодное расположение НЭП в пространстве наблюдается для цис- и транс-ориентации групп R_2 As и OR.

Таким образом для качественного объяснения динамики изменения торсионных углов вращения групп As—O-R в молекулах с различными заместителями при атоме As необходимо привлечение стерических взаимодействий валентно несвязанных групп как при атоме мышьяка, так и кислорода. Присутствие сильно полярных связей в четырехкоординированных производных приводит к значительным перераспределениям соотношения суммарных внутримолекулярных энергий различных конформеров.

С другой стороны, рассчитанные углы в пространстве между НЭП мышьяка и кислорода (или серы) в наблюдаемых конформерах согласуется с понятием о сильном отталкивании неподеленных электронных пар друг от друга, минимальная энергия которых соответствует их ориентации в пространстве под углом 90°.

4. Колебательные спектры, дипольные моменты четырёх членных циклических соединений мышьяка и триариларсазоаренов.

В четвертой главе представлены результаты исследования четырехчленных циклических соединений и производных с As=N- связью.

Методом дипольных моментов установленно, что производные [$X-C_6H_4$ -AsN-R]₂ с R=Bu-tr при азоте, в растворе существуют в виде цисформы, а для 1.3.2.4-тетраарилдиазадиарсетидинов (R= C_6H_4 -X) реализуется транс-структура. Для четырёхкоординированных производных [$X-C_6H_4$ -As(S)N-Bu-tr]₂ также наблюдается транс-форма.

Изучены ИК- и КР – спектры и установлены различия спектральных характеристик для рядов диазадиарсетидинов с трёх-, четырёх- и пятикоординированными атомами мышьяка.

Из исследования четырехчленных циклических диазадиарсетидинов следует, что в соединениях с третбутильными заместителями при азоте

переход от цис- (трехкоординированный As) к транс-изомерам (четырехкоординированный As) приводит к изменениям спектральных характеристик колебаний циклического остова. С одной стороны увеличивается число колебаний с альтернативным запретом, с другой стороны происходит смещение некоторых частот в более высокочастотную область. Первая связана с изменением геометрии соединений и как следствие их симметрии, а вторая – с изменением координации атома As, влияющего на напряжение цикла.

Для 1.3.2.4-тетраарилдиазадиарсетидинов, производных трехвалентного As, спектральная картина идентична транс-изомерам третбутильных соединений четырехкоординированного мышьяка. Наблюдается четкий альтернативный запрет, однако частоты колебаний циклического остова смещаются в более высокочастотную область спектра, свидетельствуя о еще большем возрастании напряженности цикла.

Причины этих переходов из цис- в транс-формы при варьировании заместителей при атомах As и N качественно можно объяснить следующим образом. В третбутильных производных заместители при атоме N отклоняются от плоскости, что свидетельствует о склонности атома азота к sp³-гибридизации. В этом случае стерические взаимодействия между фенильными группами у As и tr-Ви радикалами у N позволяют реализовываться цис-форме в трехкоординированных соединениях. Однако появление двух сильно полярных связей As=S в четырехкоординированных производных электростатически стабилизирует транс-форму, в которой диполи As=S групп расположены в анти-положении. При замене tr-Ви групп на фенильные радикалы в трехкоординированных производных As стерические отталкивания арильных заместителей у As и N приводят к реализации трансформы.

При кристаллизации соединений (O)As(OR)₃, где R=Me,Et,Pr,Bu в колебательных спектрах (ИК, KPC) происходят сильные изменения. В, частности, исчезают v(As=O), в области $v(AsO_3)$ появляются ряд новых полос. Процесс обратимый. Анализ спектров показал, что происходит димеризация арсенильных соединений:

В колебательных спектрах последних наблюдается альтернативный запрет, свидетельствующий, что четырехчленные циклы [As-O]₂ имеют центр симметрии. Димери-

зация происходит и в растворе. Исследования показали, что процесс димеризации блокируется межмолекулярными водородными связями и стерическими взаимодействиями заместителей R.

Графическим анализом дипольных моментов пара-замещенных трифениларсазоаренов $(X-C_6H_4)_3As=N-C_6H_4-Y$ и арсазфосфенов определены

величины и направления полярностей групп $Ar_3As=N$, $Ar_3P=N$, Ar-N(As.P). Наблюдается существенное возрастание полярности групп $\Im=N$ и $N-C_{ap}$ π_1^{per} замене P на As. Сравнительный анализ зарядов на связях $\Im=O$, $\Im=S$, $\Im=N-C_{ap}$ ($\Im=P$,As) в производных $Ph_3\Im=Z$ свидетельствует о том, что для обоих рядов способность смещать электроны от группы $Ar_3\Im$ растет в последовательности NPh<S<O.

