КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

Кикило Петр Алексеевич

ДИНАМИЧЕСКАЯ И СТАТИЧЕСКАЯ СТЕРЕОХИМИЯ МОДЕЛЬНЫХ СЕРОСОДЕРЖАЩИХ ЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ С АРОМАТИЧЕСКИМ ПЛАНАРНЫМ ФРАГМЕНТОМ

02.00.03 - Органическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

КАЗАНЬ - 2000

Работа выполнена в научно-исследовательском химическом институте им. А.М. Бутлерова Казанского государственного университета.

Научные руководители:

доктор химических наук,

заведующий отделом Климовицкий Е.Н.

кандидат химических наук,

старший научный сотрудник Штырлин Ю.Г.

Официальные оппоненты:

доктор химических наук,

профессор Ишмаева Э.А.

доктор химических наук,

заведующий лабораторией Катаев В.Е.

Ведущая организация:

Казанский государственный

технологический университет

Защита состоится « 29 » шоге 2000г. В 14 00 ч. на заседании специализированного диссертационного Совета К 053.29.02 по химическим наукам Казанского государственного университета по адресу: ул. Кремлевская, 18, химический факультет, Бутлеровская аудитория.

С диссертацией можно ознакомиться в научной библиотеке Казанского государственного университета.

Отзывы на автореферат просим направлять по адресу: 420008, г. Казань, ул. Кремлевская, 18, КГУ, Научная часть. НАУЧНАЯ БИБЛИОТЕКА

Автореферат разослан «26» мая 2000г.

0000947869

Ученый секретарь Совета, кандидат химических наук

Streigerof

Федотова Н.Р.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность темы. Конформационный анализ и исследование реакционной способности шестичленных кресловидных карбо- и гетероциклов за последние пятьдесят лет явились фундаментальной основой для формирования современных концептуальных представлений о динамической и статической стереохимии органических соединений.

На сегодняшний день не вызывает сомнений, что дальнейший прогресс в этой области требует не только расширения объема количественной информации, но и накопления качественно новых знаний. Безусловно, при такой постановке задачи решающая роль отводится выбору модельных систем, которые должны иметь различные формы организации цикла и обладать богатыми стереоэлектронными орбитальными характеристиками. сочетание, на наш взгляд, достигается в конформационно негомогенных циклических системах большего размера, где наряду базовыми конформациями сосуществуют кресловидными альтернативные гибкие структуры (ванна, твист). В настоящей работе нами выбраны представленные в растворах равновесием кресло ванна семи- и восьмичленные циклические соединения, содержащие в своем составе ароматический планарный фрагмент и «мягкие» по Пирсону атомы серы в бензильном положении.

<u>Целью настоящей работы</u> является выявление факторов, определяющих динамическую и статическую стереохимию реакций с участием семи- и восьмичленных дитиоацеталей и трисульфидов с ароматическим планарным фрагментом:

- -исследование диастереоселективности окисления конформационно неоднородных 1,3-дитиа-5,6-бензциклогептенов и 1H,5H-нафто[1,8-ef] [1,3]дитиацинов;
- -установление конфигурационного и конформационного строения полученных моноокисей методами динамической ЯМР ¹Н и ¹³С спектроскопии;

-изучение пространственной структуры семи- и восьмичленных трисульфидов с нафталиновым фрагментом в твердой фазе;

-использование циклических ароматических трисульфидов в качестве реперных соединений при исследовании эффектов среды.

<u>Научная новизна.</u> Впервые показано, что за энергию сольватации конформеров ответственны донорно-акцепторные, а не полярные свойства растворителей.

Методами ЯМР ¹Н и ¹³С спектроскопии установлены структуры компонентов конформационного обмена ряда ранее неописанных моноокисей семи- и восьмичленных дитиоацеталей. Предложены некоторые критерии, позволяющие прогнозировать отсутствие или соблюдение принципа ЛСЭ в серии конформационно неоднородных соединений с нерегулярными заместителями.

<u>Практическая значимость.</u> Полученные в работе моноокиси могут представлять потенциальный интерес для синтеза разнообразных, в том числе оптически активных соединений. Массив количественных данных по влиянию среды на термодинамические параметры (ΔG^0 , ΔH^0 , ΔS^0) конформационного равновесия кресло ванна модельных трисульфидов может быть использован в качестве справочных данных.

