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29Three 2-D steady Darcian flows in an aquifer with a subjacent confining layer of a non-
30constant slope or a bedding inconformity are studied by two models: a potential theory
31(conformal mappings, the inverse boundary-value problem method, and the theory of
32R-linear conjugation) and hydraulic approximation. First, flow over a corner, whose vertex
33is either a stagnation point or point of infinite Darcian velocity, is analysed as a transition
34from one ‘‘normal’’ regime upstream to another downstream. The hodograph domain is a
35circular triangle, which is mapped onto a complex potential strip via an auxiliary half-
36plane. Parametric equations (backwater curves) for the phreatic surface are obtained. For
37the same flow problem, a depth-averaged 1-D nonlinear ODE for the thickness of the sat-
38urated zone (a generalized Dupuit–Fawer model) is numerically solved showing a perfect
39match with the potential (2-D) solution. Second, a non-planar aquifuge boundary is recon-
40structed as a streamline, along which an additional ‘‘control’’ boundary condition holds in
41the form of pore pressure as a function of an auxiliary variable (a relation between the
42hydraulic head and vertical Cartesian coordinate). The free surface is found in terms of
43Cauchy’s integrals for the Zhukovskii function, with explicit integrations for selected ‘‘con-
44trols’’. Third, a confined flow in a two-layered aquifer having a lens-type semi-circular
45inclusion in the subjacent stratum and incident velocity parallel to the interface between
46two aquifers is examined. The conjugation conditions along all four boundaries, across
47which the hydraulic conductivity jumps, are exactly met. The three velocity fields are
48explicitly presented, with examination of the flow net, including separatrices (‘‘capture
49zone’’ boundaries), demarcating suction/barriering of the lens, and evaluation of the
50lens-induced cross-flow (commingling) between the two strata.
51� 2014 Published by Elsevier Inc.
52

53

54

55 1. Introduction and hydrogeological motivation

56 There is a constant yearning for all that is unconfined.
57 F. Holderlin Mnemosyne.
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58 Unconfined aquifers in groundwater hydrology represent an interesting object for modeling because of a free (phreatic)
59 surface and nonlinear boundary conditions there (see e.g., [1,2]). Mathematically, the corresponding free boundary problems
60 are similar to ones in open channel flows [3,4]. Groundwater motion is analyzed in catchment-scale reconnaissance models
61 or in regular annual assessment of aquifers’ resources by either a hydraulic (ODE) or hydrodynamic (PDE) theoretical
62 description ([5,6], hereafter abbreviated as PK62). The former is called the Dupuit–Forcheheimer (DF) model (see its recent
63 generalizations in the so-called Dupuit–Fawer approximation, [7]), which in steady regimes and homogeneous rock requires
64 solving a BVP for a second-order ODE. The latter, the potential theory -PT, calls for solving a BVP for Laplace’s equation.
65 In arid climates with little recharge from the vadose zone to the phreatic surface, the main factor controlling its shape and
66 locus in a relatively homogeneous aquifer is the subjacent bedrock whose geometry is commonly inferred from geological
67 data. In the study area (Northern Oman), for which our mathematical models are developed, the geology is complex. It
68 ranges from the Precambrian basement rocks, mainly phyllites and slates, at the bottom of the succession occupying the core
69 of North Oman Mountains (NOM) to karstified carbonate rocks (Hajar Supergroup HSG) at the elevated areas to fractured
70 ophiolitic sequence overlain by porous medium of Tertiary limestones and Quaternary alluvium gravel at the top of the
71 geologic section.
72 The vertical cross section in Fig. 0 illustrates the field relations between the different geological units from the elevated
73 area of NOM to the Gulf coast. The boundary between the carbonates and the ophiolites is controlled by major fault system
74 along which several springs are originating. The Tertiary limestones and alluvium is thickening from elevated area down-
75 stream to exceed 300 m at the lower plain coastal areas and comprises the main source for groundwater production in vast
76 areas of Northern Oman. The alluvium is deposited under alluvial and deltaic depositional environment, originates at the
77 piedmonts of NOM and extends into the plain areas forming fan structures. The ophiolites bounding the alluvium have irreg-
78 ular surface ranging from steep at the NOM piedmonts to nearly planar at the coastal areas. The alluvium is predominantly
79 composed of gravels, driven from ophiolites weathering, which vary in shape and size and mixed with fines. The portion of
80 fines increases from the proximal to the distal part resulting in the formation of clayey silt lenses with low permeability
81 imbedded within the alluvium. Groundwater motion there led to the precipitation of CaCO3 and SiO2 within the pores which
82 enhances cementation and diagenesis processes in the lower alluvium layer leading to the formation of a cemented gravely
83 unit at the bottom. Therefore, the hydraulic conductivity of this unit is much less than that of the overlying unit that is
84 predominantly composed of loose gravels. Although it is formed of similar geological material, the alluvium forms two
85 hydrogeological units (aquifer–aquifer or aquifer–aquifuge) owing to variation in hydraulic properties due to cementation
86 and diagenesis variation.
87 The recent studies of the elevation of the phreatic surface (water table) in Fig. 0 revealed its puzzling spatial variability
88 detected in direct borehole observations and reconstructed geophysically (mostly by TDEM) (see, e.g., [8–11]). West–East
89 decreasing slopes of the interfaces between different hydrogeological units (ophiolite–carbonate–cemented gravel–gravel)
90 in Fig. 0 and bedrock troughs (lenses) filled with sediments of permeability contrasting with the main surrounding rock, have
91 been found both geophysically (by seismics) and from exploratory drilling. Generally, as Fig. 0 illustrates, the water table
92 slope is steep in the mountains and relatively mild in the valley part of the catchment (see also [12,9]). The degree of this
93 steepness and position of the water table is vital in Oman where groundwater is the only resource for agriculture and main
94 resource in other sectors of economy. Both traditional (falaj) and modern (tube well) water supply schemes tap unconfined
95 aquifers by either intercepting the spring discharge or relatively shallow water table in Fig. 0.
96 In this paper we answer the following questions: (a) How to accurately describe groundwater dynamics in aquifers with non-
97 planar bedrock as in Fig. 0? (b) When a relatively simple DF model is suitable and what is its error as compared with the PT?
98 In standard DF or PT models the bedrock boundary of an unconfined aquifer is assumed to be planar and either absolutely
99 impermeable (aquifuge) or slightly permeable (aquitard) but with leakage properties constant throughout the whole

Fig. 0. Typical hydrogeological cross-section of a coastal aquifer in Northern Oman.
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100 groundwater flow domain (PK62, [1]). Kacimov [13] attributed steep slopes of the free surface to ‘‘groundwater fall’’ geom-
101 etry of the bedrock, i.e. a non-planar aquifuge boundary making a step-down (similar to a drop-structure in classical hydrau-
102 lics, [3]). In hillslope hydrology, both the DF and PT models are used (see, e.g. [14–19]) but explicit closed-form solutions
103 (like ours below) to phreatic-surface flow problems are rare. Dachler and Gersevanov [20,21] (abbreviated as DG below)
104 studied analytically aquifers whose bedrock tilts at a constant angle ap; 0 6 a 6 1=2 (Fig. 1a). DG’s results obtained by
105 PT at small a matched well the DF approximation. DG involved two analytical approaches in solving BVPs: the hodograph
106 method and functional equations (see PK62), which – in their own turn – are based on the theory of holomorphic functions.
107 In this paper we extend the model of Kacimov [13] and consider the following bedrock ‘‘anomalies’’: (a) an aquifer with an
108 underlying aquifuge whose inclination changes abruptly from aquifer’s upstream to downstream (Fig. 1a); (b) an aquifuge with
109 a continuously varying slope (Figs. 1c and 4a); (c) a system of two commingled aquifers which have a permeable lens through
110 which an intricate ‘‘diversion’’ flow from one aquifer to another occurs (Fig. 6). Correspondingly, we apply four different

Fig. 1. Flow over a common corner-shaped aquifuge, physical domain (a); geologically exotic case with a ‘‘free groundwater jet’’ beneath a corner (b); flow
over a curved bedrock (c).
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111 techniques: the hodograph method [13,22,23], hydraulic approximation [24], boundary-value problem method [25,26] and the
112 theory of boundary-value problems of R-linear conjugation [27] – all of them springing from the arsenal of PK62.
113 We assume a Darcian flow, ignore the capillary fringe, accretion or evapotranspiration to/from the vadose zone and any
114 sinks-sources (e.g. pumping wells) in the flow domain. Within a given hydrostratigraphic unit (aquifers, lens in Fig. 0) the
115 hydraulic conductivity is constant.

