КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ГЕОЛОГИИ И НЕФТЕГАЗОВЫХ ТЕХНОЛОГИЙ

Кафедра общей геологии и гидрогеологии

Т.Р. Закиров, И.С. Нуриев, И.А. Хузин

Компьютерные технологии в геологии

Учебно-методическое пособие

Казань – 2015

УДК 372.8:55

Печатается по решению Учебно-методической комиссии Института геологии и нефтегазовых технологий Протокол № 15 от 16 июня 2015 г.

Заседания кафедры общей геологии и гидрогеологии Протокол № 9 от 29 мая 2015 г.

Авторы-составители: к.ф.-м.н., ассистент **Т.Р. Закиров**, к.г.-м.н., доц. **И.С. Нуриев,** ст. преп. **И.А. Хузин**

Рецензенты: К.г.-м.н., доцент, **Червиков Б.Г.**, Д.г.-м.н., зам. директора по науке ООО «Актуальные технологии», **Д.В. Булыгин**

Компьютерные технологии в геологии: учеб.-метод. пособие / Т.Р. Закиров, И.С. Нуриев, И.А. Хузин; Казанский федеральный университет. – Казань: 2015. – 168 с.

Данное издание представляет собой учебно-методическое пособие по работе с программным продуктом Petrel компании Schlumberger. Предназначено для студентов Института геологии и нефтегазовых технологий Казанского федерального университета, а также для студентов и аспирантов, ведущих самостоятельную научно-исследовательскую работу.

© Казанский университет, 2015

содержание

ИНТЕРФЕЙС РАБОЧЕГО ОКНА PETREL5
1. ЗАГРУЗКА ВХОДНЫХ ДАННЫХ9
1.1. ЗАГРУЗКА ИНКЛИНОМЕТРИИ9
1.2. ЗАГРУЗКА КООРДИНАТ СКВАЖИН22
1.3. ЗАГРУЗКА ГЕОФИЗИЧЕСКИХ КРИВЫХ (КАРОТАЖНЫЕДАННЫЕ)26
1.4. ЗАГРУЗКА ОТМЕТОК ПЛАСТОПЕРЕСЕЧЕНИЙ СКВАЖИН (ОТБИВОК)35
1.5. ЗАГРУЗКА ПОВЕРХНОСТЕЙ. ВЫДЕЛЕНИЕ ГРАНИЦЫ ОБЛАСТИ41
1.6. ЗАГРУЗКА МОДЕЛИ РАЗЛОМОВ43
2. НАСТРОЙКА ШАБЛОНОВ WELL SECTION47
2.1.ОТОБРАЖЕНИЕ НЕСКОЛЬКИХ КАРОТАЖНЫХ КРИВЫХ В ОДНОЙ
КОЛОНКЕ OKHA WELL SECTION WINDOW47
2.2. ОСОБЕННОСТИ РАБОТЫ С ОКНОМ WELL SECTION
3. РАБОТА С ОТМЕТКАМИ ПЛАСТОПЕРЕСЕЧЕНИЙ (ОТБИВКАМИ)55
4. ФАЦИИ. РУЧНОЕ РИСОВАНИЕ ФАЦИАЛЬНОЙ КОЛОНКИ62
5. СОЗДАНИЕ ПОВЕРХНОСТЕЙ ПО ОТМЕТКАМ ПЛАСТОПЕРЕСЕЧЕНИЙ
СКВАЖИН. ПРОЦЕСС MAKE/EDIT SURFACE68
6. СОЗЛАНИЕ ПРОСТОЙ СЕТКИ. ПРОПЕСС МАКЕ SIMPLE GRID И
LAYERING
7. РЕДАКТИРОВАНИЕ МОДЕЛИ РАЗЛОМОВ. ПРОЦЕСС FAULT MODELING82
8. ПРОПЕСС STRUCTURAL FRAMEWORK. ФОРМИРОВАНИЕ СТРУКТУРНОГО
КАРКАСА, УЧИТЫВАЮЩЕГО РАЗЛОМЫ
0 IPOHECC FALLET MODEL FROM STRUCTURAL FRAMEWORKS
7. III OLECC FAULT MODEL FROM STRUCTURAL FRAME WORKS. III DEOEPA3ORAHUE PA3 IOMOR U3 STRUCTURAL FRAMEWORK R CORNER
POINT GRIDDING 104
IO. ПРОЦЕСС STRUCTURAL GRIDDING. ПОСТРОЕНИЕ СЕТКИ НА ОСНОВЕ
РАЗЛОМОВ И ПОВЕРХНОСТЕИ, СОЗДАННЫХ В ПРОЦЕССЕ STRUCTURAL
FRAME WORK10/
11. ПРОЦЕСС PILLAR GRIDDING. РУЧНОЕ РЕДАКТИРОВАНИЕ СЕТКИ112
12. ПРОЦЕСС МАКЕ HORIZONS. ВСТРАИВАНИЕ РАЗЛОМОВ В СТРУКТУРНЫЙ
КАРКАС, СОЗДАНЫЙ В ПРОЦЕДУРЕ PILLAR GRIDDING122
13. СОЗЛАНИЕ ФАПИАЛЬНОЙ МОЛЕЛИ. ПРОПЕССЫ SCALE UP WELL LOGS И
FACIES MODELING
14. НАСТРОЙКА ШАБЛОНОВ ОТОБРАЖЕНИЯ ДЛЯ ОКНА WELL SECTION134
15. ПОСТРОЕНИЕ МОЛЕЛИ ПОРИСТОСТИ. ПРОНЕСС РЕТВОРНУSICAL
MODELING
16 ПОСТВОЕНИЕ МОЛЕЛИ АГСОЛЮТНОЙ ПВОНИЦАЕМОСТИ 147
10. ПОСТРОЕНИЕ МОДЕЛИ АБСОЛЮТНОИ ПРОНИЦАЕМОСТИ
17. ИСПОЛЬЗОВАНИЕ I, Ј И К ФИЛЬТРОВ В 3D ОКНЕ. ОТОБРАЖЕНИЕ ДАННЫХ
B PA3PE3E149