Объем и структура работы. Диссертация изложена на 136 страницах, содержит 31 таблицу, 15 рисунков и состоит из введения, трех глав и списка цитируемой литературы. В первой главе представлен литературный обзор, который включает три раздела. В первом кратко рассмотрены теоретические подходы к анализу влияния среды на положение конформационного равновесия; второй описывает результаты исследований по пространственной структуре семи- и восьмичленных дитиоацеталей; в третьем рассмотрено современное состояние вопроса в области получения циклических сульфоксидов и их синтетического применения. Вторая глава представляет собой обсуждение полученных результатов. Первый раздел тосвящен стерсохимии реакций окисления семи- и

MM. H. M. JOGAHOBCKOTO K+3AHCSOTO FOC. YHRREPCHTETA восьмичленных дитиоацеталей. Методами динамической ЯМР ¹Н и ¹³С спектроскопии охарактеризованы формы *кресло* и *ванна* полученных моноокисей. Проанализировано влияние заместителей при С² на положение конформационного равновесия. Во втором разделе рассмотрены данные по влиянию среды на термодинамические параметры конформационного равновесия *кресло* — *ванна* ряда модельных циклических трисульфидов. Обсуждаются факторы, контролирующие положение конформационного равновесия. Приведены данные по кристаллической и молекулярной структурам форм *кресло* и *ванна*. Третья глава содержит описание экспериментальной части работы.

Апробация работы. Основные результаты диссертации были изложены на итоговой конференции Казанского государственного университета (Казань, 1997 г.), VII международной конференции «Проблемы сольватации и комплексообразования в растворах» (Иваново, 1998 г.), XX Всероссийской конференции по химии и технологии органических соединений серы (Казань, 1999 г.), Всероссийской конференции по химии и применению фосфор-, сера- и кремнийорганических соединений (Санкт-Петербург, 1998 г.).

<u>Публикации.</u> По материалам работы опубликовано 3 статьи, тезисы 3 докладов, 1 статья - в печати.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ.

1. Стереохимия окисления 2-R-1,3-дитиа-5,6-бензциклогептенов.

В настоящее время только шестичленные 1,3-дитиан-1-оксиды широко используются для получения разнообразных органических соединений, в том числе оптически активных.

Представляется несомненно целесообразным анализ синтетической пригодности моносульфоксидов циклических дитиоацеталей большего размера. Развивая исследования, осуществляемые в НИХИ им. А.М. Бутлерова,

проведено исследование стереохимии окисления 1,3-дитиа-5,6-бензциклогептенов, существующих в растворах в виде равновесной смеси форм кресло и ванна. м-Хлорпербензойная кислота оказалась удобным реагентом для синтеза сульфоксидов.

Отнесение форм (IIa) в спектрах ЯМР ¹³С (два набора сигналов при -70 °С) проведено с использованием эффектов группы S=O, найденных из анализа спектров кресловидных 2-R-1,3-дитиан-1-оксидов [R=H, Me, Ph, 'Bu]. Инкременты фрагмента S=O представляют собой усредненную разницу химических сдвигов (ХС) в S-окисях и 1,3-дитианах (табл. 1).

Таблица 1. Усредненные эффекты экваториальной и аксиальной групп S=O (м.д.)

Положение S=O	ΔC^2	ΔC^4	ΔC ⁶
S=O (e)	17.0	-2.0	23.0
S=O (a)	11.7	-2.2	15.6

ХС дитиоацеталя (Ia) формы кресло в смеси $CDCl_3$ - CS_2 (1:2) при -70 °C составляют 38.54 ($C^{4,7}$) и 42.65 (C^2) м.д., сигналы минорной конформации ванна оценены величинами 30.5 (C^2) и 33.0 ($C^{4,7}$) м.д. Сопоставление ХС в спектре (IIa) с рассчитанными (табл. 2) позволяет строго приписать вид минорной формы - кресло (e).

Таблица 2. Рассчитанные величины XC форм *кресло* соединения (IIa) и экспериментальные XC минорной формы.

Форма	C ²	C ⁴	C ⁷
Кресло (е)	59.7	36.5	61.5
Кресло (а)	54.4	36.3	54.1
Минорная (эксп.)	58.4	36.8	62.5

Анализ формы ванна с использованием инкрементов представлен в табл. 3.

Таблица 3. Рассчитанные величины XC форм ванна соединения (IIa) и экспериментальные XC доминирующей формы.

