На правах рукописи

ЖАЛДАК ЭЛЬВИРА РИНАТОВНА

КОМПОЗИТНЫЕ ПЛЕНОЧНЫЕ ЭЛЕКТРОДЫ НА ОСНОВЕ ГЕКСАЦИАНО- ИЛИ ГЕКСАХЛОРОМЕТАЛЛАТОВ ДЛЯ ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

02.00.02 – Аналитическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Казань – 2015

Работа выполнена на кафедре аналитической химии Химического института им. А.М. Бутлерова федерального государственного автономного образовательного учреждения высшего профессионального образования «Казанский (Приволжский) федеральный университет» Министерства образования и науки Российской Федерации.

Научный руководитель:	доктор химических наук, профессор Шайдарова Лариса Генналиевна				
	шандарова Ларнса I сппадисьпа				
Официальные оппоненты:	Евгеньев Михаил Иванович,				
	доктор химических наук, профессор				
	кафедры аналитической химии, сертификации и				
	менеджмента качества ФГБОУ ВПО				
	«Казанский национальный исследовательский				
	технологический университет», г. Казань				
	Фицев Игорь Михайлович				
	кандидат химических наук, заместитель				
	начальника отдела Экспертно-криминалисти-				
	ческого центра Министерства внутренних дел				
	по Республике Татарстан, г. Казань				
Ведущая организация:	ФГБОУ ВПО «Башкирский государственный университет», г. Уфа				

Защита диссертации состоится <u>«9» июня 2015 г.</u> в 14 часов 30 минут на заседании диссертационного совета Д 212.081.30 при ФГАОУ ВПО «Казанский (Приволжский) федеральный университет» по адресу: 420008, г. Казань, ул. Кремлёвская, 18, Химический институт им. А.М. Бутлерова, КФУ, Бутлеровская аудитория.

С диссертацией можно ознакомиться В научной библиотеке им. Н.И. Лобачевского ФГАОУ ВПО «Казанский (Приволжский) федеральный университет». Электронная версия автореферата размещена на официальном сайте ΦΓΑΟΥ ВПО (Приволжский) «Казанский федеральный университет» http://www.kpfu.ru.

Автореферат разослан «____» апреля 2015 г.

Ученый секретарь диссертационного совета Д 212.081.30 кандидат химических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ¹

Актуальность темы исследования. Вольтамперометрия на химически модифицированных электродах (ХМЭ) в настоящее время получила признание как метод определения органических соединений в различных объектах. Среди модификаторов электродов особый представляют интерес неорганические проводящие полимерные пленки, обладающие высокой электрокаталитической активностью, что является трендом современной электроаналитической химии. В ряду неорганических пленок особо выделяются гексацианометаллаты (ГЦМ) и гексахлорометаллаты (ГХМ) 3d- и 4d- переходных металлов. Это объясняется сравнительной простотой формирования пленок на поверхности электрода, высокой электрокаталитической активностью, а также способностью к электрохимическому генерированию на поверхности пленки нескольких каталитических центров различной природы. При этом появляется возможность повысить чувствительность и селективность вольтамперометрического определения широко круга органических соединений, в том числе биологически активных в различных объектах. Не менее важно и то, что применение таких XMЭ в проточно-инжекционном анализе (ПИА) позволяет автоматизировать ход анализа, увеличить его производительность, улучшить чувствительность, воспроизводимость и стабильность аналитического сигнала, а также повысить экспрессность и точность определения. Поэтому создание новых XMЭ с неорганическими полимерными пленками из гексациано- и гексахлорометаллатов и использование каталитического отклика таких ХМЭ для вольтамперометрического определения и амперометрического детектирования в потоке органических соединений является актуальной задачей.

Степень разработанности темы исследования. В настоящее время большое внимание уделяется разработке вольтамперометрических способов определения органических соединений на ХМЭ с каталитическими свойствами. Вопросы применения новых композитных материалов в сенсорных устройствах с целью расширения круга определяемых органических соединений в объектах медикобиологического назначения активно обсуждаются в литературе. Поэтому разработка новых ХМЭ для определения биологически активных соединений (БАС) является перспективным направлением электроаналитической химии.

Цель и задачи исследования. Целью исследования является создание новых и усовершенствование существующих способов получения ХМЭ на основе ГЦМ- и ГХМ-пленок с 3*d*-, 4*d*-переходными металлам и их применение в разработке способов

¹ Автореферат оформлен в соответствии с ГОСТ Р 7.0.11 – 2011 ДИССЕРТАЦИЯ И АВТОРЕФЕРАТ ДИССЕРТАЦИИ Структура и правила оформления

вольтамперометрического определения и амперометрического детектирования в потоке ряда органических соединений биомедицинского назначения: ряда серосодержащих аминокислот, пептидов и нуклеиновых оснований.

В настоящей работе поставлены следующие задачи:

• разработать способы изготовления ХМЭ с каталитическими свойствами на основе ГЦМ (гексацианоферратов, гексацианокобальтатов и гексацианорутенатов осмия) и ГХМ (гексахлороплатинатов и гексахлорорутенатов рутения и кобальта); найти условия осаждения ГЦМ и ГХМ на поверхности углеродных электродов; изучить морфологию поверхности ХМЭ и определить размеры частиц модификатора методом атомно-силовой микроскопии (ACM);

• установить особенности электроокисления серосодержащих аминокислот (цистина, цистеина и метионина), пептидов (ацетилцистеина, глутатиона и дисульфида глутатиона), нуклеиновых оснований (гуанина и аденина) и их производных (ацикловира и ганцикловира) на ХМЭ; сопоставить каталитическую активность ГЦМ- и ГХМ-пленок; выявить влияние морфологии ХМЭ на каталитические свойства модификатора; найти рабочие условия регистрации наибольшего каталитического эффекта;

• применить разработанные ХМЭ для вольтамперометрического определения и амперометрического детектирования рассматриваемых БАС в условиях ПИА с высокими аналитическими, метрологическими и эксплуатационными характеристиками;

• показать возможность селективного и высокочувствительного вольтамперометрического определения рассматриваемых органических соединений в лекарственных средствах и биологических объектах.