18. ЛОКАЛЬНОЕ ИЗМЕЛЬЧЕНИЕ СЕТКИ. СОЗДАНИЕ ЛОКАЛЬНЫХ	СЕТОК.
СОЗДАНИЕ ПОЛИГОНОВ	155
19. СОЗДАНИЕ ФИЛЬТРОВ ПО ОБЪЕМУ ЯЧЕЕК И ИХ СВОЙСТВАМ	162
СПИСОК ЛИТЕРАТУРЫ	168

ИНТЕРФЕЙС РАБОЧЕГО ОКНА PETREL

Прежде чем приступать к выполнению упражнений, необходимо познакомиться с основными компонентами рабочей области программы Petrel - ее интерфейсом.

, который находится на

Сделайте запуск программы, дважды кликнув по ярлыку *Petrel* рабочем столе Вашего компьютера.

Перед Вами появится диалоговое окно **Net License Modules**, где необходимо выбрать интересующий вас модуль. Также у вас может быть несколько уровней лицензий. Вам нужно выбрать ту, которая поддерживает нужную вам функциональность.

После выбора необходимых модулей откроется основное окно Petrel. Пользовательский интерфейс Petrel включает два главных окна, это панели проводника Petrel (**Petrel explorer pane**) и окно визуализации (**Display window**) с функциональной панелью (**Function bar**) справа. Доступные инструменты на функциональной панели зависят от выбранного (активного) процесса на закладке **Processes**. В верхней части окна Petrel расположены стандартные панели меню и инструментов(**Menubar** и **Toolbar**).

Рабочее окно Petrel

На панели **Input** хранятся данные, не относящиеся непосредственно к геологической модели, сетке и ее свойствам (пористости, проницаемости и т.д.). Например, скважины, каротажные данные, отметки пластопересечений, полигоны, функции насыщенности и модели флюида. Все данные, связанные геологической моделью хранятся вместе с информацией о ней на закладке **Models**. Они включают в себя сетку, структурный каркас, горизонты (поверхности); поле пористости, проницаемости, фаций, нефтенасыщенности; модель разломов; локальные сетки, сечения и другие характеристики модели.