выводы

- 1. Проведено систематическое исследование широкого ряда мышьякорганических соединений (МОС) методами ИК-, КР-, УФ-спектроскопии, дипольных моментов и эффекта Керра. Определены и охарактеризованы спектральные, электрические и электрооптические параметры 204 МОС, установлены закономерности их пространственного строения и конформационных превращений.
- 2. Найдены математические соотношения между величинами потенциалов ионизации, дипольных моментов, валентных углов и энергий межмолекулярных взаимодействий в ряду производных азота, фосфора, мышьяка и сурьмы. Их анализ с помощью методики, разработанной в рамках модели ОЭПВО, позволил установить закономерности электронного распределения в молекулах соединений этих элементов.
- 3. На основе развитого метода графического анализа дипольных моментов пара-замещенных ароматических производных мышьяка получены значения полярностей групп $R_1R_2As-C_{ap}$ и связей R-As и As- C_{ap} . Сопоставление их величин и направлений позволило установить закономерности внутримолекулярного перераспределения электронной плотности в зависимости от природы R_1 и R_2 в 12 рядах производных, содержащих фрагменты $R_1R_2As-C_{ap}$. Эти данные находятся в хорошем согласии с величинами « спектроскопических» констант групп R_1R_2As , полученных методом УФ спектроскопии. Аналогичные закономерности обнаружены и для рядов соединений с фосфорсодержащими группами $R_1R_2P-C_{ap}$.

Показано, что графический метод анализа для рядов замещенных ароматических производных мышьяка и фосфора может быть использован и для конформационно равновесных систем. В этом случае найденные величины и направления дипольных моментов соответствуют «эффективной конформации», определяющейся соотношением отдельных изомеров в равновесии.

4. Установлено, что величина ΔE , разность первых потенциалов ионизации атома Э и молекулы $\exists X_3 \ (\exists = N, P, As, Sb; X=Hlg, Me)$, прямо про-

порциональна значениям валентных углов ХЭХ и величинам относительных энергий отталкивания электронных пар на валентной оболочке.

На основе выявленных функциональных зависимостей молекулярных дипольных моментов от $\Delta E(\alpha)$ рассчитаны дипольные моменты НЭП, расстояния между точечными зарядами и объяснены закономерности их изменений при варьировании Э и X в соединениях Э λ .3.

В несимметричных молекулах типа $R_2\Im X$ ($\Im=N$, P, As) увеличение электроотрицательности R приводит к сдвигу электронных пар $H\Im\Pi$ и С $\Im\Pi$ связи $\Im-X$ к атому \Im , что отражается и на закономерном изменении как величины ΔE , так и полярности $\Im-X$ связи. Сравнение однотипных рядов при варьировании \Im показывает, что величина сдвига электронной плотности от X к R через \Im уменьшается в ряду производных N>P>As.

5. Определены углы поворота плоскости арильных групп орто-, мета- и пара-замещенных арсинов $R^1R^2AsC_6H_4$ - X. Для производных с ортозаместителями наблюдается их зависимость от природы заместителей R^1 и R^2 . При уменьшении электроотрицательности R^1 и R^2 ориентация фенильного кольца изменяется от биссекторного (цис) до перпендикулярного положения. Эти результаты хорошо согласуются с изменением полярности связей $As-C_{ap}$, величинами рассчитанных зарядов и характером НЭП мышьяка в группах $R^1R^2AsC_{ap}$ при варьировании R^1 и R^2 . Дальнейшее увеличение угла поворота происходит для четырехкоординированных орто-замещенных производных $R^1R^2As(S)-C_{ap}$. Наличие дополнительной сильно полярной связи As=S разворачивает заместитель X до транс-формы.

Установлено, что мета-замещенные арилдигалоидарсины существуют в равновесной смеси близких по энергии конформеров с цис- и трансориентацией заместителей X и $H \ni \Pi$ мышьяка. Для пара-производных арилдихлорарсинов характерна биссекторная конформация.