Научная новизна:

• разработаны электроды-сенсоры на основе ГЦМ- и ГХМ-пленок, методом АСМ установлено образование наноструктурированных частиц модификатора на поверхности ХМЭ с лучшими электродными характеристиками;

• показано, что формирование равномерно распределенного наноструктурированного модификатора на поверхности ХМЭ на основе ГЦМ- и ГХМ-пленок приводит к увеличению его каталитической активности в электродных реакциях серосодержащих аминокислот, пептидов, нуклеиновых оснований и их производных; установлены особенности электрохимического поведения этих соединений на ХМЭ;

• сопоставлены каталитические, метрологические и операционные характеристики иммобилизованных ГЦМ- и ГХМ-пленок, обнаружены наибольшие каталитические эффекты, которые использованы в аналитических целях; показана зависимость активности электрохимически генерированного катализатора от природы

прекурсоров, способа и условий осаждения неорганической полимерной пленки, состава фонового электролита и pH раствора;

• разработаны способы вольтамперометрического определения серосодержащих аминокислот, пептидов, нуклеиновых оснований и их производных на ХМЭ на основе ГЦМ- и ГХМ-пленок в стационарных условиях, предложены способы их амперометрического детектирования в условиях ПИА; установлено увеличение чувствительности определения рассматриваемых органических соединений по каталитическому отклику таких ХМЭ на несколько порядков, показана возможность селективного определения серосодержащих аминокислот (цистеина, цистина и метионина), нуклеиновых оснований (гуанина и аденина), тиолов (цистеина, глутатиона) и дисульфидов (цистина, дисульфида глутатиона) при совместном присутствии.

Теоретическая и практическая значимость работы. Разработанные ХМЭ на основе ГЦМ и ГХМ-пленок использованы в качестве электродов-сенсоров для высокочувствительного вольтамперометрического определения И амперометрического детектирования в условиях ПИА цистеина, цистина и метионина, ацетилцистеина, глутатиона и дисульфида глутатиона, гуанина, аденина и их производных ганцикловира). (ацикловира И Предложен способ селективного вольтамперометрического определения при совместном присутствии цистеина, цистина и метионина на XMЭ с пленкой гексахлороплатината рутения; цистина и цистеина, а также дисульфида глутатиона и глутатиона на XMЭ с пленкой гексахлороплатината кобальта; ХМЭ гуанина И аденина на с пленкой гексахлорорутената рутения. Способы апробированы в анализе лекарственных средств: каталитический отклик ХМЭ с пленкой гексацианокобальтата осмия использовали при определении ацетилцистеина, ХМЭ с пленкой гексахлороплатината рутения метионина, а ХМЭ с пленкой гексахлорорутената рутения – ацикловира и ганцикловира. ХМЭ также были использованы в анализе биологических объектов: ХМЭ с пленкой гексахлорорутената рутения – для определения коэффициента специфичности ДНК тимуса теленка и молоки лосося (по содержанию гуанина и аденина), а ХМЭ с пленкой гексахлороплатината кобальта – для определения тиол/дисульфидного коэффициента (ТДК) (по содержанию цистеина и глутатиона, цистина и дисульфида глутатиона) в плазме крови.

Методология и методы исследования. Электроокисление органических соединений на немодифицированных и модифицированных ГЦМ- и ГХМ-пленками углеродных электродах изучали методом циклической вольтамперометрии. Морфологию поверхности ХМЭ изучали методом АСМ. Определение органических соединений проводили методами вольтамперометрии в стационарных условиях или амперометрии в условиях ПИА на ХМЭ.

Положения, выносимые на защиту:

• способы и условия изготовления ХМЭ с композитными пленками ГЦМ (гексацианоферрата, гексацианокобальтата или гексацианорутената осмия) и ГХМ (гексахороплатината или гексахлорорутената рутения или кобальта) с наилучшими вольтамперными характеристиками;

 результаты изучения электроокисления серосодержащих аминокислот, пептидов, нуклеиновых оснований и их производных на разработанных ХМЭ; факторы, влияющие на каталитическую активность пленок и условия регистрации максимального каталитического эффекта;

• новые способы вольтамперометрического определения в стационарных условиях и амперометрического детектирования в условиях ПИА рассматриваемых органических соединений на разработанных ХМЭ; факторы, влияющие на аналитический сигнал; аналитические и метрологические характеристики способов определения в стационарных и проточных условиях.

• результаты использования разработанных способов вольтамперометрического определения органических соединений в анализе лекарственных средств и биологических объектов (ДНК и плазмы крови).

Степень достоверности и апробация работы. Достоверность полученных результатов обеспечена использованием современных методов вольтамперометрии, амперометрии в условиях ПИА, результатов исследования поверхности ХМЭ методом ACM, а также метрологической обработкой результатов анализа.

Результаты исследований были доложены и обсуждены на международных и российских конференциях и изложены в материалах: V Всероссийской конференции студентов и аспирантов «Химия в современном мире» (Санкт-Петербург, 2011), XI и XII Научной конференции молодых ученых, аспирантов и студентов научнообразовательного центра Казанского (Приволжского) федерального университета «Материалы и технологии XXI века» (Казань, 2012, 2014), VII и VIII Всероссийской конференции молодых учёных, аспирантов с международным участием «Менделеев – 2013» и «Менделеев – 2014» (Санкт-Петербург, 2013, 2014), Второй Республиканской научной конференции по аналитической химии с международным участием "Аналитика PБ-2012" (Минск, 2012), Всероссийской конференции «Химия и медицина» с молодежной научной школой (Уфа-Абзаково, 2013), Второго съезда аналитиков России (Москва, 2013), XXVI Международной Чугаевской конференции по координационной химии (Казань, 2014) и Итоговой научной конференции Казанского (Приволжского) федерального университета (Казань, 2014).

Публикации. По результатам работы опубликовано 6 статей в журналах, рекомендованных ВАК, и 10 тезисов докладов.

Личный вклад автора. Автор принимал участие в выполнении эксперимента, обработке, обсуждении и обобщении полученных результатов. Основная часть экспериментальной работы выполнена лично автором.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, экспериментальной части, трех глав результатов исследований и их обсуждения, заключения, списка сокращения и списка используемой литературы. Работа изложена на 163 страницах, содержит 64 рисунка, 32 таблицы и список литературы из 160 наименований. Первая глава (литературный обзор) дает представление об использовании в электроанализе ХМЭ с ГЦМ- и ГХМ-пленками и о определения серосодержащих аминокислот, методах пептидов, нуклеиновых оснований. Во второй главе описываются условия проведения эксперимента и объекты исследования. Третья глава посвящена выбору условий создания ХМЭ на основе ГЦМ- и ГХМ-пленок. В четвертой главе исследованы особенности электрохимического поведения серосодержащих аминокислот, пептидов, нуклеиновых оснований и их производных на полученных ХМЭ. В пятой главе способы разработанные вольтамперометрического описаны определения И амперометрического детектирования в условиях ПИА рассматриваемых органических соединений, показана возможность их определения по каталитическому отклику ХМЭ в лекарственных средствах и биологических объектах.

Автор являлся исполнителем гранта Российского фонда фундаментальных исследований (проект № 12-03-97031).