Панели Input (слева) и Models (справа).

Закладка **Processes** содержит список всех доступных в Petrel процессов и процедур. Они отсортированы в том порядке, в котором они обычно используются. И процессы, расположенные ранее, должны быть выполнены до того, как Вы получите доступ к процессам, расположенным далее по списку. Например, вы должны создать 3D грид перед тем, как захотите вставить туда горизонты, и создать модель флюида перед созданием варианта моделирования. Процессы, которые выделены серым цветом, показывают, что сначала Вы должны завершить процесс, который расположен выше по списку.

Панель Processes

На закладке **Cases** хранятся все варианты моделирования и подсчета запасов. Кубы свойств, полученные в ходе моделирования (например, давления, насыщенности (SOIL, SWAT, SGAS)), хранятся на закладке **Results**.

Закладка Workflows хранит рабочие процессы, созданные при помощи Workflow editor или Uncertainty workflow editor.

Закладка Windows содержит список всех окон и их настройки.

Как и в большинстве компьютерных программ, панель меню содержит стандартные вкладки **File, Edit, View** и т.д. Все иконки в **ToolBar** имеют описательный текст, который появляется при наведении мыши на иконку.

Из раздела **Window** на панели меню можно открывать различные окна для визуализации данных. Для открытия нового окна нажмите левой кнопкой мыши по разделу **Window** на панели меню и выберите нужный тип окна.

Разлчные виды окон визуализации

- 1. **2D window** позволяет просматривать данные в двумерном пространстве (устья скважин, структурные поверхности, отбивки и т.д.)
- 2. **3D window** отображает те же данные что и 2Dокно, но в трехмерном пространстве
- 3. Function window- предназначено для отображения графиков функций и свойств
- 4. **Histogram window** позволяет просматривать гистограммы, построенные по какому-либо свойству
- 5. Interpretation window- используется для интерпретации данных, например сейсмических разрезов
- 6. Intersection window- отображает разрезы кубов свойств и прочих объектов

- 7. Map window используется для оформления карт
- 8. **Plot window** используется для размещения нескольких типов данных на одном листе и для вывода данных на печать
- 9. Charting window- используется для вывода графиков (дебиты по нефти, воде и газу, пластовое давление, накопленная добыча и т.д.)
- 10. Well section window- используется для просмотра каротажных кривых и прочей информации по скважинам, а так же проведения для корреляции
- 11. **Tornado plot window** используется для просмотра торнадо плота, позволяющего оценить степень влияния отдельных свойств на расчёты по модели
- 12. Stratigraphic charts window предназначено для отображения стратиграфической шкалы
- 13. New geotime window используется для отображения одномерных расчетов (1D simulation), например обстановки осадконакопления

1. ЗАГРУЗКА ВХОДНЫХ ДАННЫХ

Построение любой геологической модели начинается с загрузки в программный модуль входных данных: координат скважин, их инклинометрии, каротажных сведений по скважинам, уровней отбивок скважин, внешней границы исследуемой области (при условии, что это представляется возможным). В данном упражнении показано, каким образом загружаются описываемые данные в программу Petrel, а также изучаются различные тонкости и особенности при данном процессе.

1.1. ЗАГРУЗКА КООРДИНАТ СКВАЖИН

Наиболее простой способ (хотя при построении геологической модели очень грубый) ввода скважин - это описать их в виде вертикальных стволов.

Нажмите правой клавишей мышки по вкладке Input и выберите Import File (рис.1.1):

Рис.1.1.

В открывшемся диалоговом окне выберите директорию **D** > **Student_Education** > **Petrel** > **Input.** В разделе **Тип файлов** предложено множество форматов для загрузки входных данных. Для того, чтобы Petrel распознал загружаемый файл, как файл, содержащий

координаты скважин на плоскости ХҮ (то есть в случаях, когда траектория ствола не зависит от координаты Z), необходимо выбрать тип файлов Well heads(*,*) (puc.1.2).