Для диарильных производных $RAs(C_6H_4X)_2$ варьирование заместителей R (Cl, l, S, Et) мало влияет на ориентацию плоскостей бензольных колец. Их углы поворота в группе $As(Ar)_2$ определяются в основном взаимным влиянием ароматических фрагментов.

- 6. Методами колебательной спектроскопии и дипольных моментов исследовано конформационное строение соединений, содержащих As- $C(sp^3)$, As-N, As-O и As-S связи.
- а) Установлено, что для трех- и четырехкоординированных производных со связями As-C(sp³) реализуется равновесие гош- и транс-форм. Замена заместителей R на объемные фенильные группы приводит к полному вытеснению транс-конформера. Однако, разворот одной из As-C групп в транс положение в ряду бис(диариларсинотионо)метанов с сильно полярными связями свидетельствует о значительном электростатическом взаимодействии, способном конкурировать со стерическими отталкиваниями двух арильных групп.

- б) Обнаружено, что молекулы ариламиноарсинов существуют в равновесной смеси гош- и транс-конформаций с близкими энергиями и полярностями. Для амидогалогенарсонитов с фенильной группой при азоте реализуется единственная перпендикулярная форма.
- в) Исследованием поворотной изомерии производных со связью As-O показано, что величины диэдральных углов (Y)As-O(R), так же, как и смещение конформационного равновесия, существенно зависят от природы заместителя при атомах As и O. Для соединений (Y)As(OR)₃ (Y=HЭП, O) и MeAs(O)(OMe)₂ реализуется равновесие изомеров с ±синперипланарным (цис) и ±анти-перипланарным (транс) положениями связей As=Y и O-R. Наличие фенильной группы в ArAs(Y)(OR)₂ приводит к полному вытеснению OR-группы из транс-положения. Для бис(диариларсин)оксидов и -сульфидов реализуется конформация с цис- и транс-ориентацией НЭП атома As и O(S)-As связи.

г) Анализ внутримолекулярных взаимодействий различных заместителей при атомах As, C и O указывает, что энергия вращения вокруг осей As-C(sp³) и As-O определяется торсионными, стерическими и дипольдипольными взаимодействиями.

7. Впервые определены спектральные характеристики рядов диазадиарсетидинов с трех-, четырех- и пятикоординированными атомами мышьяка. На основе наблюдаемого в ИК- и КР-спектрах альтернативного запрета для колебаний остова (As-N)₂ с привлечением дипольных моментов определено наличие цис- или транс-форм молекул различных рядов. Существенное повышение значений частот колебаний группы (As-N)₂ связано с переходом от цис- к транс-форме молекул в рядах 1,3-ди-трет.-бутил-2,4-диарил- и 1,3,2,4-тетраарилдиазадиарсетидинов, обусловленным в свою очередь различием характера атома азота в группах N-Вu-tr и N-Ar, а также увеличением напряжённости четырехчленного цикла.

Цитируемая литература

- 1. Киперт Д. Неорганическая стереохимия. М.: Мир, 1985. 280 с.
- Зверев В.В., Бельский В.Е. Потенциалы ионизации и геометрия фосфинов// Докл. АН СССР. - 1978. - Т.241. - №6. - С.1367-1370.
- 3. Шагидуллин Р.Р., Плямоватый А.Х., Аввакумова Л.В. Применение метода атом-атомных потенциальных функций к расчету конформа ций мышьякорганических соединений// Изв. АН СССР. Сер.хим.-1981. №6. С.1289-1292.

Основное содержание диссертации опубликовано в следующих работах :