Автор выражает глубокую благодарность научному руководителю доктору химических наук, профессору Шайдаровой Л.Г., научным консультантам: академику РАЕН и МАНВШ, доктору химических наук, профессору Будникову Г.К., кандидату химических наук Гедминой А.В.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

При исследовании электроокисления органических соединений на ХМЭ с каталитическими свойствами проводили сопоставление потенциала ($E_{\rm mog}$) и тока ($I_{\rm mog}$) окисления иммобилизованного модификатора в отсутствие субстрата в растворе с потенциалом ($E_{\rm kat}$) и током ($I_{\rm kat}$) каталитического окисления субстрата на ХМЭ. Величину каталитического эффекта устанавливали по отношению $I_{\rm kat}/I_{\rm mog}$.

1. Электроды, модифицированные гексацианометаллатами или гексахлорометаллатами

Осаждение ГЦМ и ГХМ на поверхности электрода из стеклоуглерода (СУ) или высокоориентированного пирографита (ВОПГ) проводили потенциодинамически, варьируя область поляризации электрода и количество циклов изменения потенциала.

1.1. Электроды, модифицированные гексацианометаллатами

 $OsRu(CN)_6$ (pH 2.0)

Рисунок 1.2 – ЦВА на ХМЭ с пленкой OsFe(CN)₆ (pH 2.0)

0,2 0,4 0,6 0,8

Рисунок 1.3– ЦВА на ХМЭ с пленкой OsCo(CN)₆ (pH 2.0)

1 1,2

<u>Композитные электроды на основе гексацианорутената</u> <u>осмия (OsRu(CN)₆).</u> На циклической вольтамперограмме (ЦВА), полученной на XMЭ с пленкой OsRu(CN)₆, регистрируются три анодных и обратных катодных пиков (рисунок 1.1). Пик, наблюдаемый при E +0.55 B, относят к окислению внутрисферного рутения в форме Ru(CN)₆⁴⁻:

$$[\operatorname{Ru}(\operatorname{II})(\operatorname{CN})_6]^{4-} \rightleftharpoons [\operatorname{Ru}(\operatorname{III})(\operatorname{CN})_6]^{3-} + e \qquad (1)$$

Пики при E +0.80 В и +1.10 В связаны с электронными переносоми оксо-форм осмия: Os(II) \rightarrow Os(III) и Os(III) \rightarrow Os(IV).

Композитные электроды на основе гексацианоферрата осмия (OsFe(CN)₆). На ЦВА, полученной на СУ с пленкой OsFe(CN)₆, наблюдаются 3 пары анодно-катодных пиков (рисунок 1.2). Пик при потенциале +0.55В относят к окислению внутрисферного железа:

 $[Fe(II)(CN)_6]^{4-} \rightleftharpoons [Fe(III)(CN)_6]^{3-} + e \qquad (2)$

Пики, регистрируемые при потенциалах +0.85 В и +1.05 В связаны с окислением оксо-форм Os(II) и Os(III).

<u>Композитные электроды на основе гексацианокобальтата</u> <u>осмия (OsCo(CN)₆).</u> На ЦВА, полученной на ХМЭ с пленкой OsCo(CN)₆ (рисунок 1.3), первая пара анодно-катодных пиков связана с изменением степени окисления внутрисферного кобальта:

$$\operatorname{Co(II)(CN)_6^{4-}} \rightleftharpoons \operatorname{Co(III)(CN)_6^{3-}} + e$$
 (3)

OsCo(CN)₆ (pH 2.0) Наблюдаемое на анодной ветви ЦВА разделение пика в области потенциалов от +0.30 В до +0.60 В связано с окислением различных стехиометрических форм ГЦМ. Пик, наблюдаемый при потенциале +0.90 В на этом ХМЭ относят к окислению оксо-форм Os (II).

На рисунке 1.4 приведены АСМ-изображения ХМЭ с электроосажденными

Рисунок 1.4 – АСМ изображения поверхности ХМЭ с пленкой OsRu(CN)₆ (а) и OsCo(CN)₆ (б)

пленками OsRu(CN)₆ (a) и OsCo(CN)₆ (б). Для электрода OsRu(CN)₆ (рисунок 1.4-а) характерна неплотная чешуйчатая упаковка с размерами от 200 нм до 500 нм. А на поверхности XMЭ с пленкой OsCo(CN)₆ (рисунок 1.4-б) формируется сетчатая структура модификатора с поперечным сечением звена от 20 нм до 40 нм. Установлено влияние состава фонового электролита на электрохимические свойства полученных пленок. Лучшие вольтамперные характеристики для пленки $OsFe(CN)_6$ наблюдаются на фоне солей K⁺, а для пленки $OsCo(CN)_6$ – на фоне солей Na^+ . Природа иона щелочного металла в составе фонового электролита не оказывает влияния на вольтамперные характеристики пленки $OsRu(CN)_6$. Полученные ГЦМ-пленки характеризуются химической и электрохимической устойчивостью в растворах с pH 1.0 - 3.0 в течение одного месяца. В нейтральных средах наблюдается уменьшение анодных и катодных пиков. В щелочных средах пленки разрушаются.

1.2. Электроды, модифицированные гексахлорометаллатами

<u>Композитные электроды на основе пленки гексахлороплатината рутения</u> (<u>RuPtCl₆</u>). На рисунке 1.5 показаны ЦВА, полученные на СУ в растворе H_2SO_4 с

pH 2.0, содержащем 1×10^{-3} M RuCl₃ и 1×10^{-3} M H₂PtCl₆. С каждым последующим циклированием потенциала в области от -0.70 B до +1.30 B регистрируемые на ЦВА пики увеличиваются и смещаются в анодную область. При этом происходит постепенный рост одномерно-структурированной пленки, состоящей из чередующихся планарных d⁸ Pt^{II} и октаэдрических d⁶ Pt^{IV} комплексных форм. Схема образования пленки представляется следующим образом:

$$Ru^{3+} + e \rightleftharpoons Ru^{2+}$$
(4)

$$PtCl_6^{2-} + 2e \implies PtCl_6^{4-}$$
(5)

$$PtCl_6^{4-} + 2Ru^{2+} + PtCl_6^{2-} \rightleftharpoons Ru_2[PtCl_4PtCl_6] + 2Cl^{-} (6)$$

В упрощенном виде полученную пленку можно представить как RuPtCl₆.

На ЦВА, регистрируемой на XMЭ с пленкой RuPtCl₆ в этих условиях, в области потенциалов от -0.70 В до +1.30 В наблюдаются четыре хорошо выраженных анодных и обратных катодных пиков. Электрохимические реакции, протекающие на XMЭ при потенциале -0.50 В и +0.00 В, обычно относят к редокс-парам $PtCl_6^{2-}/PtCl_4^{2-}$ и Ru(III/II) соответственно, а пики при потенциалах +0.95 В и +1.20 В – к окислению оксо-форм рутения Ru(III) и Ru(IV) до более высоких степеней окисления.