Рис.1.2.

Выбрав данный тип разрешения видно, что текстовый файл Well_heads из директории Input соответствует данному формату данных (puc.1.3). Нажмите Открыть.

$\mathbf{\overline{N}}$			P	etrel E&P Sof
	Import file		×	
Папка: 🌗 Input		v 🗿 🏂 📂 🛄 v		
Имя	*	Дата изменения	Тип	
—————————————————————————————————————	heads	24.08.2014 21:27	Файл	
Рабочий стол Библиотеки Этот компьютер				
Сеть <			>	
Имя файла	" Well_heads	× _	Открыть	
Тип файло	B: Well heads (*.*)	×	Отмена	
File example/description:	Полько чтение			
# Petrel well head VERSION 1 BEGIN HEADER Name UWI Well symbol				
<			>	
Input	^			

Рис.1.3.

В открывшемся диалоговом окне вы можете выбрать систему координат для проекта (Select CRS...), либо продолжить работу без привязки (Continue spatially unaware) - рис.1.4 (рекомендуется выбирать <u>Continue spatially unaware</u>).

	Petrel E&P So	oftware Platform 2013 -	[New project - Import data]	
1011		C 📔 🖬 🚱		
		Datral		at a
	.	Petrel		.]]]3
	The coordin	Petrel ate reference system (CRS) for this	s project is undefined.	013
ľ	The coordin Select a CR to make it sp	Petrel ate reference system (CRS) for thi IS if you want to provide a geodetio patially aware.	s project is undefined. c reference for your project	013
ľ	The coordin Select a CR to make it sp	Petrel ate reference system (CRS) for thi IS if you want to provide a geodeti patially aware.	s project is undefined. c reference for your project	013
	The coordin Select a CR to make it sp	Petrel ate reference system (CRS) for thi IS if you want to provide a geodetion patially aware. Select CRS dvisable to review your selection in	s project is undefined. c reference for your project)]]3 D
	The coordin Select a CR to make it sp <i>Note: it is a</i> <i>and ensure</i>	Petrel ate reference system (CRS) for this IS if you want to provide a geodetic satially aware. Select CRS dvisable to review your selection in consistency with your unit selection	s project is undefined. c reference for your project Continue spatially unawar in Project Settings > Coordinates and un on before loading any data.)13 o
	The coordin Select a CR to make it sp Note: it is a and ensure	Petrel ate reference system (CRS) for this IS if you want to provide a geodetic patially aware. Select CRS dvisable to review your selection in consistency with your unit selection	s project is undefined. c reference for your project Continue spatially unawar n Project Settings > Coordinates and un in before loading any data.	013 ts
	The coordin Select a CR to make it sp <i>Note: it is a</i> <i>and ensure</i>	Petrel ate reference system (CRS) for this IS if you want to provide a geodetic patially aware. Select CRS dvisable to review your selection in consistency with your unit selection	s project is undefined. c reference for your project Continue spatially unawar in Project Settings > Coordinates and un in before loading any data.	

В результате должно появиться диалоговое окно, такое как на **рис.1.5**. Для того, чтобы разобраться в структуре данных, представленных в диалоговом окне, показанном на **рис.1.5**, параллельно откройте файл **Well_heads** из директории > **Input** при помощи любого текстового редактора, (например, **Блокнот)** - **рис.1.6**. Рекомендуется обратить внимание на структуру загружаемого файла и то, каким образом он считывается программой Petrel. Так, видно, что файл **Well_heads** содержит: имя скважины (**Name**), координату по оси X и оси Y (**Surface X** и **Surface Y**), начало отсчета измерения глубины - верхнюю точку скважины (**Offset**) <u>и расстояние, отсчитанное от</u> **Offset** - **TD**(**MD**), т.е. абсолютную длину ствола. Если **Offset** для скважины "**P1**" составляет 223.7 м, а длина ствола **TD**(**MD**) - 1750.0 м, то предельная глубина бурения данной скважины составляет: 223.7 - 1750.0 = -1526 м (если ось Z направлена вверх).