116 2. 2-D flow over a bedrock wedge

117 In this section we assume that the hydraulic conductivity of the upper gravel, k, is much higher than that of the cemented
118 gravel such that the interface, AOD, between the two in Fig. 0 is a no-flow boundary. This assumption is acceptable for com-
119 mon conductivity ratios of 10–50 of the two hydrostratigraphic units. We assume that AOD makes a corner (Fig. 1a). The
120 origin of a Cartesian coordinate system coincides with the vertex O. The flanks of the wedge OD and AO dip at angles ap
121 (counted from Ox positive clockwise) and bp (positive counterclockwise), correspondingly. Without any loss of generality
122 we consider here the ‘‘hillslope’’ case of 0 < a ¼ const < 1=2; 0 < b ¼ const < 1=2. If a > b flow decelerates downstream
123 of the transition zone near point O, otherwise it accelerates. The flow rate (per unit length perpendicular to the plane of
124 Fig. 1a) in the upper gravel of Fig. 0 is Q.
125 Dachler [20] (see his Fig. 48) obtained a PT solution to the flow problem in Fig. 1a for a ¼ �1=2; b ¼ 1=2; Kacimov and Li
126 et al. [13,28] studied the case of a ¼ 0; b ¼ 1=2. Strack [1] (see his Figs. 5.22, 6.31, 6.32, 6.43, 7.15, 7.28, 7.29, 7.30) consid-
127 ered winding seepage in domains with sharp-edged impermeabilities. To the best of our knowledge, no attempts have been
128 made to address the general case of arbitrary a and b in Fig. 1a.
129 If a > 0 and b < 1=2 (Fig. 1a), then the phreatic surface BC far upstream and downstream of O is parallel to the bedrock.
130 We will call this 1-D unidirectional flow ‘‘normal’’ (analogously to corresponding open channel flows, [3]). The ‘‘normal’’ sat-
131 urated zone thicknesses are H0 and H1 far above and below point O, respectively. The corresponding zones are schematically
132 demarcated by dotted lines in Fig. 1a. In these zones flow is aligned with the bedrock, the 1-D DF approximation works well
133 and gives exactly the same solution as PT. In the conjugation zone of Fig. 1a, the free surface BC is essentially non-straight
134 and 2-D analysis by PT is needed.
135 At a ¼ b flow is trivially unidirectional, with BC everywhere parallel to AOD [20]. Dashed lines in Fig. 1a represent the
136 ‘‘primitive’’ phreatic surface corresponding to two ‘‘normal’’ flows at constant slopes apand bp, i.e. the straight lines
137 y ¼ � tan ap xþ H0= cosap and y ¼ � tan bp xþ H1= cos bp. The ‘‘primitive’’ lines intersect at the point M and the corre-
138 sponding ‘‘phreatic corner’’ BMC would be a simplistic Dupuit replica of AOD, translated. Our objective is to find how the
139 angularity of AOD affects the shape of BMC if PT is used.
140 In a common manner (PK62) we introduce a complex physical coordinate z ¼ xþ iy, hydraulic head hðx; yÞ, Darcian veloc-
141 ity vector ~V ¼ �krh, velocity potential / ¼ �kh, stream function w, complex potential w ¼ /þ iw and complexified Darcian
142 velocity V ¼ uþ iv . /; w and h are harmonic and /þ ky ¼ 0 along BC. We are free to select O as a fiducial point i.e. to choose
143 /O ¼ 0 and wAOD ¼ 0 (and, hence, wBC ¼ Q).
144 In the w-plane the strip Gw (Fig. 2a) corresponds to the flow domain Gz in the z-plane. In the hodograph plane, Gz is
145 imaged by a circular triangle GV depicted in Fig. 2b. Here the case of a > b is illustrated with O being a stagnation point.
146 Obviously, if a < b then VO ¼ 1 i.e. the hodograph trigon is infinite.

Fig. 2. Complex potential domain (a), hodograph domain (b), inverted hodograph domain (c), auxiliary plane (d) corresponding to the flow domain in
Fig. 1a.
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147 Obviously, the magnitudes of velocities in the ‘‘normal’’ flow zones of Fig. 1a are jVAj ¼ jVBj ¼ k sin ap and
148 jVC j ¼ jVDj ¼ k sin bp. Clearly, Q ¼ H0jVAj ¼ H1jVDj.
149 As is well known, VðzÞ is an antiholomorphic function and u� iv ¼ dw=dz is holomorphic. We use the method of inversion
150 (PK62) and invert GV into a trigon Gx where x ¼ dz=dw (Fig. 2c). Obviously, if a < b then Gx in Fig. 2c is a standard triangle.
151 Now we map conformally Gw onto Gx via an auxiliary plane f ¼ nþ ig (Fig. 2d) using the Schwarz–Christoffel formula
152 twice. Namely, first we map Gw onto the half-plane Imf > 0 of Fig. 2d by the function
153

wðfÞ ¼ Q
p ln

f� 1
fþ 1

; ð1Þ155155

156 where the logarithm’s branch is fixed by the condition of its negativeness at f ¼ n > 1 and therefore the correspondence of
157 points is D; C ! �1; A; B! 1; O!1.
158 The second mapping is
159

xðfÞ ¼ a1

Z f

�1
ð1þ sÞ�bð1� sÞa�1dsþxD; ð2Þ

161161

162 where s is a dummy variable, and a1 and xD are the two Schwarz–Christoffel constants. Obviously, from Fig. 2c
163 xD ¼ ðcot bp� iÞ=k and xA ¼ ðcot ap� iÞ=k. Then from (2) at f ¼ 1 we express
164

a1 ¼
cot ap� cot bp

kI1
; I1 ¼

Z 1

�1
ð1þ sÞ�bð1� sÞa�1ds: ð3Þ

166166

167 The integral in (3) is expressed as:
168

I1 ¼ 2a�bBð1� b;aÞ;170170

171 where Bðx; yÞ is the Beta-function. Combining Eqs. (1) and (2) we get
172

zðfÞ ¼
Z f

�1

dz
dw

dw
df

df ¼ Q
2p

Z f

�1

xðfÞ
f2 � 1

df: ð4Þ
174174

175 Both the rays AO; OD, and phreatic surface BC in the z-plane are obtained as images of the intervals ð1;1Þ, ð�1;�1Þ and
176 ð�1;1Þ, correspondingly, in the f-plane. Now we simplify the computations by transforming the mapping function (4).
177 First, we note that the function (2), which is the numerator of the integrand in (4), has the following representations near
178 the points f ¼ �1:
179

xðfÞ ¼ xD þ ðfþ 1Þ1�bx�1ðfÞ; xðfÞ ¼ xA þ ðf� 1Þax1ðfÞ;181181

182 where the functions x�1ðfÞ are holomorphic and not vanishing in the corresponding vicinities of the points f ¼ �1. Conse-
183 quently, the integral (4) at its singular points f ¼ �1 has the jumps ipxD=2 and �ipxA=2. Therefore, the mapping functions
184 for OD; BC, and AO can be successively found as follows:
185