Форма	C²	C ⁴	C ⁷
Ванна (е)	47.5	31.0	56.0
Ванна (а)	42.2	30.8	48.6
Доминир. (эксп.)	45.0	32.3	53.0

ХС доминирующей формы расположены между таковыми двух форм ванна. Сигналы доминирующей формы в интервале -70 + -85 °C отчетливо уширяются, что характерно для равновесного процесса ванна ванна. По данным полуэмпирического метода РМЗ величины теплот образования конформаций К-е, В-е, В-а и К-а составляют 3.53, 3.56, 5.31, 6.42 ккал/моль соответственно. Таким образом, проведенные исследования позволяют сделать надежный вывод о наличии в реперном (Па) трехкомпонентного равновесия К-е В-е В-а.

Для замещенных моноокисей (II6-е) удалось выделить по одному конформационно неоднородному диастереомеру, который может иметь трансили цис-конфигурацию.

При -60 °C спектры ЯМР ¹³С представляют собой суперпозицию двух форм (табл. 4), в то время как спектр соединения (IIe) представлен одной структурой. Близкие ХС атомов С⁴ и С⁷ минорных форм в серии (IIa-e), а также отчетливый α-эффект заместителей в ряду соединений (IIa,в,б,е) с шагом ~10 м.д. свидетельствуют о диэкваториальном расположении заместителей в форме *кресло*. Поскольку альтернативная конформация *кресло* с диаксиальной позицией заместителей энергетически является явно невыгодной, то партнером

в равновесии может служить форма ванна с диэкваториальным расположением групп SO и R.

Таблица 4. Спектральные параметры ЯМР 13 С (δ_{C} , м.д.) 2-R-1,3-дитиа-5,6-бензциклогептен-1-оксидов (Па-е). Растворитель - CDCl₃.

No	T, ℃	C ²	C⁴	C ⁷	R	Саром.
IIa	-70	58.38	36.84	62.50	-	128.58 -
(минорная)						135.89
	50	69.45	35.82	57.35	128.45-1	33.23
II6	-60ª	64.25	34.55	53.77		
		76.66	37.89	62.16	127.31-1	44.18
	57	59.49	35.09	56.93	15.78	129.38-
						132.15
Ив	-60 ª	54.56	33.41	53.32	14.68	128.25-
		67.74	36.81	61.67	17.26	143.17
	30	67.20	34.22	56.99	22.23 (CH ₂)	128.67-
					10.99 (CH ₃)	131.62
IIr	-60 ª	61.66	31.84	53.25	20.08 (CH ₂)	
l,					9.85 (CH ₃)	129.30-
		75.18	35.02	62.10	22.95 (CH ₂)	132.27
					10.95 (CH ₃)	
	30	73.39	34.19	57.34	26.89 (CH)	127.17-
					18.36 (CH ₃)	131.98
					20.81 (CH ₃)	
Цд	-60°	67.24	31.67	51.41	24.98 (CH)	
					18.34 (CH ₃)	
				ľ	19.76 (CH ₃)	127.05-
		79.68	34.83	60.71	26.16 (CH)	132.11
					16.26 (CH ₃)	
		_			20.06 (CH ₃)	
	20	73.17	34.20	56.98	29.7 (C)	129.41 -
Це					36.2 (CH ₃)	132.07
1	-60 ª	69.65 .	33.05	54.04	29.5 (C)	128.11 -
					35.6 (CH ₃)	142.94

Примечание. а) Верхняя строка относится к сигналам формы ванна.

Обращает на себя внимание весьма значительное (>12 м.д.) анизотропное влияние близкорасположенного к атому C^2 орто-ксилиленового фрагмента в форме ванна, что характерно для «вымороженных» форм K и B соединений

ряда (I). Преобладание конформации ванна вытекает и из анализа спектров ЯМР ¹Н соединений (IIб,в,е) (табл. 5).

Таблица 5. Параметры спектров ЯМР 1 Н (δ , м.д.; J, Γ ц) 2-R-1,3-дитиа-5,6-бензциклогептен-1-оксидов (IIб-е). Растворитель - CDC $_{13}$.