Во вкладке **Header Info** в нижней части **puc.1.5** возможно «пролистать» исходный текстовый файл. Убедившись, что содержимое файла **Well_heads** и то, что загружено и сопоставлено программой Petrel, совпадают, нажмите **OK for all.**

	1	2	3	4	*
Attribute	Name	Surface X	Surface Y	Offset	TD (MD)
Attribute name	Name	Surface X	Surface Y	Offset	TD (MD)
Attribute type	Text	Continuous	Continuous	Continuou	Continuou
Unit		meter	meter	meter	meter
1	-	_			
			1000 1000	-	-
		U	Indefined value:	-999	
Depth					1.0
20.					
Time					
-					
Date					
(Default					2
O Custom date for	nat				
~ V		V	. v		2
	29.12 1977				1000
	nes				
Header info (first 30 lin		ell head			1
Header info first 30 in Line 1: # P	etrel w				A77 11
Header info first 30 in Line 1: # P Line 2: # U	etrel w	K and Y di	rection: 1	80.	
Headerinfo fint 30 k Line 1: # P Line 2: # U Line 3: # U	etrel wo	K and Y di depth: m	rection: 1		TT
Header info first 30 km Line 1: # P Line 2: # U Line 3: # U Line 4: VER	etrel wo nit in 2 nit in 0 SION 1	K and Y di iepth: m	rection: 1		₩Ţ

Рис.1.5.

Справка Wel_heads # Petrel well head # Unit in x and Y direction: m # Unit in depth: m BEGIN HEADER Namel Surface X Surface Y Offset TD (MD) END MEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39666.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	Фай	іл Правка	Вид Избра	анное Н	астройки	Окно	Плагины
<pre>Wel_heads # Petrel well head # Unit in x and Y direction: m # Unit in depth: m BEGIN HEADER Name! Surface x Surface Y Offset TD (MD) END mEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P4" 40589.98 18731.35 201.9 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 3966.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0</pre>	Справки	3					- 8 ×
<pre># Petrel well head # Unit in X and Y direction: m # Unit in depth: m BEGIN HEADER Name Surface X Surface Y Offset TD (MD) END MEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0</pre>	📄 Wel	_heads					
<pre># Unit in x and y direction: m # Unit in depth: m BEGIN HEADER Name Surface x Surface y Offset TD (MD) END HEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0</pre>	# Petr	el well	head				^
<pre># Unit in depth: m BEGIN HEADER Name Surface X Surface Y Offset TD (MD) END HEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P6" 40163.87 20410.53 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0</pre>	# Unit	t in Xan	d Y direc	tion: r	n		
BEGIN HEADER Name Surface X Surface Y Offset TD (MD) END HEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P3" 4058.98 18731.35 221.9 1812.0 "P4" 40589.98 18731.35 221.9 1812.0 "P6" 40163.87 20410.53 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39663.616 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	# Unit	t in dept	h: m				
Name Surface X Surface Y Offset TD (MD) END MEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	BEGIN	HEADER					
Surface X Surface Y Offset TD (MD) END MEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P4" 40589.98 18731.35 221.9 1812.0 "P6" 40163.87 20410.53 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "T1" 41323.71 19928.39 203.7 1753.0 "T2" 41230.44 18408.30 204.5 1743.0 "T3" 39636.16 18388.20 212.0 1725.0 "T4" 40589.98 19731.35 200.9 1812.0	Name						
Surface 1 Offset TD (MD) END MEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "11" 41323.71 19928.39 203.7 1753.0 "12" 41230.44 18408.30 204.5 1743.0 "13" 39636.16 18388.20 212.0 1725.0 "14" 40589.98 19731.35 200.9 1812.0	Surfac	e X					
TD (MD) END MEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	offset						
END HEADER "P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	TD (M	5					
"P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	END HE	ADER					
"P1" 41023.71 18728.39 223.7 1750.0 "P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0							
"P2" 41030.44 18708.30 224.5 1770.0 "P3" 41036.16 18688.20 222.0 1740.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	"P1"	41023.71	18728.39	223.7	1750.0		
"P3" 41036.16 18688.20 222.0 1/40.0 "P4" 40589.98 18731.35 221.9 1812.0 "P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	"P2"	41030.44	18708.30	224.5	1770.0		
"P5" 39351.85 18329.73 0.0 1701.6 "P6" 40163.87 20410.53 0.0 1550.0 "11" 41323.71 19928.39 203.7 1753.0 "12" 41230.44 18408.30 204.5 1743.0 "13" 39636.16 18388.20 212.0 1725.0 "14" 40589.98 19731.35 200.9 1812.0	"P3"	41036.16	18688.20	222.0	1/40.0		
"P6" 40163.87 20410.53 0.0 1550.0 "11" 41323.71 19928.39 203.7 1753.0 "12" 41230.44 18408.30 204.5 1743.0 "13" 39636.16 18388.20 212.0 1725.0 "14" 40589.98 19731.35 200.9 1812.0	"05"	40389.98	18320 73	221.9	1701 6		
"I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	"P6"	40163.87	20410.53	0.0	1550.0		
"I1" 41323.71 19928.39 203.7 1753.0 "I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	1.0	40105.07	20420.33	0.0	10000		
"I2" 41230.44 18408.30 204.5 1743.0 "I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	"11"	41323.71	19928.39	203.7	1753.0		
"I3" 39636.16 18388.20 212.0 1725.0 "I4" 40589.98 19731.35 200.9 1812.0	"12"	41230.44	18408.30	204.5	1743.0		
"I4" 40589.98 19731.35 200.9 1812.0	"13"	39636.16	18388.20	212.0	1725.0		
	"14"	40589.98	19731.35	200.9	1812.0		