zðnÞ ¼ a1

2
ln

nþ 1
n� 1

Z �1

n
ð�t � 1Þ�bð1� tÞa�1dt �

Z �1=n

0
ð1� tÞ�bð1þ tÞa�1tb�a�1 ln

t þ 1
t � 1

dt
� �

�xD

2
ln

nþ 1
n� 1

; ð5Þ
187187

188

zðnÞ ¼ a1

2
e�ipbc1 þ ln

1� n
1þ n

Z n

�1
ð1þ tÞ�bð1� tÞa�1dt �

Z n

�1
ð1þ tÞ�bð1� tÞa�1 ln

1� t
1þ t

dt
� �

�xD

2
ln

1� n
1þ n

þ ip
� �

; ð6Þ
190190

191 where
192

c1 ¼
Z 1

0
ð1� tÞ�bð1þ tÞa�1tb�a�1 ln

1� t
1þ t

dt;
194194

195

zðnÞ ¼ a1

2
e�ipbc1 � c2 þ ln

n� 1
nþ 1

I1 �
Z n

1
ð1þ tÞ�bð1� tÞa�1dt

� �
þ e�ipa

Z n

1
ð1þ tÞ�bðt � 1Þa�1 ln

t � 1
t þ 1

dt
� �

þxD

2

� ln
n� 1
nþ 1

þ ipxD �xA

2
: ð7Þ197197

198 We recall that I1 is defined in (3) and
199

c2 ¼
Z 1

�1
ð1þ tÞ�bð1� tÞa�1 ln

1� t
1þ t

dt:
201201

202 The last equations are obtained by changing the order of integration in (4) and by making the substitution �1=t ! t in the
203 integrals with infinite limits �1.
204 Note, that the first integrals into all three formulae (5)–(7) can be expressed in terms of an incomplete Beta-function
205 Bxða; bÞ, or a hypergeometric function Fða; b; c; zÞ, i.e.
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206 Z �1

n
ð�t � 1Þ�bð1� tÞa�1dt ¼ 2a�1ð�n� 1Þ1�b

b� 1
Fð1� a;1� b; 2� b; ð1þ nÞ=2Þ:

208208

209 Analogues representations could be obtained for the first integrals in (6), (7).
210 The parametric equations of BC are obtained by separation of the real and imaginary parts in the expressions for zðfÞ given
211 by (6). The rays making the aquifuge are plotted by (5) and (7). In computations we used the NIntegrate routine of
212 Mathematica [29] for evaluation of the corresponding integrals. These integrals are improper but are computed well with
213 a standard assessment of errors.
214 We introduce dimensionless quantities ðx�; y�Þ ¼ 2pk=Q ðx; yÞ and drop the superscript �. Fig. 3a presents the phreatic
215 surface plotted at b ¼ 0:1 and a ¼ 0:35 and – for comparisons – the ‘‘primitive’’ BMD (plotted as a dashed wedge). Fig. 3b
216 shows phreatic surfaces calculated for a ¼ 0:3 and b ¼ 0:25; 0:2 and 0.15 (curves 1–3, correspondingly), i.e. a steep slope
217 jumping to a mild one downstream. In Fig. 3c the phreatic surfaces are plotted for b ¼ 0:15 and a ¼ 0:2; 0:25 and 0.35
218 (curves 1–3, correspondingly).
219 In our model, the behavior of velocity at infinity upstream (points A–B, Fig. 1a) and downstream (points C–D) was
220 ‘‘normal’’. Velocity at one or both of these two extremes can vanish, that corresponds to infinite saturated depths of the
221 aquifer and infinite pore pressure at these two points. Mathematically, one or two free parameters emerge in the solution.
222 This reflects the unbounded geometrical extension of the flow domain and, consequently, lack of knowledge (mathematical
223 ignorance) of the details of the recharge–discharge zones (located far upstream–downstream of point O in our Fig. 1a). For
224 example, Dachler’s (1936, see his pp. 98–100, Abb. 48) upstream velocity at infinity is zero and his solution is one-paramet-
225 ric. PK-62 elaborated several ways of fixing this/these parameters. The technique of solving the BVP (the hodograph method),
226 does not depend on these free parameters and the modes of fixation. The free parameters emerge in both PT and DF models.
227 Similarly to open channel hydraulics [3], we call BC a backwater curve. Let a network of monitoring wells be drilled as
228 schematically depicted in Fig. 1a. These wells serve for piezometric mapping. In wells (U1,U2) (and any other wells in the
229 ‘‘normal’’ upstream zone), the depth of water counted from the aquifuge (H0= cos ap) and phreatic surface slope ‘‘mimic’’
230 the dip of the aquifuge. Similarly, piezometric data from wells (D1,D2) (Fig. 1a) in the downstream ‘‘normal’’ zone are a
231 replica of the geological bedding there. A well (T in Fig. 1a) drilled in the backwater zone is, however, different. As our com-
232 putations in Fig. 3 illustrate, the water level there overshoots the ‘‘normal’’ level inferred (and extrapolated) from wells (U1,
233 U2). Well T (if drilled to the aquifuge) detects the same a as U1 and U2 and the constancy of a in all three wells (U1, U2, T)
234 can be alternatively corroborated by, say, seismics geophysics. However, the corner (downstream of well T) acts as a
235 ‘‘hydraulic leaven’’ i.e. in well T the free surface of groundwater flow is significantly higher compared with the normal which
236 one would draw based on the DF model and readings from the upstream wells (U1,U2). Actually, the overshoot of the phre-
237 atic surface is a precursor to the change of bedrock dip downstream of well T.
238 Thus, attributing the piezometric data to the simplistic geometry of the bedrock should be caveated. ‘‘Abnormalities’’ of
239 the phreatic surface, which are routinely mapped by standard interpolations of water level readings in the wells can be also
240 caused by other than the non-planar geometry of the bedrock, e.g. by faults, transition from an aquifuge to an aquitard with
241 leakage, or localised lenses (Fig. 0) as in Section 4 below.
242 Inverse problems of reconstructing the bedrock from the locus of the phreatic surface call for subtle skills to tinker with
243 the dearth of data (often recondite or spurious) gleaned from geology, hydrogeology and geophysics. In contrast, in open-
244 channel hydraulics ‘‘abnormalities’’ of the free surface are directly measured and can be attributed to the sudden changes
245 of the channel bed geometry, roughness, or channel cross-sectional area [3].

246 3. 1-D model of flow over a curved bedrock

247 In this section we utilize a hydraulic approximation for a phreatic surface flow over an arbitrary curved bedrock YðxÞ. We
248 do not consider geologically exotic cases like one in Fig. 1b where a dry shadow zone emerges with a free jet of groundwater
249 demarcated by two phreatic surfaces but rather study a common situation shown in Fig. 1c, with YðxÞ being a sufficiently
250 smooth function. The aim is to find the elevation, f ðxÞ, of the phreatic surface over the bedrock. For a while, we return to
251 dimensional coordinates.
252 Castro-Orgaz et al. [24] obtained higher order 1-D groundwater flow hydraulic theory using depth-averaging and system-
253 atic application of Picard’s iteration. For the flow in Fig. 1c the theory yields (see Appendix A):
254