№	T, °C	H ⁴	H ⁷	H ²	R	Наром.
	50	3.94, 4.07 (-13.3)	4.28	3.88	7.26-7.42	
Пе	-60ª	4.03, 4.10 (-11.8)	4.12, 4.32	3.26	7.2	5-7.50
		3.84, 4.25 (-15.1)	4.39, 4.76 (-12.9)	5.06		
	57	3.79, 3.93	4.15	3.05	1.58	7.20-7.33
					(6.9)	
Пв	-60ª	3.93, 3.95	3.93, 4.19	2.38	1.53	
		(-12.0)	(-14.6)	(7.1)	(7.1)	7.16-7.44
		3.69, 4.07	4.18, 4.65	4.13	1.70	
		(-15.1)	(-13.2)		(7.1)	
Пг	30	3.79, 4.05	4.16	2.85	1.71	7.25-7.40
					1.06	
Пд	30	3.90, 4.35	4.20	3.90	2.30	
					1.06	7.13-7.40
					1.31	
	20	3.92, 4.33	3.82	2.40	1.05	7.13-7.37
		(-13.5)				
IIe	-60ª	3.78, 4.30	3.90	2.15	1.07	7.15-7.43
		(-13.5)		3.04		

Примечание. а) Верхняя строка относится к сигналам формы ванна.

Соединение (IIe) оказалось конформационно негомогенным (соотношение форм 99:1), причем неэквивалентность XC протонов при атоме C^2 и низкое значение α -эффекта трет.-бутильной группы могут быть интерпретированы деформацией формы *ванна* за счет объемного заместителя.

В табл. 6 представлены свободные энергии конформационных равновесий кресло твист (ванна) для некоторых серий соединений: 1,3-дитиа-5,6-

бензциклогептенов (I), их S-оксидов (II), 1,3-диокса-5,6-бензциклогептенов (III) и 1,3-диокса-5-циклогептенов (IV).

Таблица 6. Свободные энергии (${}_{\Delta}G^{T}$, ккал/моль) конформационных равновесий для соединений серий (I-IV).

		ΔG ^T			
R	ΔG ₁ 193	ΔG_{II}^{213}	ΔG _{III} 158	ΔG _{IV} ²⁹⁸	E ⁰ s
Н	0.82	-	0.38	1.24	0.25
Ph	-	-0.07	0.60	1.83	0.25
Me	1.06	-0.27	1.22	1.32	0
Et	0.83	-0.29	1.09	1.32	-0.27
i-Pr	0.88	-0.38	0.95	1.32	-0.85
t-Bu	0.61	-1.95	>1.69	-0.50	-2.14

Анализ величин свободных энергий конформационных равновесий в ряду Н - Ph - Me - Et - i-Pr - t-Ви позволил установить наличие удовлетворительной корреляции между значениями △G и стерическими константами заместителей Тафта только для соединений ряда (II):

$$\Delta G^{213} = (129 \pm 52) - (766 \pm 146) \cdot E_s^0; \quad r \quad 0.95, s \quad 277, n \quad 5$$
 (1)

При интерпретации наблюдаемого факта следует учесть, что замена заместителя R_i на R_j может приводить к изменению составляющих стерической энергии конформеров, вызванных отклонениями длин связей, углов, торсионных напряжений и ван-дер-ваальсовыми взаимодействиями. Особенно это будет характерно для форм, содержащих нерегулярные заместители и обладающих собственным ротамерным распределением (за счет вращения вокруг простой связи C^2 -C) с гош- и анти-структурой.

Подобная ситуация реализуется, по-видимому, в ацеталях (I,III,IV), в которых в силу высоких симметрийных отношений ротамерное распределение вокруг связи С²-С характеризуется неодинаковым составом в структурах кресло, ванна (твист). В соединениях же (IIг, д) введение объемной сульфинильной группы, скорее всего, приводит к близкому ротамерному распределению. В этом случае свободная энергия каждого конформера

меняется пропорционально объему заместителя и, следовательно, в ряду соединений (II) реализуется принцип линейного соотношения свободных энергий (уравнения 2-4).

$$G_K = a_1 \cdot E^0_S + b_1 \tag{2}$$

$$G_B = a_2 \cdot E^0_S + b_2 \tag{3}$$

$$G_B - G_K = (a_2 - a_1) \cdot E_S^0 + (b_2 - b_1)$$
 (4)

2. Стереохимия окисления 1H,5H-нафто[1,8-еf][1,3] дитиацинов.