I 20 мкА

Рисунок 1.5 – ЦВА электроосаждения пленки RuPtCl₆ на CУ (pH 2.0)

I 3 мкА

Рисунок 1.7 – АСМ-изображения поверхности ХМЭ с пленкой RuPtCk (а) и RuRuCk (б)

Получены ACM-изображения XMЭ с пленкой RuPtCl₆ и RuRuCl₆. На поверхности XMЭ с пленкой RuPtCl₆ образуется плотная упаковка осадка с диаметром частиц от 30 нм до 70 нм (рисунок 1.7-а), а на поверхности XMЭ с пленкой RuRuCl₆ – с диаметром частиц ~20-50 нм (рисунок 1.7-б). Полученная

(7)

пленка отличается высокой химической и электрохимической устойчивостью в кислых и слабокислых средах.

С целью уменьшения себестоимости электрода-сенсора была проведена замена дорогостоящего внешнесферного платинового металла на более доступный переходный металл, в качестве которого использовали кобальт.

<u>Композитные электроды на основе пленки</u> <u>гексахлороплатината кобальта (CoPtCl₆).</u> ЦВА на этом XMЭ регистрировали после электрохимического генерирования на поверхности пленки оксо-форм кобальта в щелочной среде. Максимумы тока при E_n +0.25 В и +0.55 В, полученные на XMЭ с пленкой CoPtCl₆ на фоне раствора NaOH с pH 13.0 (рисунок 1.8), связанны с образованием на поверхности пленки оксо-форм Co(III) и Co(IV). Включение ионов Co²⁺ в состав ГХМ-пленки привело к расширению рабочей области

рН раствора: активность модификатора проявляется в кислых и щелочных средах.

2. Электрокаталитическое окисление серосодержащих аминокислот, пептидов и нуклеиновых оснований на электродах, модифицированных гексацианометаллатами или гексахлорометаллатами

2.1. Электроокисление серосодержащих аминокислот и пептидов

Цистеин, ацетилцистеин и глутатион окисляются на немодифицированном СУ до дисульфидов, электроокисление протекает необратимо и с перенапряжением:

 $2RSH \longrightarrow RSSR+2e+2H^+$

Метионин также окисляется на СУ необратимо при E+1.1 В с образованием сульфоксидов. Электроокисление цистина и дисульфида глутатиона на СУ протекает с еще большим перенапряжением, при этом происходит расщепление связи S-S и образование кислородсодержащих продуктов, структура которых зависит от условий протекания электрохимической реакции.

11

pH 2.0 на анодной ветви ЦВА (рисунок 2.1-б, кривая 2) наблюдается значительное увеличение тока в пике при E_{π} +0.55 B, в области потенциалов, характерных для редокс-пары $Co(CN)_{6}^{3-}/Co(CN)_{6}^{4-}$ (рисунок 2.1-б, кривая 1). Многократный прирост тока, линейная зависимость величины тока от субстрата (рисунок 2.1-в) концентрации позволяют отнести ток окисления цистеина к каталитическому. Уменьшение потенциала каталитического окисления цистеина на этом ХМЭ ($E_{\text{кат}}$) по сравнению с потенциалом его

Рисунок 2.1 – ЦВА, полученные на CY (а) и OsCo(CN)₆-CУ в отсутствие (б, кривая 1) и в присутствии (а, б, кривая 2) цистеина (рН 2.0), зависимость тока пика окисления цистеина на ХМЭ от его концентрации (б)

Таблица 2.1 – Кинетические параметры,

b, мВ

180

202

окислении

α

0.68

0.71

при

 $(c=5\times 10^{-3}M)$ на XMЭ

окисления на СУ ($E_{\rm S}$) ($\Delta E = E_{\rm S} - E_{\rm kar}$) составляет 300 мВ. Схему электрокатализа можно представить в следующем виде:

$$[\operatorname{Co}(\operatorname{II})(\operatorname{CN})_6]^{4-} \stackrel{\text{\tiny def}}{=} [\operatorname{Co}(\operatorname{III})(\operatorname{CN})_6]^{3-} + e \tag{8}$$

$$2[\operatorname{Co}(\operatorname{III})(\operatorname{CN})_6]^{3-} + 2\operatorname{RSH} \rightarrow 2[\operatorname{Co}(\operatorname{II})(\operatorname{CN})_6]^{4-} + \operatorname{RSSR} + 2\operatorname{H}^+$$
(9)

полученные

Модификатор

OsCo(CN)₆

OsRu(CN)₆

 $OsFe(CN)_6$

где RSH –цистеин, RSSR – цистин.

Рассчитаны кинетические характеристики электроокисления цистеина на ХМЭ с ГЦМ-пленками (таблица 2.1). Константы скорости электрохимической реакции меняются в ряду OsCo(CN)₆> $OsRu(CN)_6 > OsFe(CN)_6$.

В ЭТОМ же ряду меняется величина каталитического эффекта, выраженного в приросте тока модификатора в присутствии субстрата (рисунок 2.2). Наибольшую каталитическую активность при окислении цистеина проявляет пленка OsCo(CN)6. Вероятно, это связано с тем, что на поверхности этого ХМЭ формируются изолированные частицы модификатора нанометрового диапазона (рисунок 1.4б) с более высокой активностью.

Каталитическое окисление ацетилцистеина и глутатиона на ХМЭ с пленкой $OsCo(CN)_6$ в кислых средах также происходит при E_{π} +0.55 B, но с меньшими

цистеина

с ГЦМ-пленками

 k_{s}, c^{-1}

 0.85×10^{2}

 0.57×10^{2}

каталитическими эффектами по сравнению с цистеином, что, вероятно, связано с более сложным строением этих органических соединений.

При электроокислении метионина и цистина наибольший каталитический эффект регистрируется на XMЭ с пленкой OsFe(CN)₆ (рисунок 2.3) причем окисление

(pH

2.0)

цистина

и

Рисунок 2.4 – ЦВА на ХМЭ с пленкой RuPtCl₆ в отсутствие (1) и в присутствии (2) цистеина, метионина и цистина (рН 4.0)

Рисунок 2.5 – ЦВА на ХМЭ с пленкой CoPtCl₆ в отсутствие (1) и в присутствии (2) сульфидов и дисульфидов (рН 13.0)

цистина происходит при метионина И разных при 0.92 В и 1.1 В, потенциалах – при этих же потенциалах на фоновой кривой регистрируются максимумы токов, соответствующих окислению разных оксо-форм осмия Os(II) и Os(III) (рисунок 2.3). Линейная зависимость тока пика скорости наложения ОТ потенциала, найденное значение критерия Семерано $(\Delta \lg I/\Delta \lg v)$, равное 0.68 и 0.64 для метионина и цистина соответственно), характерно поверхностных ДЛЯ электрохимических процессов.