- 1. Шагидуллин Р.Р., Халитов Ф.Г., Аввакумова Л.В., Тукаев З.А., Чадаева Н.А., Багавеева Д.А. О конформационных превращениях в ряду триалкиларсенитов // ДАН СССР. 1976- Т.228.-№4.-С.857-860.
- 2. Шагидуллин Р.Р., Халитов Ф.Г., Аввакумова Л.В. Ассоциация молекул арсенильных соединений //ДАН СССР.1976-Т.231-№6.-С.1377-1380.
- 3. Шагидуллин Р.Р., Халитов Ф.Г., Аввакумова Л.В., Чадаева Н.А., Мамаков К.А. Поворотная изомерия триалкиларсенатов //Изв.АН СССР, Сер.хим. 1977.-№8.-С.1812-1815.
- 4. Халитов Ф.Г., Ямбушев Ф.Д., Горчакова Л.А., Дорошкина Г.М., Верещагин А.Н. Дипольные моменты и пространственная структура арилдихлорарсинов //Изв.АН СССР.Сер.хим.1979.-№10.-С.2247-2251.
- 5. Шагидуллин Р.Р., Ямбушев Ф.Д., Халитов Ф.Г., Горчакова Л.А. Колебательные спектры ариларсоновых кислот //Деп. в ВИНИТИ.- 1979. №3813-79.-25 с.
- 6. Шагидуллин Р.Р.,Ямбушев Ф.Д.,Халитов Ф.Г., Горчакова Л.А., Чернова А.В. УФ-спектры и электронные свойства ариларсоновых кислот //Деп. в ВИНИТИ.-1979.-№3812-79.-15 с.
- 7. Халитов Ф.Г. О взаимосвязи потенциалов ионизации и геометрической сруктуры некоторых молекул //ДАН СССР.1980.-Т.254.-№4.-С.934-938, ДАН СССР.1981.-Т.258.-№1.-С.10.
- 8. Халитов Ф.Г., Аввакумова Л.В., Чадаева Н.А., Мамаков К.А., Любимцева О.Г., Верещагин А.Н. Об ориентации алкоксигрупп в некоторых соединениях трехвалентного мышьяка //Изв.АНСССР. Сер.хим. 1980.-№2.- С.299-304.
- 9. Халитов Ф.Г.,Верещагин А.Н., Горчакова Л.А., Ямбушев Ф.Д. Дипольные моменты и пространственная структура мета-замещенных арилдихлорарсинов //Изв.АН СССР. Сер.хим. 1980.-№2.-С.462-463.
- 10. Халитов Ф.Г., Шагидуллин Р.Р., Аввакумова Л.В., Плямоватый А.Х. О конформациях и межмолекулярных взаимодействиях триалкиларсенатов в жидком и кристаллическом состояниях //Тез.докл. V Всес. конф. по межмолекулярному взаимодействию и конформациям молекул.-Алма-Ата.-1980.-С.100.
- 11. Халитов Ф.Г., Верещагин А.Н. Аддитивный анализ дипольных моментов некоторых производных азота и фосфора //Изв.АНСССР. Сер.хим.1980.-№9.- С.2046-2050.

- 12. Халитов Ф.Г. Колебательные спектры, дипольные моменты и строение мышьякорганических соединений //Тез.докл. I Всес. конф. по синтезу и использованию мышьякорг. соед. в нар. хозяйстве Казань.- 1980.- С.11.
- 13. Халитов Ф.Г. Электронные взаимодействия, геометрическая структура и дипольные моменты некоторых элементоорганических соединений //Тез. докл. І Всес.конф. по ситезу и использованию мышьякорг.соед. в нар. хозяйстве Казань.-1980.-С.56.
- 14. Шагидуллин Р.Р., Горчакова Л.А., Халитов Ф.Г., Ямбушев Ф.Д., Чернова А.В. Спектральное исследование ароматических производных мышьяка// Тез. докл. І Всес.конф. по ситезу и использованию мышьякорг.соед. в нар. хозяйстве Казань.-1980.-С.64.
- 15. Халитов Ф.Г., Верещагин А.Н., Горчакова Л.А., Ямбушев Ф.Д. Об ориентации ароматического кольца в соединениях мышьяка// Тез. докл. І Всес.конф. по ситезу и использованию мышьякорг.соед. в нар. хозяйстве Казань.-1980.-С.72.
- 16. Шагидуллин Р.Р., Халитов Ф.Г., Дорошкина Г,М., Плямоватый А.Х., Фазлиев Д.Ф., Аболонин Б.Е. О конформациях молекул дийодэтиларсина //Тез. докл. І Всес.конф. по ситезу и использованию мышьякорг.соед. в нар. хозяйстве Казань.-1980.-С.91.
- 17. Халитов Ф.Г., Шагидуллин Р.Р., Аввакумова Л.В., Аладжев М.М., Гамаюрова В.С. О конформациях триизопропиларсената //Изв.АНСССР. Сер.хим.1981.-№1.-С.121-124.
- 18. Халитов Ф.Г., Шагидуллин Р.Р., Дорошкина Г.М., Гамаюрова В.С. Дипольные моменты и конформации диалкиловых эфиров ариларсоновых кислот //Изв.АНСССР. Сер.хим.1981.-№2.- С.464-467.
- 19. Халитов Ф.Г., Верещагин А.Н. Дипольные моменты связей в арил производных фосфора и мышьяка//Ж.общ.химии.-1981.-Т.51.-Вып.1.-С.79-86.
- 20. Шагидуллин Р.Р., Халитов Ф.Г., Аввакумова Л.В., Чадаева Н.А., Журавлева Н.Н. Колебательные спектры и конформации молекул триметиларсоната //Ж.общ.химии.-1981.-Т.51.-Вып.7.-С.1594-1599.
- 21. Шагидуллин Р.Р., Халитов Ф.Г., Дорошкина Г.М., Плямоватый А.Х., Фазлиев Д.Ф., Аболонин Б.Е. Конформации молекул дийодэтиларсина //Ж.структ.химии.-1981.-Т.22.-№5.-С.179-182.
- 22. Горчакова Л.А., Халитов Ф.Г., Ямбушев Ф.Д. Колебательные спектры ариларсоновых кислот //Межвузовск. сб. Химия и технология элементоорганических соединений и полимеров.- Казань: КХТИ, 1981.- С.23-30.