По сравнению с 2-R-1,3-дитиа-5,6-бензциклогептенами реакция окисления соединений (V) протекает гораздо медленнее.

$$\begin{array}{c|c} & & & & \\ & &$$

 $R = H(a), Ph(6), CH_3(B), (CH_3)_3C(e)$

Выделение целевых продуктов окисления проводили методом колоночной хроматографии. Спектры ЯМР ¹Н и ¹³С 1H,5H-нафто[1,8-еf][1,3]дитиацин-S-оксида (VIa) при комнатной температуре представляют собой суперпозицию сигналов двух форм. Спектр ЯМР ¹³С содержит шесть сигналов алифатических углеродных атомов, причем сигналы доминирующей формы находятся в более сильных полях. Метиленовые группы в спектре ЯМР ¹Н при атомах С¹, С³, С⁵ соединения (VIa) являются диастереотопными и проявляются в виде шести АВ-квадруплетов. Выявление партнеров АВ-квадруплетов проведено с помощью двумерных спектров СОЅҮ.

считать, что доминирующие сигналы принадлежат конформации ванна с экваториальной позицией сульфинильной группы (табл. 7).

Таблица 7. Рассчитанные и наблюдаемые величины химических сдвигов ЯМР ¹³С (м.д.) соединения (VIa).

Сигналы	Форма	C ¹	C ₃
Рассчитанные	B(a)	52.13	40.7
	B(e)	57.05	43.33
Наблюдаемые	доминирующая	55.87	43.81
	минорная	58.34	48.36

Поскольку химические сдвиги метиленовых протонов при атоме C^3 доминирующей и минорной форм отличаются весьма незначительно можно заключить, что последняя не может иметь конформацию *кресло*. Таким образом, можно сделать вывод, что в растворе соединение (VIa) представлено равновесием $B-e \longrightarrow B-a$.

Как и в случае семичленных моноокисей для дизамещенных соединений ряда (VIб,в,е) выделено также по одному диастереомеру. Поскольку понижение температуры растворов этих соединений не приводит к спектральным трансформациям можно заключить, что замещенные моноокиси являются конформационно жесткими (табл. 8).

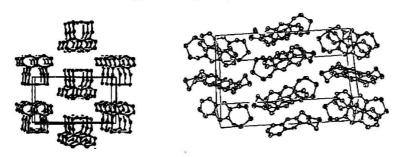
Таблица 8. Параметры 1H,5H-нафто[1,8-ef][1,3]дитиацин-S-оксидов (VIa-в,е) в спектрах ЯМР 13 С (δ , м.д.). Растворитель - CDCl₃.

Соединение	T, K	C ³	C ⁵	C¹	R	Саром.
VIaa		43.81	36.72	55.87		
	293	48.36	39.13	58.34]	122.11
					1	+135.99
VIб	293	61.46	38.18	55.24	128.5	50+135.18
VIB	293	51.81	37.58	55.08	14.53	122.33
		g tors				+135.06
VIe	293	68.73	37.73	56.40	36.27	123.72
					29.80	+135.80

Примечание. а) Верхняя строка - сигналы доминирующей формы.

Из близких значений XC бензильных атомов углерода доминирующей формы и аналогичных сигналов диастереомеров (VIб,в,е), а также из величин α-эффектов можно заключить, что замещенные моноокиси имеют конформацию ванна с диэкваториальным положением сульфинильной группы и заместителя.

Обобщая полученные результаты, можно сделать вывод, что реакция окисления конформационно неоднородных семи- и восьмичленных дитиоацеталей м-хлорпербензойной кислотой протекает с высокой степенью диастереоселективности (не ниже 90%) со стороны экваториальной НЭП атомов серы. Этот стереохимический результат в реакции с орбитальным контролем является следствием стереоэлектронных орбитальных взаимодействий НЭП атомов серы в исходных дитиоацеталях, поскольку с позиций стерической доступности результат был бы прямопротивоположным. По-видимому, это связано с более высокой энергией ЗМО экваториальной НЭП, поскольку взаимодействие аксиальных НЭП приводит к понижению их энергии.


Циклические семи- и восьмичленные трисульфиды как модельные соединения в исследовании эффектов среды.

В области конформационного анализа сложилось устойчивое мнение о том, что влияние среды на положение равновесия определяется электростатическими взаимодействиями растворителя с каждым конформером: с ростом полярности среды наблюдается относительная стабилизация формы с большей величиной дипольного момента. Вместе с тем, не вызывает сомнений тот факт, что наряду с электростатическими взаимодействиями существенную роль играют и стереонаправленные взаимодействия растворителя с растворенным веществом.

Очевидно, что адекватная оценка вклада донорно-акцепторных взаимодействий в общую энергию взаимодействия каждого конформера с растворителем требует поиска модельных процессов, которые отвечают

следующим требованиям: одинаковая полярность конформеров; возможность анализа широкого круга растворителей, различающихся по донорным и акцепторным свойствам; наличие в системе атомов или групп атомов, которые образуют комплексы с растворителем с максимальным вкладом ковалентной составляющей координационной связи.