Q
kf

1þ f xYx þ Y2
x þ

ffxx þ f 2
x

3

 !
þ f x þ Yx ¼ 0 ð8Þ

256256

257 with respect to f ðxÞ. In Eq. (8) the subindex x indicates differentiation. The required smoothness of YðxÞ is clear from Eq. (8).
258 Appendix A outlines the proof of Eq. (8).
259 Eq. (8) was integrated for the case of a wedge from the previous section. The second Picard iteration cycle needs a bed
260 function YðxÞ continuous at least up to its second derivatives. In the wedge problem this condition is violated at point O
261 in Fig. 1. This limitation was obviated in the numerical solution by forcing continuity of the free surface slope at this point
262 (x ¼ 0), that is, by assuming tan aþ nx� ¼ tan bþ nxþ there.
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Fig. 3. Phreatic flow boundaries at b ¼ 0:1 and a ¼ 0:35, and ‘‘primitive’’ BMD (plotted as a dashed wedge) (a); phreatic surfaces for a ¼ 0:3 and
b ¼ 0:25; 0:2 and 0.15 (curves 1–3, correspondingly) (b); phreatic surfaces for b ¼ 0:15 and a ¼ 0:2; 0:25 and 0:35 (curves 1–3, correspondingly) (c);
comparisons of the phreatic surface obtained by PT (blue curve), hydraulic theory (green dots) and ‘‘normal’’ depth rays (red dashed lines) for
a ¼ 0:35; b ¼ 0:1 (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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263 Upstream of the wedge at x ¼ xu, where jxuj is large enough, we set a flow depth f u ¼ mnf nu, with mn a parameter close to
264 unity. This is to account that the value of f n at x ¼ xu is slightly different from H0= cosap (see Fig. 1a), which is the asymptotic
265 analytic value at infinity. At xu we have f x � 0. With these two left-side boundary conditions Eq. (8) was numerically tackled
266 by a 4th-order Runge–Kutta method until reaching a section x ¼ xd (jxdj should be large enough) on the downstream slope of
267 the wedge. The computed value of the flow depth at this section is f d. For a physically correct solution f d must be close to
268 f nd ¼ H1=cosbp. Thus, the value f u was iterated until reaching a value of f d close to f nd, keeping f u close to f nu.
269 A code was written in Vbasic. The results of numerical integration are shown in Fig. 3d for a ¼ 0:35; b ¼ 0:1 in dimen-
270 sionless variables of the previous section, i.e. ðx; yÞ ¼ ðx; yÞpK=ð2QÞ. We selected xu ¼ �10 and xd ¼ þ10, respectively. The
271 corresponding normal depths were f nu ¼ 3:883246 and f nd ¼ 5:344798. The starting values for the numerical integration
272 at the upstream section were f x ¼ 0 and f ¼ mnf nu, with mn undetermined. Computations were initiated with mn ¼ 1:001,
273 thereby reducing it as iteration progressed. The final iterated value was mn ¼ 1:000529, resulting at x ¼ þ10 the flow depth
274 f ¼ 5:57044. As one can see from Fig. 3d, the 1-D hydraulic model is in excellent agreement with the 2-D potential solution.

275 4. PT model for flow over a curved bedrock

276 In this section we again use PT but consider an impermeable boundary AOD as an arbitrary curve shown in a vertical
277 cross-section of Fig. 4a. Although the geological section in Fig. 0 depicts the bedrock as a smooth monotonic positively-
278 concave curve, below this is mathematically not necessary.
279 Curved beds of open channels have been theoretically tackled both in the hydraulic approximation (the Poincare–Masse–
280 Jaeger analysis, see, e.g., [3]) and in terms of PT (see e.g. [30,31]). A transition from one constant-slope ‘‘normal flow’’ to
281 another was assumed to be along a straight line, polygon, circular arc or another specified curve modeling the channel
282 bed contour (see, e.g., [32,3]). Pressure exerted by flowing water onto the channel bed is then calculated from the solution
283 [31]. The varying water depths and velocities are experimentally measured.
284 In the previous section we have already used the hydraulic model of Castro-Orgaz et al. [24] for a given bedrock boundary
285 YðxÞ. In this section we not only recur to a full 2-D model but also use an inverse approach. Namely, instead of specifying the
286 curve AOD in Fig. 4a, we specify a pressure distribution there. Then we reconstruct both the phreatic surface BFC, which is
287 (like in the two previous sections) a streamline and isobar, and the bedrock geometry itself. Such an ‘‘inverse’’ BVP is

Fig. 4. Phreatic flow over a curved aquifuge, physical domain (a); complex potential domain (b); auxiliary plane (c); control functions in the auxiliary plane:
‘‘normal’’ 1-D flow (line 1), linear pressure variation (line 2), semi-elliptical variation (curve 3), two ‘‘normal’’ flows conjugated through a ‘‘kink’’(d).
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288 ‘‘constructal’’ and has been used for designing flow domains with desired or optimal integral and local field characteristics
289 [33,10,34,26].
290 The Gw domain is shown in Fig. 4b. Point F there is fiducial (wF ¼ 0) and we select Cartesian coordinates xFy. Along the
291 aquifuge contour w ¼ �Q . We repeat: none of the boundaries of Gz is known in advance.
292 We map Gw conformally on the half-plane f > 0 in Fig. 4c by the function:
293

wðfÞ ¼ �Q
p

ln
f� 1
fþ 1

: ð9Þ
295295

296 Several options for a characteristic ‘‘control’’ function along AOD are available (see, e.g., [33]). Here we specify one of the
297 following distributions along AOD:
298

h ¼ F1ðyÞ; or p ¼ F2ðyÞ; or y ¼ F3ðhÞ; ð10Þ300300

301 where p is the pore pressure head defined as p ¼ �ð/=kþ yÞ (see PK62) and F1; F2, or F3 are the control functions whose
302 smoothness will be elaborated later.
303 We introduce a holomorphic Zhukovsky function Zh ¼ zþ iw=k ¼ ðx� w=kÞ þ ið/=kþ yÞ; Rz ¼ Re½Zh�; Iz ¼ Im½Zh�, i.e. the
304 imaginary part of Zh is �p. The boundary conditions for Zh in the Gz plane of Fig. 4a and auxiliary plane of Fig. 4c are
305

Iz ¼ 0 along BF; �1 < n < �1; and along FC; 1 > n > 1; ð11Þ307307

308
Iz ¼ F4ðnÞ along AD; � 1 < n < 1;310310

311 where F4ðnÞ is a given function (see Fig. 4d) related to one of the three forms in Eq. (10).
312 Along AOD from Eq. (1)a
313

/ ¼ �Q=p log½ð1� nÞ=ð1þ nÞ�; �1 < n < 1:315315

316 At f ¼ 1 the Zhukvosky function nullifies because we have selected point F as a fiducial for w (Fig. 4b) and as the origin of
317 physical coordinates (Fig. 4a). Consequently, we have to find ZhðfÞ based on the Dirikhlet conditions (11). An integral solution
318 to this BVP is (see, e.g., PK62):
319

ZhðfÞ ¼ 1
p

Z 1

�1

F4ðsÞ
s� f

dsþ RzF ; ð12Þ
321321

322 where the constant RzF ¼ 0 owing to the fiduciality of point F. Now a smoothness requirement on F4 can be identified: for the
323 singular integrals in Eq. (12) to exist it is sufficient for F4 to belong to the Holder class (PK62). Integral representation (12)
324 and its generalizations for mixed and Riemann–Hilbert problems have been widely used in modeling direct and ‘‘inverse’’
325 problems for Darcian and ideal fluid flows (see e.g. [10], PK62, [35]).
326 We apply the Sokhotskii formulae (PK62) to (12) and (9). Then the parametric equations of AOD are:
327

x ¼ 1
p

V :P:
Z 1

�1

F4ðsÞ
s� n

ds
� �

� Q
k
; y ¼ F4ðnÞ þ

Q
kp

log
1� n
1þ n

; jnj < 1: ð13Þ
329329

330 The phreatic surface is described by:
331

x ¼ 1
p

Z 1

�1

F4ðsÞ
s� n

ds; y ¼ Q
kp

log
n� 1
nþ 1

; jnj > 1; ð14Þ
333333

334 where V.P. stands for the principal value. In Eq. (13) the integral is of the Cauchy type, i.e. is singular, while in Eq. (14) the
335 integral is regular. Correspondingly, the CauchyPrincipalValue or NIntegrate as Mathematica routines should be used for
336 arbitrary F4 in evaluation of the integrals.
337 Obviously, if F4 ¼ �p0 ¼ const (Fig. 4d, line 1) then we arrive at Dachler’s case (see his Fig. 45) of a ‘‘normal’’ unidirec-
338 tional flow over a planar aquifuge of a constant tilt and phreatic surface parallel to it.
339 Let us select F4ðnÞ ¼ �p0 � en (Fig. 4d, line 2) where p0 is a given positive pressure head at point O, i.e. we specify a linear
340 pressure distribution as a function of an auxiliary variable. The linearly varying F4ðnÞ in the integral of (12) corresponds to
341 y ¼ 2p0 � /þ 2e tanh /=4, i.e. is in the form of F3 in Eq. (10).1 In Gw at point O / ¼ 0 and, hence, y ¼ �p0 in Gz; e is a given
342 constant. Obviously, the diad ðp0; eÞ is constrained by the inequalities (pA > 0;pD > 0).
343 We introduce dimensionless quantities ðx�; y�;/�Þ ¼ 2pk=Q � ðx; y;/Þ; ðp�0; e�Þ ¼ pk=Q � ðp0; eÞ and drop the superscripts.
344 The shapes of AOD and BFC are found from (14) by integration as:
345