Один из подходов повышения селективности вольтамперометрических методов определения серосодержащих аминокислот в различных объектах анализа состоит в улучшении электродных характеристик XMЭ за счет электрохимического генерирования на их поверхности различных каталитических центров. Для этих целей в качестве модификаторов помимо ГЦМ используют ГХМ.

Установлено каталитическое электроокисление цистеина, цистина и метионина на XMЭ с пленкой RuPtCl₆ на фоне ацетатного буферного раствора с pH 4.0. На вольтамперограмме, полученной в присутствии этих аминокислот, регистрируются три пика с разностью потенциалов окисления 200-300 мВ (рисунок 2.4), что позволяет разработать способ селективного определения этих аминокислот по одной вольтамперограмме.

Включение ионов Co^{2+} в состав ГХМ-пленки привело к проявлению электрохимической активности модификатора в более широкой области pH. Изучена каталитическая активность пленки из CoPtCl₆ на фоне раствора NaOH с pH 13.0 при окислении компонентов систем цистин/цистеин и дисульфид глутатиона/глутатион. Окисление цистеина и цистина происходит при $E_{\rm n}$ +0.30 В

и +0.55 В (рисунок 2.5), в качестве каталитически активных частиц выступают оксоформы Co(III) и Co(IV) соответственно. Использование в качестве модификатора пленки CoPtCl₆ позволяет регистрировать одной сразу два пика на вольтамперограмме, соответствующих каталитическому окислению тиолов И дисульфидов с разностью потенциалов 250мВ.

2.2. Электроокисление пуриновых оснований

Гуанин на немодифицированном СУ в кислых средах окисляется необратимо при $E_{\rm n}$ +1.25В по схеме:

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
HN\\ H_2N\\ \end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}$$
\left(10

Аденин в этих условиях на СУ не окисляется. Известно, что с увеличением pH раствора происходит уменьшение потенциала окисления субстрата. Поэтому в качестве модификаторов были выбраны пленки из RuPtCl₆ и RuRuCl₆, электрохимическая активность которых проявляется в кислых и слабокислых средах.

Окисление гуанина и аденина на рассматриваемых электродах на фоне буферного раствора с pH 4.0 происходит в области потенциалов +0.95 В и +1.25 В (рисунок 2.6, кривая 2), на фоновой кривой при этих же потенциалах происходит окисление оксо-форм Ru(III) и Ru(IV) соответственно (рисунок 2.6, кривая 1). Регистрируемый при этом многократный прирост тока, линейная зависимость величины тока пика от концентрации субстратов позволяют отнести электродные процессы окисления гуанина и аденина к каталитическим.

Значения величин каталитического эффекта при окислении пуриновых оснований хорошо согласуются с константами электрохимических реакций. Наибольшую каталитическую активность проявляет пленка RuRuCl₆ (рисунок 2.7), на поверхности этого ХМЭ формируются модификатора наночастицы меньшего размера электроокисления (рисунок 1.7) Разность потенциалов гуанина и аденина составляет 300 мВ (рисунок 2.6), что позволяет разработать способ их селективного определения при совместном присутствии.

Рисунок 2.0 – ЦВА на ХМЭ с пленкой $RuRuCl_6$ в отсутствие (1) и в присутствии (2) гуанина и аденина (pH 4.0)

Рисунок 2.7 – Зависимость каталитического эффекта от природы модификатора при окислении гуанина и аденина на ХМЭ

3. Аналитическое применение электродов, модифицированных гексацианометаллатами или гексахлорометаллатами

3.1. Вольтамперометрическое определение органических соединений

На основании полученных экспериментальных данных разработаны способы рассматриваемых вольтамперометрического определения серосодержащих аминокислот, пептидов и пуриновых оснований на электродах, модифицированных ГЦМи ГХМ-пленками. Аналитические и метрологические характеристики определения органических соединений на ХМЭ приведены в таблице 3.1. Использование ХМЭ каталитического отклика по сравнению с немодифицированными электродами приводит к понижению нижней границы определяемых содержаний органических соединений на один-три порядка, к повышению селективности их определения, а также к улучшению воспроизводимости отклика электрода.

Таблица 3.1 – Аналитические	характеристики	вольтамперометрического	определения
органических соединений на ХМ	ſЭ		

Субстрат Электрод		Диапазон концентраций, моль/л	Уравнение lg <i>I</i> = a (<i>I</i> , мкА; С	R	
			$a \pm \Delta a$	$b \pm \Delta b$	
	1	Фон 0.1 М Na	Cl (pH 2.0)	-	
Пистеин	СУ	$5 \times 10^{-5} \div 1 \times 10^{-3}$	0.50 ± 0.05	$(12.6\pm0.3)\times10^3$	0.999
цистенн	$O_{\alpha}C_{\alpha}(\mathbf{CN})$	$5 \times 10^{-6} \div 5 \times 10^{-3}$	1.9±0.2	$(8.4\pm0.2)\times10^3$	0.999
Ацетилцистеин	$OSCO(CN)_6$ -	$5 \times 10^{-6} \div 5 \times 10^{-3}$	1.9±0.2	$(8.4\pm0.2)\times10^3$	0.999
Глутатион	ĊĴ	$5 \times 10^{-5} \div 5 \times 10^{-3}$	3.4±0.1	$(3.12\pm0.02)\times10^3$	1.000
		Фон 0.1 М К	Cl (pH 2.0)		
Мотнонии	СУ	$1 \times 10^{-4} \div 1 \times 10^{-3}$	0.28 ± 0.02	$(7.7\pm0.2)\times10^3$	0.999
метионин	OsFe(CN) ₆ -	$5 \times 10^{-7} \div 5 \times 10^{-3}$	0.9±0.1	$(2.5\pm0.2)\times10^4$	0.999
Цистин	СУ	$5 \times 10^{-6} \div 5 \times 10^{-3}$	0.70 ± 0.05	$(1.22\pm0.07)\times10^4$	0.999
	Фон а	щетатный буферн	ый раствор с рН 4	4.0	
Гуанин	СУ	$5 \times 10^{-5} \div 1 \times 10^{-3}$	2.3±0.3	$(29.9\pm0.1)\times10^3$	0.998
Цистеин		$5 \times 10^{-6} \div 5 \times 10^{-3}$	2.7±0.2	$(1.60\pm0.09) \times 10^4$	0.999
Метионин	RuPtCl ₆ -CY	$5 \times 10^{-7} \div 5 \times 10^{-3}$	5.4±0.2	$(1.20\pm0.07)\times10^4$	0.999
Цистин		$5 \times 10^{-6} \div 5 \times 10^{-3}$	6.5±0.3	$(1.6\pm0.1)\times10^4$	0.999
Гуанин		$5 \times 10^{-6} - 1 \times 10^{-3}$	6.7±0.3	$(6.9\pm0.1)\times10^4$	1.000
Аденин	RuRuCl ₆ -CY	$5 \times 10^{-6} - 1 \times 10^{-3}$	16.8±0.2	$(6.19\pm0.07)\times10^4$	0.999
Ацикловир		$5 \times 10^{-6} \div 5 \times 10^{-3}$	5.2±0.1	$(3.73\pm0.04)\times10^4$	0.999
Ганцикловир		$5 \times 10^{-6} \div 5 \times 10^{-3}$	5.4±0.3	$(3.6\pm0.1)\times10^4$	0.999
		Фон раствор Na	OH (pH 13.0)		
Цистеин		$5 \times 10^{-6} \div 5 \times 10^{-3}$	3.2±0.1	$(1.43\pm0.02)\times10^4$	0.999
Глутатион		$5 \times 10^{-6} \div 5 \times 10^{-3}$	2.6±0.3	$(0.81\pm0.01)\times10^4$	0.998
Цистин	CoPtCl ₆ -CY	$5 \times 10^{-6} \div 5 \times 10^{-3}$	2.2±0.1	$(0.86\pm0.04)\times10^4$	0.999
Дисульфид глутатиона		$5 \times 10^{-6} \div 5 \times 10^{-3}$	2.2±0.2	(0.60±0.05)×10 ⁴	0.991