B качестве модельных соединений нами выбраны пиклические трисульфиды с ароматическим планарным фрагментом: 1,2,3-тритиа-5,6бензциклогептен (VII), 1H,5H-нафто[1,8-ef][1,2,3]тритиацин (VIII) и 1H,5Hнафто[2,3-е][1,2,3]тритиацин (IX). По данным методов ЯМР ¹Н, спектроскопии и расчетных методов эти соединения представлены в растворах равновесием форм кресло ванна с одинаковыми значениями дипольных моментов. Данные PCA показали, что соединения (VIII, IX) кристаллизуются в конформациях, доминирующих в растворах. Восьмичленный трисульфид (VIII) имеет конформацию ванна, в то время как изомерный ему семичленный представлен конформацией кресло. трисульфид (IX) При этом кристаллической решетке для одного соединения обнаружен «стэкинг» эффект типа face-to-face, а для другого - структуры и Т-типа.

Термодинамические параметры конформационного равновесия кресло ванна соединения (VII) в различных средах, полученные методом ЯМР ¹Н, приведены в табл. 10. Здесь же представлены некоторые параметры растворителей, характеризующие их полярные, донорные и акцепторные свойства.

Таблица 10. Термодинамические параметры (${}_{\Delta}G^{0}$, ${}_{\Delta}H^{0}$, ${}_{\Delta}S^{0}$) конформационного равновесия *кресло ванна* в трисульфиде (VII), диэлектрическая проницаемость (ϵ), акцепторные (AN) и донорные (DN) числа растворителей.

Nº	Растворитель	ΔG ⁰ , ккал/мель	ΔН ⁰ , ккал/моль	ΔS ⁰ , 3.e.	ε ^{20 a}	AN	DN
1	5M LPA ⁶	10	-3.1 ± 0.6	-13.7 ± 3.8	-	-	-
2	ДМСО-ф	1.1	-0.55 ± 0.03	-5.5 ± 0.2	48.9	19.3	29.8
3	ДМФА-ф	0.8	0.99 ± 0.02	0.7 ± 0.2	36.7	16.0	26.6
4	CS ₂	0.9	1.16 ± 0.02	1.0 ± 0.1	2.64	-	-
5	ацетон-d ₆	1.0	1.90 ± 0.02	3.2 ± 0.2	20.7	12.5	17.0
6	CD ₃ CN	0.9	2.23 ± 0.07	4.5 ± 0.6	37.5	18.9	14.1
7	CDCl ₃	0.8	2.25 ± 0.05	4.9 ± 0.4	4.81	23.1	-
8	ГМФА-d ₁₈	1.2	2.39 ± 0.11	3.9 ± 0.7	29.6	10.6	38.8
9	диоксан-d ₈	1.0	2.65 ± 0.12	5.5 ± 0.9	2.21	10.8	14.8
10	бензол-d ₆	1.0	3.49 ± 0.23	8.3 ± 1.5	2.28	8.2	0.1

Примечание. а) величины диэлектрической проницаемости для недейтерированных растворителей. 6) 5М LPA - 5 М раствор перхлората лития в апетоне.

Обращают на себя внимание значительные изменения величин ΔH^0 в разных средах и очень существенные изменения ΔS^0 , что не может быть приписано только внутренним свойствам двух конформеров.

Регрессионный анализ полученных данных в рамках многопараметровых подходов Гутмана- Майера, Коппеля - Пальма, Камлета - Тафта показал, что удовлетворительное описание достигается только при использовании подхода Гутмана - Майера. При этом статистически значимым в корреляционной зависимости является только акцепторное число растворителя АN. При исключении из серии протонодонорных растворителей (хлороформа и ацетонитрила) получена корреляция отличного качества величины ΔH^0 от AN:

$$\Delta H^0 = (6294 \pm 255) - (348 \pm 8) \cdot AN;$$
 г 0.993 s 173 n 6 (5)
Корреляция высокого качества имеет место и между величинами ΔH^0 и ΔS^0 .
 $\Delta H^0 = (962 \pm 44) + (296 \pm 2) \cdot \Delta S^0;$ г 0.997 s 137 n 10 (6)

Полученные данные, по нашему мнению, свидетельствуют о том, что в столь различных растворителях имеет место единый механизм взаимодействия растворенное вещество-растворитель, а различия в энергии сольватации двух конформеров определяются различиями в их донорной способности: форма ванна является относительно более донорной, поскольку с ростом акцепторности растворителя имеет место ее энтальпийная стабилизация. Мы полагаем, что наблюдаемая картина обусловлена изменениями энтальпии и энтропии межмолекулярных донорно-акцепторных комплексов конформеров с молекулами растворителя. При этом стехиометрический состав таких комплексов может быть весьма различным, поскольку в составе исследуемого соединения имеется несколько центров, способных к образованию комплексов по донорно-акцепторному типу.