x ¼ �2ðp0 � neÞ ln 1� n
1þ n

� 4e� 2p; y ¼ 2 ln
1� n
1þ n

� 2p0 � 2en; jnj < 1; ð15Þ347347

1 A similar linear relation between sin h (h is the angle between the velocity vector and abscissa axis) and an auxiliary variable of a half-plane was assumed by
Zhukovskii [36] such that he reconstructed his wðzÞ in a parametric form. Similarly (but numerically) [37] reconstructed a free surface segment.Q3
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348

x ¼ �2ðp0 þ neÞ ln n� 1
nþ 1

� 4e; y ¼ 2 ln
n� 1
nþ 1

; jnj > 1; ð16Þ350350

351 correspondingly.
352 Fig. 5a illustrates the free surfaces calculated for ðp0; eÞ ¼ ð1;0:2Þ; ð2;0:2Þ (curves 1 and 2, respectively) plotted by Eq. (15)
353 and the corresponding aquifuge boundaries (curves 3 and 4) by Eq. (16). In Fig. 5b we plotted the flow domains for a ground-
354 water fall with a curved bedrock. For this reconstruction we selected a linear F4ðnÞ (see Fig. 3d) with ðp0; eÞ ¼ ð1;�1Þ; ð2;�2Þ
355 such that pore pressure at point D nullifies, i.e. the ‘‘dangling’’ tail of Gz is at atmospheric pressure. As one moves down in
356 Fig. 5b, the ‘‘confining’’ action of the bedrock decreases and eventually a free ‘‘jet’’ of groundwater ‘‘falls’’ vertically. In Fig. 5b
357 phreatic surfaces for the two diads are curves 1 and 2 and the aquifuge boundaries are curves 3 and 4, (all double-
358 correspondingly plotted by Eqs. (15), (16)). As is evident from Fig. 5b, AOD is not necessary a function in the sense of yðxÞ
359 (see also Fig. 1b), albeit AFC is. Curves 3 and 4 have protruding tips where the Darcian velocity reaches its maximum and,
360 correspondingly, the thickness of the saturated zone reaches its minimum (similarly to the abrupt drop-down in [13]).
361 Unlike free heavy jets in open-channel flows [38], groundwater close to point D (C) in Fig. 5b acquires a constant velocity k.

362 Fig. 5c presents the reconstruction of Gz for another control function: F4 ¼ �p0 � e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
(schematically shown as

363 curve 3 in Fig. 4d). Curves 1 and 2 are the free surfaces and curves 3 and 4 are the bedrock contours calculated for two diads
364 ðp0; e1Þ ¼ ð1;1Þ; ð0;1Þ, double-correspondingly. Again the curves 2 and 4 give the case of another groundwater fall but here –
365 unlike Fig. 5b – both far downstream and upstream we have p ¼ 0 and, therefore, ‘‘free jet’’ conditions.
366 Other ‘‘controls’’ F4ðnÞ can be selected, e.g. as curve 4 in Fig. 4d, which has two flat segments corresponding to ‘‘normal’’
367 flows upstream and downstream and a ‘‘kink’’ (analogous to ones in Figs. 5, of [31]). One can also select /� cy ¼ C specified
368 at a certain segment �1 < �n0 < n < n1 < 1 of AD. This segment will then correspond to an interface between a relatively
369 light moving groundwater and static DNAPL beneath the interface, with c expressed through the density contrast and C
370 through the pressure in the entrapped DNAPL (see [13,22,25,23]). Similarly to [39], a ‘‘reattached’’ finite-size phreatic surface
371 [40] with a segment p ¼ 0 along �1 < �n2 < n < n3 < 1 can be introduced into Gw through F4.
372 The choice of ‘‘controls’’ F4, even within the Holder class, should be admonished: the found shape AOD has to be checked
373 aposteriori, from both a physical and geological viewpoint. Indeed, fancy shapes in Gz (AOD with ‘‘loops’’, or two-list Riemann
374 surfaces) as integral outcomes of a ‘‘desired’’ F4 can emerge. This is a common price paid by both this ‘‘inverse’’ [33] and
375 Gersevanov’s techniques (we recall that [21] used an alternative inverse approach to design Gz in unconfined phreatic flows).
376 It is still not clear what kind of isoperimetric/optimal shape design problems similar to Bejan, Kacimov and Kacimov et al.
377 [41,10,26] can be solved by ‘‘controls’’ of this kind.
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Fig. 5. Phreatic surfaces (curves 1 and 2) and aquifuge boundaries (curves 3 and 4) calculated for: linear control functions F4ðnÞwith ðp0; eÞ ¼ ð1;0:2Þ and (2,
0.2) (a); linear control functions F4ðnÞ with ðp0; eÞ ¼ ð1;�1Þ and ð2;�2Þ (b); semi-elliptical control functions F4ðnÞ with ðp0; e1Þ ¼ ð1;1Þ and (0, 1) (d).
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378 Is there an advantage of our integral solution as compared with one of Gersevanov, who solved a finite difference equa-
379 tion in terms of z ¼ f ðwÞ? We believe, yes, because F4 allows for an apriori assessment of the pore pressure in the whole flow
380 domain (Gersevanov’s reconstruction of Gz was purely mathematical). Indeed, pðx; yÞ is a harmonic function and therefore
381 obeys the maximum principle (PK62). Consequently, the maximum of a selected jF4j in Fig. 4d bounds from above the pore
382 pressure head everywhere in Gz. Still another ‘‘constructal’’ technique can be implemented by specifying a Darcian velocity
383 magnitude along AOD and, consequently, fixing a hodograph domain (see e.g., [42]). A simple assessment of effective stresses
384 and seepage forces - prior to solving the flow problem – is important in the analysis of hillslope stability.

385 5. Flow in two aquifers commingled via a depositional trough

386 In this section we abandon the assumption on impermeable bed of Gz and consider two gravel aquifers in Fig. 0 having
387 arbitrary conductivities k1 and k2. Here we assume that the interface between two gravel units of Fig. 0 is planar. This line is
388 taken as the x-axis of a Cartesian coordinate system xBy (Fig. 6a).
389 There is a semi-circular lens of a radius R and conductivity k3 placed as illustrated in Fig. 6a. Such lenses (a clayey one
390 is shown in Fig. 0) are common sedimentary unconformities made of marl, mudrock, breccia or unconsolidated coarse
391 sand.

(a)

(b)
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Fig. 6. Phreatic flow in a two-strata aquifer with a semi-circular lens (a); confined flow in a two-strata aquifer perturbed by a porous trough, k2=k1 ¼ 0:2
and k3=k1 ¼ 10 (b).
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392 In a confined approximation to an unconfined flow of Fig. 6a we assume that both aquifers extend indefinitely in the
393 y-direction (Fig. 6b), i.e. are bounded by bed-, cap-rock somewhere far from the x-axis. Solution to problem in Fig. 6b is close
394 to one for Fig. 6a, provided a in Fig. 6a is sufficiently small.
395 Our main interest now is not the phreatic surface but flow across the interface and the role of the lens in the so-called
396 ‘‘hydraulic commingling’’ for an arbitrary set k1; k2 and k3. Without the lens in Fig. 6b the Darcian velocities in the two
397 aquifers, v1 and v2, are parallel to Bx and satisfy the condition
398

v1

k1
¼ v2

k2
; ð17Þ400400

401 i.e. seepage is piece-wise unidirectional and, consequently, the two strata are not commingled (no cross-flow through the
402 abscissa axis). This 1-D, unidirectional flow we again call ‘‘normal’’. The lens causes a nontrivial leakage from one stratum
403 to another with refraction of the flow net on the interfaces between the three subdomains making the plane in Fig. 6b.
404 Our aim is to examine the near-field (the lens vicinity) and to evaluate how much water circulates between aquifers 1
405 and 2.
406 The complexified Darcian velocities, v1ðzÞ; v2ðzÞ and v3ðzÞ are antiholomorphic in the corresponding domains of Fig. 6b.
407 As is well-known (PK62), the refraction conditions (continuity of the flux and pore pressure) consist of the proportionality of
408 tangential and coincidence of normal components of vjðzÞ at the corresponding parts of the interface:
409

k2Re v1ðxÞ ¼ k1Re v2ðxÞ; Im v1ðxÞ ¼ Im v2ðxÞ; jxj > R;

k3Re v1ðxÞ ¼ k1Re v3ðxÞ; Im v1ðxÞ ¼ Im v3ðxÞ; jxj < R;

k3Imð�tv2ðtÞÞ ¼ k2Imð�tv3ðtÞÞ; Reð�tv2ðtÞÞ ¼ Reð�tv3ðtÞÞ; jtj ¼ R; Im t < 0:411411