- 23. Шагидуллин Р.Р., Горчакова Л.А., Ямбушев Ф.Д., Чернова А.В., Халитов Ф.Г., Кокорев Г.И., Никифоров М.Д. УФ-спектры и электронные свойства ароматических производных мышьяка //Деп. в ВИНИТИ.-1981.-№3410-81.-48с.
- 24. Халитов Ф.Г., Шагидуллин Р.Р., Горчакова Л.А. Дипольные моменты фенилхлорэтил- и дифенилэтиларсинов и конформации ортозамещенных производных //Ж.общ.химии.-1982.-Т.52.-Вып.10.-С.2243-2249.
- 25. Халитов Ф.Г., Верещагин А.Н. Природа заместителей и дипольные моменты несимметричных производных азота, фосфора и мышьяка // Тез. докл. III Всес. конф. по электрическим свойствам молекул- Казань.-1982.- С.184.
- 26. Халитов Ф.Г., Шагидуллин Р.Р., Аввакумова Л.В., Чадаева Н.А. Дипольные моменты и структура производных эфиров кислот As(III) и As(Y) // Тез. докл. III Всес. конф. по электрическим свойствам молекул-Казань. 1982. С.185.
- 27. Халитов Ф.Г., Шагидуллин Р.Р., Ашрафуллина Л.Х., Гареева Ф.Р., Мазитова Ф.Н. Графический анализ дипольных моментов и конформации ароматических производных мышьяка и фосфора // Тез. докл. III Всес. конф. по электрическим свойствам молекул Казань.- 1982.- С.186.
- 28. Халитов Ф.Г., Верещагин А.Н., Горчакова Л.А., Тимошева А.П. Константы Керра, поляризуемость и структура арилдихлорарсинов. // Изв.АНСССР. Сер.хим. 1982.-№8.- С.1901-1903.
- 29. Халитов Ф.Г. Заторможенное вращение в ациклических производных мышьяка // В сб. Конформационный анализ элементоорганических соединений.- М.: Наука.-1983.-С.181-200.
- 30. Халитов Ф.Г. Электронные взаимодействия и конформационное строение ароматических производных мышьяка //Тез. докл. III Всес. совещ. Металлоорганические соед. непереходных металлов в синтезе и катализе. Перьм.-1983.- с.143.
- 31. Халитов Ф.Г., Гариева Ф.Р., Дорошкина Г.М. Дипольные моменты и конформации бис(диариларсино)-метанов //Ж.общ.химии.-1983.-Т.53.-Вып.2.-С.403-405.
- 32. Халитов Ф.Г., Чадаева Н.А., Аввакумова Л.В. Дипольные моменты и пространственная структура арилдибромарсинов //Ж.общ.химии.-1983.-Т.53.- Вып.9.-С.2031-2034.
- 33. Шагидуллин Р.Р., Халитов Ф.Г., Чадаева Н.А., Аввакумова Л.В., Любимцева О.Г., Сафина С.А. Колебательные спектры и конформации