Серьезным аргументом в пользу определяющей роли донорноакцепторных взаимодействий является и то, что раствор типичной кислоты Льюиса (5M раствор LiClO₄ в ацетоне) и изученные растворители объединены в единую реакционную серию.

Изменения термодинамических параметров конформационного равновесия трисульфида (IX) не столь значительны, как для соединения (VII) (табл. 11). При этом, однако, также имеет место отчетливый компенсационный эффект:

$$\Delta H^{\circ} = (1126 \pm 83) + (386 \pm 14) \cdot \Delta S^{\circ}; \quad r \ 0.97 \quad s \ 146 \quad n \ 7$$
 (7)

Таблица 11. Термодинамические параметры (ΔG^0 , ΔH^0 , ΔS^0) конформационного равновесия *кресло ванна* в трисульфиде (IX).

No	Растворитель	ΔG^0 , ккал/моль	ΔН ⁰ , ккал/моль	ΔS ⁰ , 3.e.
1	диоксан-d ₈	1.19	2.00±0.04	2.71±0.32
2	CDCl ₃	0.98	1.16±0.01	0.60±0.10
3	Ацетон-d ₆	1.40	1.57±0.02	0.58±0.16
4	ДМСО-ф	1.14	1.21±0.01	0.25±0.08
5	бензол-d ₆	1.59	2.85±0.03	4.24±0.27
6	ДМФА-d7	1.20	1.29±0.04	0.30±0.10
7	нитробензол-d5	1.40	2.22±0.06	2.76±0.14

Регрессионный анализ данных в рамках использованной выше схемы показал, что удовлетворительное описание также достигается только при использовании двухпараметрового уравнения Гутмана-Майера:

$$\Delta H^{\circ} = -(93 \pm 22) \cdot AN - (24 \pm 9) \cdot DN + (3466 \pm 345); R 0.94 s 286 n 7 (8),$$

Замена бензольного планарного фрагмента в трисульфидах на нафталиновый приводит к значимому вкладу не только акцепторных, но и донорных свойств растворителя. Конформация ванна стабилизируется с ростом как акцепторных, так и донорных свойств растворителей.

В отличие от трисульфидов (VII, IX) константа конформационного равновесия трисульфида (VIII) в различных средах зависит от концентрации и, следовательно, является кажущейся. Зависимость величин $\Delta H_{3\Phi\Phi}$ от концентрации носит сложный характер и корректная экстраполяция на бесконечное разбавление не представляется возможной. Мы полагаем, что для трисульфида (VIII) в конденсированной фазе, как и в кристаллической решетке, имеют место межмолекулярные аттрактивные взаимодействия.

Подводя итог изложенному выше, выскажем некоторые соображения о влиянии среды на термодинамику конформеров. Во-первых, опираясь на полученные данные, мы считаем, что при анализе эффектов среды помимо электростатических следует учитывать и донорно-акцепторные взаимодействия. Во-вторых, для получения корректных выводов о природе сольватационных

эффектов требуется анализ составляющих свободной энергии, поскольку, как показывают литературные и полученные нами данные, компенсационный эффект может быть распространенным явлением в термодинамике конформационных процессов.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

- 1. Окисление конформационно неоднородных семи- и восьмичленных дитиоацеталей м-хлорпербензойной кислотой протекает со стороны экваториальных НЭП атомов серы и приводит к продуктам транс-конфигурации с диастереоселективностью не менее 90%. Ответственными за стереохимический результат являются стереоэлектронные эффекты с участием НЭП атомов серы.
- 2. По данным динамической ЯМР ¹Н и ¹³С спектроскопии моноокиси замещенных семичленных дитиоацеталей представлены в растворах равновесием *кресло ванна*, в то время как моноокиси восьмичленных замещенных дитиоацеталей реализуются только в конформации *ванна*. Для незамещенных оксидов число компонентов равновесия больше.
- 3. В ряду семичленных монооксидов установлена отчетливая зависимость свободной энергии конформационного равновесия кресло-е ванна-е от стерических констант заместителя у атома С². Высказано предположение, что симметрийные отношения в конформерах и ротамерный состав в случае нерегулярных заместителей ответственны за соблюдение принципа ЛСЭ в серии конформационно неоднородных соединений.
- 4. Методом РСА установлено, что 1H,5H-нафто[2,3-е][1,2,3]тритиацин в гвердой фазе имеет конформацию кресло, а 1H,5H-нафто[1,8-еf][1,2,3]тритиацин конформацию ванна. Для последнего характерен «стэкинг» эффект по типу face-to-face, а для первого наблюдается сосуществование структурных единиц face-to-face и Т-типа.