Каталитический отклик ХМЭ использован при анализе различных объектов.

Вольтамперометрическое определение органических соединений на ХМЭ в <u>лекарственных средствах.</u> Разработаны способы вольтамперометрического определения ацетилцистеина, метионина, а также ацикловира и ганцикловира на ХМЭ, которые были использованы для определения рассматриваемых соединений в лекарственных средствах. ХМЭ с пленкой OsCo(CN)₆ использован для определения ацетилцистеина, ХМЭ с пленкой RuPtCl₆ – для определения метионина, а ХМЭ с пленкой RuRuCl₆ – для определения ацикловира и ганцикловира. В таблице 3.2 представлены результаты анализа лекарственных препаратов.

Таблица	3.2	_	Результаты	определения	ацетилцистеина,	метионина,	ацикловира	И
ганциклов	вира в	ле	екарственных	к средствах ме	тодом вольтампер	ометрии на Х	КМЭ (метод I)	И
ГОСТ-мет	годом	(м	иетод II); n =	6, P=0.95, t _{табл}	= 2.57, F _{табл} = 5.79			

Лекарствен- ное средство (в таблетках)	Электрод	Аналит	Содержание (в таблетке), г	Метод I, г	Метод II, г	F _{расч.}	t _{расч.}
АЦЦ-Лонг	OsCo(CN)6-	Ацетил-	0.30 ± 0.03	0.29 ± 0.02	$0.32 \pm 0.03^{*}$	2.25	1.69
Флуимуцил	СУ	цистеин	0.60±0.03	0.58±0.03	$0.63 \pm 0.04^{*}$	1.78	2.04
Метионин	RuPtCl ₆ -СУ	Метио- нин	0.25±0.03	0.26±0.01	$0.28 \pm 0.02^{*}$	4.00	1.93
Ацикловир- Акри	RuRuCl ₆ - СУ	Ацик-	0.40±0.02	0.38±0.02	0.37±0.03**	0.36	2.45
Ацикловир		6- ловир	0.20±0.02	0.21±0.01	0.23±0.03**	0.56	2.45
Цимевен		Ганцик-	0.50±0.04	0.53±0.04	0.49±0.03**	0.56	1.75
Ганцикловир*		ловир	0.50±0.04	0.47±0.03	0.46±0.05**	2.77	2.34

* йодометрическое титрование, **потенциометрическое титрование

Результаты определения ацетилцистеина, метионина, ацикловира и ганцикловира методом вольтамперометрии на ХМЭ (метод I) сопоставлены с результатами, полученными соответствующими гостированными методиками для каждого лекарственного средства (метод II), рекомендуемыми фармакопеей. Анализ результатов по t- и F-критериям показывает (таблица 3.2), что методы равноточны (F_{расч} < F_{табл}), а расхождение между средними результатами незначимы (t_{расч} < t_{табл}).

Вольтамперометрическое определение тиол-дисульфидного коэффициента (ТДК) на ХМЭ в плазме крови человека. Оценку окислительного стресса организма можно проводить с помощью количественной характеристики – ТДК. Показатель ТДК используют в клинической диагностике и при лечении различных заболеваний. Для расчета показателя ТДК определяют содержание цистеина, глутатиона (С._{SH}), и цистина, дисульфида глутатиона (С._{SS}.) в крови. В связи с этим предложен способ вольтамперометрического определения перечисленных соединений в плазе крови, на основании которого рассчитывали отношение содержания тиолов и дисульфидов (-SH/-SS-). В таблице 3.3 представлены результаты определения ТДК в плазме крови на ХМЭ с пленкой СоPtCl₆.

Таблица 3.3 – Результаты вольтамперометрического определения компонентов тиолдисульфидного коэффициента на XMЭ с пленкой CoPtCl₆ в плазме крови человека; n = 6, P = 0.95, $t_{raбn} = 2.57$

	Показате	ли тиол - дисул	Среднее стандартное значение		
Объект анализа		системы	-SH/-SS-		
	С _{-SH} , мМ	С _{-SS} -, мМ	-SH/-SS-	для женщин	для мужчин
Плазма крови	8.55 ± 0.05	3.30 ± 0.03	2.58 ± 0.07	2.58 - 2.65	2.50 - 2.56

Клинические образцы плазмы крови принадлежали женщинам в возрасте от 25 до 30 лет. Как видно из таблицы 3.3, полученное значение ТДК соответствуют стандартному показателю для здорового человека.

Вольтамперометрическое определения пуриновых оснований на ХМЭ в ДНК. Определение содержания гуанина и аденина в ДНК необходимо для диагностики и терапевтического лечения различных заболеваний. Для демонстрации возможности использования ХМЭ на основе пленки RuRuCl₆ для этих целей проведен анализ ДНК тимуса теленка и молоки лосося на содержание гуанина и аденина. Предварительно проводили денатурацию двуцепочечной (ds) ДНК. Затем по градуировочному графику находили концентрацию гуанина и аденина и рассчитывали их мольное содержание в молекуле ДНК. Полученные результаты были использованы для определения соотношения Γ +Ц/А+Т, где Γ – гуанин, Ц – цитозин, А – аденин и Т – тимин. Исходя из правила Чаргаффа для ДНК (Γ =Ц, А=Т), определяли содержание цитозина и тимина и рассчитали соотношение Γ +Ц/А+Т (таблица 3.4).