- производных 4H,7H-5,6-бензо-1,3,2-диоксаарсепинов //Ж.общ.химии.-1983.-Т.53.- Вып.9.-С.2035-2038.
- 34. Ямбушев Ф.Д., Кокорев Г.И., Халитов Ф.Г., Тенишева Н.Х., Кутьин С.В. Синтез и свойства ариларсиндихлоридов //Ж.общ.химии.-1983.-Т.53.- Вып.12.-С.2718-2722.
- 35. Халитов Ф.Г., Шагидуллин Р.Р., Аввакумова Л.В. Колебательные спектры как метод анализа мышьякорганических соединений //Тез.докл. научно-технической конф. Перспективы развития производства мышьяка и его соединений, в том числе особо чистых, в X1 пятилетке и до 2000 года.-Кутаиси.-1983.- С.83.
- 36. Ямбушев Ф.Д., Кокарев Г.И., Халитов Ф.Г. Синтез и свойства этилариларсинхлоридов //Ж.общ.химии.-1984.-Т.54.-Вып.4.-С.857-860.
- 37. Ямбушев Ф.Д., Кокорев Г.И., Халитов Ф.Г. Синтез и свойства этилдиариларсинов //Ж.общ.химии.-1984.-Т.54.- Вып.9.-С.2005-2008.
- 38. Чадаева Н.А., Халитов Ф.Г., Аввакумова Л.В., Шагидуллин Р.Р. Синтез и свойства некоторых диалкил-(п- и о-бромфенил)- и (п- и о-нитрофенил)-арсонитов // Ж.общ.химии.-1985.- Т.55.-Вып.10.-С.2293-2297.
- 39. Халитов Ф.Г., Аввакумова Л.В., Чадаева Н.А. Дипольные моменты и конформации диалкиларсонатов //Ж.общ.химии.-1986.-Т.56.-Вып.9.-С.2061-2066.
- 40. Халитов Ф.Г., Репина Т.Я., Ниязов Н.А., Панфилович З.У., Кузьмин К.И. О пространственной структуре некоторых арсинов //Межвуз.сб. Химия и технология элементоорганических соединений и полимеров.-Казань.-1987.-С.37-42.
- 41. Халитов Ф.Г., Кулагина Л.Г., Гельфонд А.С., Кокорев Г.И. Об ориентации ароматического кольца в некоторых соединениях мышьяка //Межвуз.сб. Химия и технология элементоорганических соединений и полимеров.-Казань.-1987.-С.33-37.
- 42. Халитов Ф.Г., Верещагин А.Н. О графическом анализе дипольных моментов конформационно равновесных систем //Изв.АНСССР. Сер.хим. 1987.-№8.-С.1782-1785.
- 43. Халитов Ф.Г., Шагидуллин Р.Р., Ашрафуллина Л.Х., Мазитова Ф.Н. ИК спектры, дипольные моменты и конформации трифенилтиофосфатов //Тез.докл. Всесоюз.совещ. по химии и применению органических соединений серы.-Казань.-1987.-С.
- 44. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. Дипольные моменты и строение арилдийодарсинов //Ж.общ.химии.-1987.-Т.57.-Вып.12.-С.2723-2725.
- 45. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. О пространствененой структуре некоторых ароматических соединений мышьяка //Ж.общ. химии.-1988.-Т.58.-Вып.2.- С.327-330.