412 In terms of holomorphic functions v jðzÞ ¼ vjðzÞ, j ¼ 1;2;3, complex conjugated with the complexified velocities, the last
413 conditions are equivalent to the following problem of R-linear conjugation:
414

v1ðxÞ ¼ A1v2ðxÞ � B1v2ðxÞ; x 2 ð�1;�RÞ [ ðR;1Þ;
v2ðxÞ ¼ A2v3ðxÞ � B2v3ðxÞ; x 2 ð�R;RÞ;
v3ðtÞ ¼ A3v2ðtÞ þ B3 R2t�2v2ðtÞ; jtj ¼ R; Im t < 0;

8><
>: ð18Þ

416416

417 where
418

Aj ¼
k1 þ kjþ1

2kjþ1
; Bj ¼ 1� Aj; j ¼ 1;2; A3 ¼

k3 þ k2

2k2
; B3 ¼ 1� A3:420420

421 We fix the magnitude of v2ðzÞ at infinity in the second aquifer by the condition v2ð1Þ ¼ V0 > 0. Then the velocity
422 distribution in the three media is (see [27] for the details of derivations):
423

v1ðzÞ ¼ ðe�ipc � D2eipcÞV1ðzÞ þ ðeipc � D2e�ipcÞV2ðzÞ;
v2ðzÞ ¼ ð1þ D1Þ eipðk�cÞV1ðzÞ þ e�ipðk�cÞV2ðzÞ

� �
þ V0D1D3ð1� z�2Þ;

v3ðzÞ ¼ ð1þ D2Þ e�ipcV1ðzÞ þ eipcV2ðzÞ
� �

;

ð19Þ
425425

426 where all parameters and functions V1ðzÞ; V2ðzÞ are:
427

D1 ¼
k2 � k1

k2 þ k1
; D2 ¼

k3 � k1

k3 þ k1
; D3 ¼

k2 � k3

k2 þ k3
; ð20Þ429429

430

eipc ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ D1 þ D2

p
þ isignD3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� D1 � D2

p	 

; ð21Þ432432

433

eipk ¼ 1� D3
D1 � D2

2
þ ijD3j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D1 þ D2

2

� �2
s

; ð22Þ
435435

436

K ¼ V0 sin½pðc� k=2Þ�
2ð1þ D1Þ cosðpk=2Þ sinð2pcÞ ; ð23Þ

438438

439

V1ðzÞ ¼ K 1� R2

z2 þ
R� z
Rþ z

� �k

1þ 2kR
z
þ R2

z2

" #( )
;

V2ðzÞ ¼ K 1� R2

z2 þ
Rþ z
R� z

� �k

1� 2kR
z
þ R2

z2

" #( )
:

ð24Þ

441441

442 Here the branch of the analytic function ½ðR� zÞ=ðR� zÞ�k, equaled one at z ¼ 0, is fixed in the z-plane with the branch cut
443 along the half-circle fz : jzj ¼ R; Im z < 0g.

Q4
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444 We introduce dimensionless quantities as ðx�; y�Þ ¼ ðx; yÞ=R and as usually drop ‘‘⁄’’. We used the Mathematica routine
445 StreamPlot and plotted the flow nets for k2=k1 ¼ 0:1 and two trough conductivity ratios k3=k1 ¼ 0:5 and k3=k1 ¼ 2:5
446 (Fig. 7a and b, respectively, where arrowed curves are streamlines and dashed curves are equipotential lines).
447 Eight characteristic streamlines can be distinguished in Fig. 6b, plotted by Mathematica for k2=k1 ¼ 0:2 and k3=k1 ¼ 10. They
448 demarcate (as separatrices) the capture zones induced by the lens. Flow is symmetric with respect to By and we will describe only
449 its left half (x < 0). The curve AB in Fig. 6b separates the flow in aquifer 1 into a major part (Zone 1), which bypasses the lens,
450 from the part, which enters the lens at x < 0 (and, of course, leaves it at positive x). Between AB and D1E1 (Zone 2) ground-
451 water from aquifer 1 enters the lens but does not visit aquifer 2. Point E1 is the triple point x ¼ �R; y ¼ 0 where all three
452 interfaces (semicircle, its diameter and the ray) intersect. Between D1E1 and DE (Zone 3) aquifers 1 and 2 are commingled,
453 i.e. groundwater from aquifer 1 crosses the ray x < �R; y ¼ 0, visits aquifer 2 and then enters the lens. Asymptotically, DE
454 approaches the x-axis at x! �1. Zones 4 and 5 in the second stratum are similar to Zones 2 and 1, correspondingly. For the
455 case of Fig. 7b we zoom out the zone where two strata commingle and portray the corresponding streamlines as Fig. 7c.
456 From (24)we get
457

Imv1ðxÞ ¼
Kðsinpðcþ kÞ þ D2 sin pðc� kÞÞ qkðxÞ � q�kðxÞð Þ; �1 < x < �R;
V0ð1þD2Þ sinpðc�k=2Þ

4 cosðpk=2Þ sinpc qkð�xÞ � q�kð�xÞð Þ; �R < x < 0;

(
459459

460 where
461

qkðxÞ ¼
xþ R
x� R

� �k

1� 2Rk
x
þ R2

x2

 !
:

463463

(a) (b)

(c)

Fig. 7. Flow nets for k2=k1 ¼ 0:1 and two trough conductivities k3=k1 ¼ 0:5 (a) and k3=k1 ¼ 2:5 (b); streamlines in a zoomed zone of commingling for
k2=k1 ¼ 0:1 and k3=k1 ¼ 2:5 (c).
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464 The representation for Im v1ðxÞ at the interval ð�R;0Þ was derived using the equality Im v1ðxÞ ¼ Im v3ðxÞ.
465 The vertical component of v1 along DE1 and E1B was used in the NIntegrate routine of Mathematica for evaluation of the
466 flow rates through DE1 and E1B in Fig. 6b we introduce the corresponding dimensionless rates Q 1 ¼ Q DE1

=ðRV0Þ and
467 Q2 ¼ Q E1B=ðRV0Þ. In Fig. 8a we plot Q 1 as a function of k3=k1 for k2=k1 ¼ 0:01; 0:1; 0:9 (curves 1–3). Fig. 8b shows
468 Q2ðk3=k1Þ for the same conductivity ratios. As the computations in Fig. 8a show, the commingling flow rate rapidly increases
469 from zero at k3 ¼ k2 to high values for lenses of relatively high permeability.
470 The intricate refraction of streamlines near point E1 in Fig. 6b, 7c would be difficult to detect by standard MODFLOW-type
471 tools. Similarly, the relatively small Q 1 and Q2 are not easy to evaluate in mesh-based (FDM-FEM) codes. To a runner of a
472 standard package, who deals with grid sizes in aquifer models (usually, on the catchment scale) much higher than the char-
473 acteristic size R of a localized heterogeneity in Fig. 6a, attention to the vicinity of, say, point E in Fig. 6b, 7c may look like a
474 supervacaneous niggling. In geotechnical and environmental engineering, however, the fine flow features near E and E1

475 redound to the following:

476 (a) Suffosion and other types of micro-erosion of adjacent porous media is triggered by a non-trivial topology of stream-
477 lines and magnitudes of hydraulic gradients close to interfaces between media of contrasting conductivity–porosity
478 (e.g., core-shoulder-base of a large earth-filled dam, see [43]). The above examined commingling makes possible exact
479 evaluation of seepage forces (on the scale of REV involving such interfaces) and, consequently, a global analysis of
480 stability of corresponding hydraulic structures.
481 (b) Well field downstream of the trough in Fig. 6a can tap groundwater from aquifer 1. Then commingling can seriously
482 jeopardize the pumped water quality. Indeed, without the lens in Fig. 6a ‘‘a parallel -streamlines’’ regime and a
483 ‘‘purely-aquifer-1’’ containment of groundwater take place. Topological divarications from ‘‘normality’’, as illustrated
484 in Figs. 7c and 8a and b, results in acquiring unwanted chemicals from the lens and aquifer 2, which is commonly of
485 poorer quality from a hydrogeochemical viewpoint. Sometimes, even toxic substances from a clandestine buried
486 waste repository can re-emerge by advection in aquifer 1. Vice versa, if a plume of contamination is rapidly propagat-
487 ing in a relatively highly-permeable aquifer 1, then one should be ‘‘hydraulically cautious’’ with remediation tech-
488 niques. For example, in the upper aquifer of Wadi Suq (Batinah region of Northern Oman) there was an attempt to
489 intercept a plume of DNAPL from a copper mining plant by constructing a backfield trench across the whole depth
490 of aquifer 1 and partial embedding the trench into aquifer 2. The project failed because the plume, contained to aquifer
491 1 prior to installing the trench, ‘‘dived’’ into aquifer 2 when the trench started its operation. Groundwater motion (and
492 therefore advective flushing) in aquifer 2 is slow and hence ‘‘pocketing’’ contaminants there, as Fig. 7c depicts, is det-
493 rimental. Our commingling model and flow nets in Fig. 7 qualitatively explain why the plume ‘‘dives’’, even without
494 any density effects.
495

496 To perpend the flow nets in Fig. 6a one really needs an arbitrarily-zoomable, absolutely exact velocity fields (19), from
497 which hydrogeological, hydrological and environmental-engineering implications can be drawn.

(a)

(b)

Fig. 8. Dimensionless flow rate Q1ðk3=k1Þ through E1E in Fig. 5b for k2=k1 ¼ 0:01; 0:1; 0:9 (curves 1–3) (a); flow rate Q2ðk3=k1Þ through EI in Fig. 5b for
k2=k1 ¼ 0:01; 0:1; 0:9 (curves 1–3) (b).

14 A. Kacimov et al. / Applied Mathematical Modelling xxx (2014) xxx–xxx

APM 10238 No. of Pages 19, Model 3G

9 December 2014

Please cite this article in press as: A. Kacimov et al., Groundwater flow in hillslopes: Analytical solutions by the theory of holomorphic
functions and hydraulic theory, Appl. Math. Modell. (2014), http://dx.doi.org/10.1016/j.apm.2014.11.016

http://dx.doi.org/10.1016/j.apm.2014.11.016
Original text:
Inserted Text
1-3). 

Original text:
Inserted Text
conductivity-porosity 



498 In this section the flow was generated by a dipole at infinity. Other types of driving point singularities (sinks, sources and
499 multipoles) as well as elliptical, parabolic, hyperbolic and corner-shaped lenses, rather than the semi-circle of this section,
500 have been recently investigated [44–47].

501 6. Conclusions

502 Aquifers/saturated soil layers in hillslope hydrology are often bounded from below by bedrock whose shape varies in
503 space as in Fig. 0, reflecting the past geological events (e.g., tectonism). The hydraulic properties of the aquifer and bedrock
504 also vary spatially, owing to geomorphological alterations, activity of plant roots, anthropogenic impacts, etc. In modeling
505 of groundwater motion, however, simplifications related to the boundaries of flow domains and heterogeneity/anisotropy
506 of porous media are needed to make the problem mathematically tractable. A standard assumption is that the bedrock is
507 planar, its slope is constant and the hydrostratigraphic unit (a dipping stratum) is homogeneous with respect to hydraulic
508 conductivity. In this paper we utilised the theory of holomorphic functions to obtain analytical solutions in terms of basic
509 2-D flow functions (the complex potential, Darcian velocity and Zhukovskii function) for an aquifuge of an unconfined
510 aquifer making a corner or curve. We also used a hydraulic model and compared the analytical solutions of the potential
511 model with one obtained by numerical integration of a boundary value problem solved for a nonlinear ODE, which
512 governs 1-D depth-averaged flow. We examined also a two-stratum aquifer with a trough whose hydraulic conductivity
513 contrasts with those of the two layers between which the lens is sandwiched. We showed how the phreatic surface and
514 separatrices, signifying the commingling effect of the trough, depend on the corner angles, shape of the aquifuge, size of
515 the trough and conductivity ratios.
516 In the potential model, by a conformal mapping of a circular triangle in the hodograph domain onto a complex
517 potential strip or by the Cauchy-integral representations of solutions of inverse BVPs, a free (phreatic) boundary problem
518 is explicitly and relatively easily solved. In fluid mechanics, purely analytical solutions to similar problems of open chan-
519 nel flows in terms of a full 2-D PT (ideal, irrotational flow of a heavy fluid with a specified non-planar channel bed) do
520 not exist and simplifications (e.g. linearizations, ignoring gravity or assuming small disturbances to the ‘‘normal’’ free
521 surface) or numerical (e.g. BEM) techniques are required to process integral equations. Analytically, only artificial solu-
522 tions of Bervi and Zhukovskii [48,30] and Richardson are available in the full PT model (see, [38, pp. 460–468] for an
523 overview). These antique ‘‘inverse’’ solutions are based on tinkering with mathematically fabricated ‘‘control’’ functions,
524 which map the complex potential and hodograph plains onto an auxiliary domain with an exactly met nonlinear con-
525 dition on the free surface and aposteriori obtained shapes of the channel bed. Groundwater flows are easier in this sense
526 because along the phreatic surface (streamline) the velocity potential and vertical coordinate are linearly related (in
527 open channel flows the squared velocity magnitude and vertical coordinate are linearly related). This allows tackling
528 broad classes of bedrock geometries and using physically more meaningful ‘‘controls’’ (if the bedrock shape is ‘‘inversely’’
529 designed), albeit the Zhukovskii [36] idea has been also implemented by Gersevanov (PK62) in unconfined groundwater
530 flows.
531 In phreatic flows, the bedrock ‘‘slope’’ is a controlling factor of the pore pressure and Darcian velocity fields, which are
532 used in determining other fields (e.g., concentrations of advected chemicals, temperature, effective stresses, etc.) or kine-
533 matic characteristics (e.g., flow nets, isochrones, streaklines, etc.). Consequently, our solutions will be helpful in:

534 Catchment-scale assessment of runoff-baseflow, in particular, revealing the complex topology of subsurface storm-
535 flow and dipping-reemerging pathlines in the mountain-region aquifers and vadose zone of Oman (applications to
536 hydrology);
537

538 Seepage-induced liquefaction and slippage of saturated porous soil massifs over inclined impermeable or low-permeable
539 strata (applications in geomorphology and geotechnical engineering);
540 Water uptake by the roots of phreatophytes growing on a relatively thin soil cover of a dipping impermeable rock with
541 distinct ecotones controlled by the water table depth (application to hydroecology of mountain forests).

542 The illustrated excellent match between the 2-D analytical and 1-D numerical solution of Eq. (8 opens good perspectives
543 for further juxtapositions of the two models. Indeed, integrating Eq. (8) for a geologically arbitrary non-planar bedrock
544 geometry is relatively easy and many recently studied (see e.g., [49–51]) bedrock shapes underlying phreatic aquifers can
545 be re-visited and re-examined.
546 Overall, modern methods and techniques for solving groundwater flow problems, as for example the boundary integral,
547 finite difference and finite element methods can handle arbitrary boundary conditions (mixed, functionally dependent on
548 x; t, etc.), whereas there are significant restrictions on most analytic techniques, especially the hodograph technique used
549 above. The authors acknowledge the practical limitations of the used approaches but believe that there are also serious
550 advantages: the insight of the intricate details of the flow topology, the ability to zoom out the flow net or phreatic surface
551 shape to an arbitrary degree without refining the mesh (see e.g. [1] for details), avoidance of nuisance in satisfying the mass
552 balance between cells of the mesh (typical in MODFLOW and other standard groundwater packages), as well as aesthetic and
553 pedagogical value of elegant closed-form expressions. The analytical thinking, already pushed to catacombs of the modeling
554 world, should not be completely eradicated by the juggernaut of purely numerical codes.
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555 7. Main notations, abbreviations, nomenclature and synonyms. For potential referees only!