Рис.1.6.

В появившемся диалоговом окне (**puc.1.7**) предлагается выбрать имена для обозначения скважин и их свойств (об этом позднее). Рекомендуется оставить имена по умолчанию. Также в данном окне показано минимальное и максимальное значение области координат скважин в горизонтальной плоскости (X range и Y range); исследовав данное окно, нажмите **OK for all.**

PS		Input o	data		
Gene	ral				
>	Name:	Well attributes			
ΨB. ΦS	Туре:	Wells			
$\frac{\gamma_B}{\Phi S}$	Template:	Z↓ Elevation	depth		~
	Category:				~
Coor	dinata reference e	vetem (CRS)			
COON	Project CRS:	Undefined			
	File CRS:	ondonnod			
	nio ono.	01 07			
		Other CR	S		
Resul	ting data range (aj	pprox.) — — — — — — — — — — — — — — — — — — —			
Resul	ting data range (aj X range:	pprox.)	41323.71	m	
Resul	ting data range (aj X range: Y range: Z range:	pprox.) 39351.85 18329.73 UNDEF	41323.71 20410.53 UNDEF	m m m	
Resul	ting data range (aj X range: Y range: Z range: conversion	pprox.) 39351.85 18329.73 UNDEF	41323.71 20410.53 UNDEF	m m m	
Resul	ting data range (a X range: Y range: Z range: conversion XY conversion:	pprox.) 39351.85 18329.73 UNDEF none	41323.71 20410.53 UNDEF	m m m	× [
Resul	ting data range (a X range: Y range: Z range: conversion XY conversion: Z conversion:	pprox.) 39351.85 18329.73 UNDEF none none	41323.71 20410.53 UNDEF	m m m	~
Unit (ting data range (a) X range: Z range: conversion XY conversion: Z conversion:	pprox.) 39351.85 18329.73 UNDEF none none	41323.71 20410.53 UNDEF	m m m	 Image: A start of the start of
Unit (ting data range (a) X range: Y range: Z range: conversion XY conversion: Z conversion: Negate Z-va	pprox.) 39351.85 18329.73 UNDEF none none lues when mostly	41323.71 20410.53 UNDEF	m m	•
Unit (ting data range (a) X range: Z range: conversion XY conversion: Z conversion: Negate Z-va	pprox.) 39351.85 18329.73 UNDEF none none ilues when mostly	41323.71 20410.53 UNDEF positive	m m	>
Unit (ting data range (a) X range: Y range: Z range: conversion XY conversion: Z conversion: Negate Z-va	pprox.) 39351.85 18329.73 UNDEF none none slues when mostly	41323.71 20410.53 UNDEF positive	m m	✓ ✓

Рис.1.7.