- 46. Ремизов А.Б., Халитов Ф.Г., Гареева Ф.Р., ИК спектры, дипольные моменты и конформации бис(дихлорарсино)метана //Ж.структ.химии.-1988.-Т.29.-№5.-С.54-59.
- 47. Халитов Ф.Г., Репина Т.Я. Колебательные спектры и строение соединений мышьяка со связью As C и As N //Тез.докл. IY Всесоюз. конф. по металлоорганической химии. Казань.-1988.- Ч.3.-С.131.
- 48. Кокорев Г.И., Мусин Р.З., Бадрутдинов Ш.Х., Халитов Ф.Г., Платонов А.Б., Ямбушев Ф.Д. Мышьякорганические соединения с As=N связью. Взаимодействие ариларсиндихлоридов с трет.- бутиламином //Ж.общ. химии.-1989.-Т.59.-Вып.7.- С.1551-1556.
- 49. Халитов Ф.Г. О конформационных превращениях в мышьякорганических соединениях //Тез.докл. II Всесоюз.конф. по синтезу и использованию мышьякорг. соед. в народном хозяйстве- Казань.-1989. С.43.
- 50. Халитов Ф.Г., Репина Т.Я., Кокарев Г.И. ИК спектры, дипольные моменты соединений со связью As-N //Тез.докл. II Всесоюз.конф. по синтезу и использованию мышьякорг. соед. в народном хозяйстве- Казань.-1989. С.44.
- 51. Репина Т.Я., Халитов Ф.Г., Панфилович З.У. Колебательные спектры и конформации некоторых производных мышьяка. //Тез.докл. II Всесоюз.конф. по синтезу и использованию мышьякорг. соед. в народном хозяйстве Казань.-1989. С.45.
- 52. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. О конформационном строении замещенных диарильных производных мышьяка //Тез.докл. II Всесоюз.конф. по синтезу и использованию мышьякорг. соед. в народном хозяйстве- Казань.-1989. С.46.
- 53. Шагидуллин Р.Р., Халитов Ф.Г., Плямоватый А.Х., Аввакумова Л.В., Аболонин Б.Е. О конформационных превращениях в триэтиларсинселениде //Тез.докл. II Всесоюз.конф. по синтезу и использованию мышьякорг. соед. в народном хозяйстве- Казань.-1989. С.47.
- 54. Халитов Ф.Г., Кузнецов А.М. Определение углов вращения арильных групп вокруг связи C_{ap} Аѕ методом дипольных моментов и квантово-химическими расчетами //Тез.докл. II Всесоюз.конф. по синтезу и использованию мышьякорг. соед. в народном хозяйстве- Казань.-1989. C.48.
- 55. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. Дипольные моменты и строение диарилхлор(йод)арсинов и бис(арсин)сульфидов //Межвуз.сб. Химия и технология элементоорганических соединений и полимеров.-Казань.-1990.-С.25-34.
- 56. Халитов Ф.Г., Репина Т.Я., Кокарев Г.И. ИК спектры, дипольные моменты и конформации ариламиноарсинов //Межвуз.сб. Химия и технология элементоорганических соединений и полимеров.-Казань.-1990.-С.34-44.

- 57. Халитов Ф.Г., Репина Т.Я., Кацюба С.А., Панфилович З.У. Поворотная изомерия в соединениях со связью As С.//Ж.обц. химии.-1991.-Т.61.-Вып.8.- С.1782-1787.
- 58. Кокорев Г.И., Мусин Р.З., Бадрутдинов Ш.Х., Халитов Ф.Г., Коршунов Р.Л. Синтез и строение триариларсазоаренов //Ж.общ. химии.-1991.-Т.61.-Вып.10.- С.2204-2208.
- 59. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И., Дипольные моменты и строение диарилхлор(йод)арсинов и бис(арсин)сульфидов //Ж.общ. химии.-1994.-Т.64.-Вып.2.- С.258-262.
- 60. Khalitov F.G., Kokorev G.I., Vereschagin A.N. Graphic method of the dipole moments analysis of aromatic phosphorus and arsenicum derivatives. //Abstr. of XI International Conf. on Chem. of Phosph. Comp. Kazan.-1996.-P.207.
- 61. Халитов Ф.Г., Кокорев Г.И., Кулагина Л.Г. Синтез, дипольные моменты и строение ароматических производных арсазосоединений. //Тез.докл. науч. сессии, посвящ. памяти проф. И.М.Шермергорна.- Казань.- 1997.-С.53.
- 62. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. Дипольные моменты и пространственное строение амидогалогенарсонитов //Ж. общ. химии.-1998.-Т.68.- Вып.11.- С.1833-1836.
- 63. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. О дипольных моментах и конформациях амидогалогенарсонитов //Тез.докл. Симп. по химии и применению фосфор-, сера- и кремнийорганических соед. "Петербургские встречи-98". С.-Петербург.-1998.-С.284.
- 64. Халитов Ф.Г., Кузнецов Ан.М., Гаврилов В.И. Пространственная структура и электронные свойства ароматических производных мышьяка //Жур. Вестник Казанского технологического университета.-1998.- №2.- С.15-23.
- 65. Халитов Ф.Г., Кулагина Л.Г., Кокорев Г.И. Дипольные моменты, колебательные спектры и строение пара-замещенных бис (диариларсин) сульфидов и -оксидов //Тез.докл. XX-Всероссийской конф. по химии и технол. органическ. соединений серы.-Казань.- 1999.- С.222.

Лицензия № 189 от 28.05.97 г.

Сдано в набор 24.04.2000 . Подписано к печати 24.04.2000. Печать RISO. Бумага офсет № 1. Формат 60х84 1/16 Усл. печ. л. 3. Тираж 100. Заказ 47

Издательство "Мастер Лайн", г. Казань, ул. Б. Красная, 55, ком. 003 Отпечатано на полиграфическом участке издательства