- 5. Метолом динамической спектроскопии ЯМР 1H определены термодинамические параметры конформационного равновесия кресло - ванна некоторых циплических трисульфидов с бензольным и нафталиновым планарными фрагментами. Для термодинамических параметров конформационного равновесия обнаружен четко выраженный компенсационный эффект.
- 6. Различия в энергии сольватации конформеров кресло и ванна 1H,5H-нафто[2,3-е][1,2,3]тритиацина обусловлены акцепторными и донорными свойствами растворителей, а конформеров того же типа для 1,2,3-тритиа-5,6-бензциклогептена только акцепторными.

Основное содержание диссертации изложено в следущих работах:

- 1. Kikilo P.A., Gnevashev S.G., Shtyrlin Yu.G., Klimovitskii E.N. The intermolecular interaction of the model seven-, and eightmembered trisulfides in solutions // Abstracts VII International conference on the problems of solvatation and complex formation in solutions.-Ivanovo.-1998.-P.36.
- 2. Кикило П.А., Шайхутдинов Р.А., Штырлин Ю.Г., Клочков В.В., Аминова Р.М., Климовицкий Е.Н. Стереохимия окисления конформационно неоднородных 2-R-1,3-дитиа-5,6-бензциклогептенов // Тез. докл. Всероссийской конференции по химии и применению фосфор-, сера- и кремнийорганических соединений.-Санкт-Петербург, 1998.-С.232.
- 3. Кикило Г.А., Штырлин Ю.Г., Шайхутдинов Р.А., Хайрутдинов Б.И., Климовицкий Е.Н. Стереохимия окисления конформационно неоднородных 3-R-2,4-дитио-3,5-дигидро-1Н-циклоокта[de]нафталинов // Тез. докл. XX Всероссийской конференции по химии и технологии органических соединений серы.-Казань, 1999.-С.172.
- 4. Гневашев С.Г., Штырлин Ю.Г., Кикило П.А., Климовицкий Е.Н. Стереохимия семичленных гетероциклов. XXXVI. Беспрецедентное влияние

200

растворителя на термодинамические параметры конформационного равновесия модельного 1,2,3-тритиа-5,6-бензциклогептена: донорно-акцепторные взаимодействия конформеров со средой // ЖОХ.-1997.-Т.67,N8.-С.1381-1385.

- 5. Климовицкий Е.Н., Шайхутдинов Р.А., Кикило П.А., Штырлин Ю.Г., Клочков В.В., Аминова Р.М. Стереохимия семичленных гетероциклов. XXXVII. Конформационный состав 1,3-дитиа-5,6-бензциклогептен-S-эксида по данным динамической спектроскопии ЯМР ¹³С и ¹Н // ЖОХ.-1998.-Т.68,N11.-С.1864-1866.
- 6. Климовицкий Е.Н., Шайхутдинов Р.А., Кикило П.А., Клочков В.В. Термодинамика конформационного равновесия моноокиси 1,3-дитиана по данным спектроскопии ЯМР ¹³С // ЖОХ.-1999.-Т.69,N1.-С.7-10.
- 7. Кикило П. А., Хайрутдинов Б. И., Шайхутдинов Р. А., Штырлин Ю. Г., Клочков В. В., Климовицкий Е. Н. Стереохимия семичленных гетероциклов. XLI. Стереоселективный синтез 2-R-1,3-дитма-5,6-бензциклогептен-S-оксидов // ЖОХ.-2000. (рег. № 0016).

hum

Отпечатано с готового оригинал-макета. Печать RISO. Бумага офсет №1. Формат 60*84 1/16. Объем 1.25. п.л. Тираж 100 экз. Заказ 39.

Отпечатано на полиграфическом участке издательства «Экоцентр», г. Казань, ул. Кремлевская, 18.