Таблица 3.4 – Результаты определения гуанина и аденина в ДНК методом вольтамперометрии на XMЭ с пленкой RuRuCl₆ (n = 5, P = 0.95, t_{табл} = 2.78)

Объект Пуриновое Моле анализа основание доля	Питиновоо	Молинод	Молярное отношение (Г+Ц/А+Т)*				
	мольная доля (%)	Стандарное значение	Найдено	Sr	t _{pacy}		
ДНК тимуса	Гуанин	22.15		0.80 ± 0.02	0.01	1.69	
теленка	Аденин	27.85	0.77				
ДНК молоки	Гуанин	21.91	0.77	0.78+0.04	0.02	1.02	
лосося	Аденин	28.09		0.76 ± 0.04	0.02	1.95	

*где Г - гуанин, Ц - цитозин, А - аденин и Т - тимин, выраженные в мольных долях

Полученные значения соотношения сопоставили со стандартным значением, равным 0.77. Анализ результатов по t-критерию показывает, что расхождение между полученными результатами и стандартным значением не значимо (t_{расч.}< t_{табл.}). Из этого следует, что предлагаемый способ анализа ДНК на содержание пуриновых оснований является правильным.

3.2 Амперометрическое детектирование органических соединений в проточноинжекционных условиях

Показана возможность использования разработанных ХМЭ на основе ГЦМ- и ГХМ-пленок для определения рассматриваемых органических соединений в условиях ПИА. Для этих целей выбрали композитные пленочные электроды, характеризующиеся хорошей стабильностью каталитического отклика. Для каждого

исследуемого соединения получены зависимости величины тока от накладываемого потенциала, объема инжектируемой пробы и скорости потока, на основании которых установлены рабочие условия регистрации ПИА-сигнала. Аналитические характеристики амперометрического детектирования некоторых органических соединений на ХМЭ в условиях ПИА представлены в таблице 3.5.

Таблица 3.5 – Аналитические характеристики определения органических соединений на ХМЭ в условиях ПИА

Аналит	ХМЭ	Диапазон концентраций,	Уравнение р <i>I</i> = a + (<i>I</i> , мкА; v, 1	егрессии b v икмоль)	R
		МОЛЬ/Л	$(a \pm \Delta a) \times 10$	$b \pm \Delta b$	
		Фон 0.1 M NaC	Cl (pH 2.0)		
Цистеин	OsCo(CN)6-	$5 \times 10^{-7} \div 5 \times 10^{-3}$	1.78 ± 0.07	6.05 ± 0.05	0.9997
Ацетилцистеин	СУ	$5 \times 10^{-7} \div 5 \times 10^{-3}$	2.21±0.08	2.40 ± 0.08	0.9997
	Фон аг	цетатный буфернь	ий раствор (pH 4.0)		
Метионин	RuPtCl ₆ -CV	$5 \times 10^{-8} \div 5 \times 10^{-3}$	6.88±0.02	13.0±0.7	0.9993
Гуанин	RuRuCl ₆ -	$5 \times 10^{-7} \div 5 \times 10^{-3}$	2.15±0.06	8.89 ± 0.05	0.9996
Аденин	СУ	$5 \times 10^{-7} \div 5 \times 10^{-3}$	2.59±0.03	5.92±0.03	0.9995

ХМЭ ПИА Использование каталитического отклика В позволяет автоматизировать процесс определения, увеличить его производительность, чувствительность (понизив нижнюю границу определяемых содержаний исследуемых органических соединений примерно на порядок по сравнению со стационарными условиями), улучшить воспроизводимость (уменьшив почти в два раза значение стандартного отклонения), экспрессность и точность анализа.

ЗАКЛЮЧЕНИЕ

Результаты исследования показывают, что XMЭ с иммобилизованными смешанновалентными неорганическими пленками ИЗ гексациано-И гексахлорометаллатов обладают высокой каталитической активностью, хорошей стабильностью и воспроизводимостью отклика, что позволяет достичь высоких аналитических и метрологических характеристик при вольтамперометрическом определении биологически активных соединений. Разработанные новые способы вольтамперометрического определения биологически активных соединений в стационарных условиях и амперометрического детектирования в проточных условиях ХМЭ выгодно отличаются от существующих аналогов, что расширяет на возможности электроаналитической химии.

На основе полученных результатов сформулированы следующие выводы:

1. Определены условия изготовления композитных электродов на основе гексацианометаллатов (гексацианоферрата, гексацианокобальтата и гексацианорутената осмия) или гексахлорометаллатов (гексахлороплатината, гексахлорорутената рутения или кобальта) и рабочие условия проявления электрохимической

активности модификаторов. Методом атомно-силовой микроскопии доказано образование наноструктурированных равномерно распределенных частиц модификаторов для ХМЭ с лучшими электродными характеристиками.

2. Сопоставлена каталитическая активность иммобилизованных гексациано- и гексахлороплатинатов углеродном электроокислении на электроде при серосодержащих аминокислот (цистеина, цистина, метионина), пептидов (ацетилцистеина, глутатиона, дисульфида глутатиона), пуриновых оснований (гуанина, аденина) и их производных (ацикловира, ганцикловира). Гексацианокобальтат осмия проявляет наибольшую каталитическую активность при электроокислении тиолсодержащих аминокислот и пептидов, а гексацианоферрат растворах с метионина и цистина в осмия _ при окислении pН 2.0. Электрогенерированные в щелочных растворах оксо-формы кобальта на пленке гексахлороплатинатов кобальта проявляют каталитические свойства по отношению к тиол- и дисульфидсодержащим аминокислотам и пептидам. Наибольшие значения каталитических эффектов при электроокислении гуанина и аденина, ацикловира и иммобилизованной пленкой из ганцикловира наблюдаются на электродах с гексахлорорутената рутения растворах с pН 4.0. Определены условия В каталитического электрооокисления рассматриваемых соединений на ХМЭ при разных потенциалах.