556557 BVP – boundary value problem;
558 DF – Dupuit–Forchheimer;
559 DG – Dachler–Gersevanov;
560 ODE – ordinary differential equation;
561 PDE – partial differential equation;
562 PK62 – [6];
563 PT – potential theory;
564 bedrock = aquifuge = impermeable bed;
565 phreatic surface = water table = free surface;
566 trough = lens = heterogeneity of a finite size;
567 f ðxÞ = elevation of the phreatic surface over a curved bed in hydraulic model;
568 F1; F2; F3; F4 = control functions of the aquifuge shape;
569 g = gravity acceleration;
570 Gz; Gw; GV = physical, complex potential and hodograph domains (correspondingly);
571 h = hydraulic head;
572 H0; H1 = ‘‘normal’’ thicknesses of saturated zones;
573 k; k1; k2; k3 = hydraulic conductivities;
574 n ¼ y� Y = new coordinate in the hydraulic model;
575 p = pore pressure head;
576 Q = flow rate;
577 R = trough radius;
578 ~V = Darcian velocity vector;
579 u; v = horizontal and vertical components of the Darcian velocity vector;
580 U = depth-averaged velocity in the hydraulic model;
581 V ¼ uþ iv = complexified Darcian velocity vector;
582 w = /þ iw = complex potential;
583 x; y = cartesian physical coordinates;
584 Y = elevation of the bedrock above x ¼ 0 horizon;
585 z ¼ xþ iy = complex physical coordinate;
586 Zh ¼ Rz þ iIz – Zhukovskii function;
587 ap; bp = angles of inclination of the aquifuge corner;
588 / = velocity potential;
589 w = stream function;
590 f ¼ nþ ig = auxiliary complex variable.
591

592 8. Uncited reference

593 [52].
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598 Appendix A. Derivation of governing equation in hydraulic model

599 In 2-D PT the horizontal, uðx; yÞ, and vertical, vðx; yÞ, velocity components are given by the Cauchy-Riemann relations:
600

u ¼ @/
@x
¼ @w
@y

; v ¼ @/
@y
¼ � @w

@x
: ð25Þ

602602

603 Picard’s iteration technique provides successive approximations to u and v with the steps of an iterative cycle based on
604 Eqs. (25), which are summarized for the ‘‘ith-order’’ approximation for u as
605

uðiÞ ! wðiÞ ¼
Z

uðiÞdy! v ðiÞ ¼ � @w
ðiÞ

@x
! /ðiÞ ¼

Z
v ðiÞdyþ F; ð26Þ

607607

608

uðiþ1Þ ¼ @/ðiÞ

@x
! wðiþ1Þ ¼

Z
uðiþ1Þdy! Q ¼ wðiþ1Þðy ¼ Y þ f Þ ! Fx ! uðiþ1Þ:610610

Q5

Q6

Q7
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611 It consist in successive partial integration and derivation with respect to the x- and y-coordinates, imposing in each cycle
612 the boundary condition of the stream function at the free surface to determinate FðxÞ, where FðxÞ is an integration function.
613 The process is extensively described by Castro-Orgaz et al. [24]. Here we provide a detailed description for the first iteration
614 uð1Þ and drop the superscript.
615 First, we introduce a new variable n ¼ y� YðxÞ such that an arbitrary point Pi inside the flow domain in Fig. 1c has
616 coordinates ðx; nÞ for a given bedrock shape YðxÞ. Next, we – as in the classical DF model -assume that the horizontal velocity
617 u is constant in any vertical cross-section y ¼ const. The depth-averaged velocity UðxÞ ¼ Q=f ðxÞ where f ðxÞ is an unknown
618 vertical elevation of the free surface above the bedrock.
619 Integration of the first of Eq. (25) in the vertical direction with x as constant gives:
620

wðx; yÞ ¼
Z y

yb

uðx; yÞdy ¼
Z n

0
uðx;nÞdx ¼ Un: ð27Þ

622622

623 In this integration we took into account that w ¼ 0 along the bedrock boundary n ¼ 0.
624 We differentiate (27) with respect to x and get:
625

v ¼ �wx ¼ �Uxn� Unx: ð28Þ627627

628 Next, we integrate Eq. (25) with respect to x and insert (28) into the integrand:
629

/ðx; yÞ ¼
Z y

yb

vðx; yÞdyþ FðxÞ ¼
Z n

0
vðx;nÞdnþ FðxÞ ¼ �Uxn2=2� Unxnþ FðxÞ; ð29Þ631631

632 where FðxÞ is a function to be found.
633 Now we differentiate (29) with respect to x
634

u ¼ /x ¼ �Uxxn2=2� n 2Uxnx þ Unxxð Þ � Un2
x þ Fx: ð30Þ636636

637 Now we integrate Eq. (25) with respect to y and insert (30) into the integrand:
638

wðx; yÞ ¼
Z y

yb

uðx; yÞdy ¼
Z n

0
uðx;nÞdn ¼ �Uxxn3=6� n2=2 2Uxnx þ Unxxð Þ � Un2

x nþ Fxn: ð31Þ
640640

641 The unknown Fx is determined from the boundary condition of the stream function at the free surface:
642

wðx;n ¼ f ðxÞÞ ¼ Q : ð32Þ644644

645 Inserting Eq. (32) into Eq. (31) results in
646

Fx ¼ U þ Uxxn2=6þ n=2 2Uxnx þ Unxxð Þ þ Un2
x : ð33Þ648648

649 Now we put Fx from Eq. (33) into Eq. (30) and eliminate the unknown function of integration:
650

u ¼ U þ Uxxðf 2
=6� n2=2Þ þ 2Uxnx þ Unxxð Þðf=2� nÞ: ð34Þ652652

653 Now we will follow the PK62 protocol and combine what Polubarinova–Kochina called the kinematic and isobaric
654 boundary conditions on the phreatic surface. We recall that ~V ¼ �k gradh (Darcy’s law) and p ¼ �y� /=k (definition of
655 the pressure head). From the last expression we get on the free surface
656

kðf þ YÞ ¼ �/ðx; f þ YÞ ¼ Ux f 2 þ Unx f � FðxÞ: ð35Þ658658

659 We combine (35) and (29) written on the phreatic surface and eliminate FðxÞ.
660 This transforms (29) into:
661

/ ¼ Uxð f 2 � n2Þ þ Unxð f � nÞ � kð f þ YÞ: ð36Þ663663

664 Eq. (36) is differentiated to obtain the horizontal velocity component u as
665

u ¼ �kð f x þ YxÞ þ Uxx=2ð f 2 � n2Þ þ ðUnxx þ UxnxÞð f � nÞ þ ð f x � nxÞUnx þ Uxð ffx � nnxÞ: ð37Þ667667

668 Eq. (34) at the water table yields
669

us ¼ U � ð2Uxnx þ UnxxÞf=2� Uxx f 2
=3; ð38Þ671671

672 whereas from Eq. (37) at the free surface, where f ¼ n, we have
673

us ¼ �kð f x þ YxÞ þ ð f x � nxÞUnx þ Ux f ð f x � nxÞ: ð39Þ675675

676 Clearly, Ux ¼ �Qfx=f 2, Uxx ¼ �Qfxx=f 2 þ 2Qf 2
x=f 3, nx ¼ �Yx; nxx ¼ �Yxx. We eliminate n and its derivatives from (38) and

677 (39) and arrive at the final governing ODE (8) in the main body of the paper.
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