3. Разработаны способы новые вольтамперометрического определения цистеина, цистина, метионина, ацетилцистеина, глутатиона и дисульфида глутатиона, гуанина и аденина, ацикловира и ганцикловира на полученных композитных электродах в стационарных и проточно-инжекционных условиях. Использование каталитического отклика XMЭ по сравнению с немодифицированными электродами приводит к понижению нижней границы определяемых содержаний органических соединений на один-три порядка, к уменьшению перенапряжения и повышению селективности их определения. Предложен способ селективного вольтамперометрического определения при совместном присутствии метионина и цистина (или дисульфида глутатиона) на XMЭ с пленкой гексацианоферрата осмия, серосодержащих аминокислот (цистеина, цистина и метионина) на ХМЭ с пленкой гексахлороплатината рутения, компонентов редокс-систем цистин/цистеин и дисульфид глутатиона/глутатион на ХМЭ с пленкой гексахлороплатината кобальта и нуклеиновых оснований (гуанина и аденина) на XMЭ с пленкой гексахлорорутената рутения. Разработанные вольтамперометрические способы были апробированы при анализе лекарственных средств и биологических объектов. Предложены способы определения коэффициента специфичности ДНК (по содержанию гуанина и аденина), и тиол/дисульфидного коэффициента в плазме крови (по содержанию цистеина, цистина, глутатиона и дисульфида глутатиона).

Основное содержание работы изложено в следующих публикациях:

1. Шайдарова, Л.Г. Вольтамперометрическое определение гуанина на электродах, модифицированных пленками гексацианокобальтата или гексацианорутената рутения / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2012. – Т. 154, № 3. – С.116-126.

2. Шайдарова, Л.Г. Каталитическое окисление и вольтамперометрическое определение цистеина на электроде, модифицированном пленкой гексацианокобальтата или гексацианорутената осмия / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2013. – Т. 155, № 4. – С.94-108.

3. Шайдарова, Л.Г. Вольтамперометрическое определение ацетилцистеина в фармпрепаратах на электроде, модифицированном пленкой из гексацианокобальтата осмия / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Хим. фарм. ж. – 2013. – Т. 47, № 12. – С.48-52.

4. Шайдарова, Л.Г. Селективное вольтамперометрическое и проточно-инжекционное определение гуанина и аденина на стеклоуглеродном электроде, модифицированном пленкой из гексахлороплатината рутения / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Журн. аналит. химии. – 2014. – Т. 69, № 8. – С.815-824.

5. Шайдарова, Л.Г. Вольтамперометрическое определение ацикловира в лекарственных средствах на электроде, модифицированном пленкой из гексахлороплатината или гексацианокобальтата рутения / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Хим. фарм. ж. – 2014. – Т. 48, № 11. – С.37-43.

6. Шайдарова, Л.Г. Вольтамперометрическое определение тиол-дисульфидного коэффициента по электрокаталитическому отклику электрода, модифицированного гексахлорплатинатом кобальта / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Аналитика и контроль. – 2015. – Т.19, № 1. – С. 85-93.

7. Хафизова (Жалдак), Э.Р. Вольтамперометрическое определение биологически активных соединений на электродах модифицированных пленками из гексацианометаллатов / Э.Р. Хафизова (Жалдак), Л.Г. Шайдарова, А.В. Гедмина // V Всероссийская конференция студентов и аспирантов "Химия в современном мире". Сборник тезисов. – Санкт-Петербург, 2011. – С.138-140.

8. Шайдарова, Л.Г. Вольтамперометрическое определение ацетилцистеина в фармпрепаратах на электроде, модифицированном пленкой из гексацианокобальтата осмия / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // ХІ Научная конференция молодых ученых, аспирантов и студентов научно-образовательного центра Казанского (Приволжского) федерального университета "Материалы и технологии XXI века". Тезисы докладов. – Казань, 2012. – С.74.

9. Шайдарова, Л.Г. Вольтамперометрическое определение и амперометрическое детектирование гуанина по электрокаталитическому отклику электрода, модифицированной пленкой из гексацианометаллатов / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Вторая Республиканская научная конференция по

аналитической химии с международным участием "Аналитика РБ-2012". Тезисы докладов. – Минск, 2012. – С. 32.

10. Жалдак, Э.Р. Селективное вольтамперометрическое определение аденина и гуанина при совместном присутствии на электроде, модифицированном пленкой гексахлороплатината рутения / Э.Р. Жалдак, А.В. Гедмина, М.В. Малинина, Л.Г. Шайдарова // VII Всероссийская конференция молодых учёных, аспирантов и студентов с международным участием "Менделеев-2013". Тезисы докладов. – Санкт-Петербург, 2013. – С.39-41.

 Шайдарова, Л.Г. Селективное вольтамперометрическое определение аденина и гуанина на электроде, модифицированном гексахлороплатинатом рутения / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, М.В. Малинина, И.А. Челнокова, Г.К. Будников // IX Всероссийская конференция "Химия и медицина" с молодежной научной школой. Материалы конференции. – Уфа-Абзаково, 2013. – С. 160.

12. Шайдарова, Л.Г. Селективное вольтамперометрическое определение серосодержащих аминокислот при совместном присутствии на электроде, модифицированном гексахлороплатинатом рутения / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // Второй съезд аналитиков России. Материалы конференции. – Москва, 2013. – С. 379.

13. Шайдарова, Л.Г. Вольтамперометрическое определение ацикловира в лекарственных средствах на электроде, модифицированном пленкой из гексахлороплатината или гексацианокобальтата рутения / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак // VII Всероссийская конференция молодых учёных, аспирантов и студентов с международным участием "Менделеев-2014". Тезисы докладов. – Санкт-Петербург, 2014. – С.345.

14. Шайдарова, Л.Г. Электрокататалический отклик электродов, модифицированных пленками гексацианокобальтата и гексахлороплатината рутения для вольтамперометрического определения ацикловира в лекарственных препаратах / Л.Г. Шайдарова, А.В. Гедмина, Э.Р. Жалдак, И.А. Челнокова, Г.К. Будников // XXVI Международная Чугаевская конференция по координационной химии. Тезисы докладов. – Казань, 2014. – С.247.

15. Жалдак, Э.Р. Селективное вольтамперометрическое определение и амперометрическое детектирование нуклеиновых оснований гуанина и аденина при совместном присутствии на электроде с иммобилизованной пленкой из гексахлорорутената рутения / Э.Р. Жалдак, А.В. Гедмина, Л.Г. Шайдарова, И.А. Челнокова, Г.К. Будников // Всероссийская школаконференция студентов, аспирантов и молодых ученых "Материалы и технологии XXI века". Тезисы докладов. – Казань, 2014. – С. 233.

16. Жалдак, Э.Р. Вольтамперометрическое определение тиол-дисульфидного коэффициента по электрокаталитическому отклику электрода, модифицированного гексахлороплатинатом кобальта / Э.Р. Жалдак, А.В. Гедмина, Л.Г. Шайдарова, И.А. Челнокова, Г.К. Будников // Всероссийская школа-конференция студентов, аспирантов и молодых ученых "Материалы и технологии XXI века". Тезисы докладов. – Казань, 2014. – С. 379.