Загруженные скважины отобразились во вкладке Input (puc.1.8).

; File	Edit	View	Insert Project	Tools	Wind	ow Help	
:			Q 🛛 : 🖷	99 5	20	2D window	ه ا
i 🖿 In	put				3D	3D window	
⊿ ۸д	1	Wells			1	Function window	
⊳		Glo	bal well logs		11	Histogram window	
	*	Glo	bal completions		2	Interpretation window	
	<u>ы</u> Ув.	Glo	bal observed dat	a		Intersection window	
	ΦS E	We	al aunduces Il filters			Map window	
	9 2	Sav	ved searches			Plot window	
	Å	P1			۲	Stereonet window	
	A	P2			\bigcirc	Charting window	
	Å	P3 P4			₹ ₹	Well section window	
	Ä	P5				Tectonic stress domain window	
	A	P6			7	Tornado plot window	
	A	11			H	Stratigraphic charts window	
	A	12				New geotime window	
	Ä	14			1	Undisplay all data	
					×	Hide window	
						Tile horizontal	
no Inc	out 🎼	Mod	els 🗽 Results	Te		Tile vertical	
				_		Tile grid F4	
: 🔽 🖬	avon	105			Ē	Cascade	
						Arrange minimized windows	
					_		

Рис.1.8.

Отображение скважин в 3D и 2D окнах

В Petrel имеется богатый инструментарий для визуализации полученных данных и моделей. Для того, чтобы отобразить скважины в трехмерном виде, откройте вкладку Window (puc.1.8), выберите 3D window. Затем нажмите на окошко около вкладки Wells в окне Input (puc.1.9). Скважины отобразятся в 3D window. Вы также можете "удалить" любую из скважин в 3D окне, убрав галочку из окошка возле этой скважины (puc.1.9).

Чтобы отобразить систему координат нажмите на иконку *(show/hide axis)*, которая расположена на панели инструментов скважины (puc.1.9). Если необходимо указать направление компаса, кликните мышкой по иконке *(show/hide compass)* (puc.1.9). Для отмены любой из этих опций, следует нажать на иконку еще раз.

На панели инструментов, что расположена в крайней правой области окна Petrel (puc.1.10), нажмите на иконку (Viewing mode) для того, чтобы вращать рисунок в любых направлениях. Если необходимо "переместить" рисунок без вращения, удерживайте клавишу Shift, а при помощи мышки двигайте рисунок.

Обратите внимание на панель **Windows** в левой нижней части вашего экрана (**puc.1.11**). Все отображаемые окна визуализации данных отражаются на этой вкладке.

hput 🥵 Models 🔢 Results [Templa	tes p	×	
				1
() Windows	•	ą	×	
Cursor tracking	>			7
3D window 1 [Any]	>			
3D window 1 [Any]	>			i 📄 Mess
3D window 1 [Any]	>			Mess
3D window 1 [Any]	>			Mess
30 Window 1 [Any]	>			Mess Mess Loading rule factory regis

Рис.1.11.

Нажмите правой клавишей на **3D window 1 [Any]** и выберите опцию **Show settings.** В появившемся диалоговом окне, перейдя на вкладку **Info (рис.1.12)**, возможно редактировать имя окна (поле **Name**), цвет заднего фона (поле **Color**). Самостоятельно откройте вкладку **Statistics** в данном диалоговом окне и изучите ее.

▲ ♥ P3 ▲ ♥ P4 ▲ ♥ P5 ▲ ♥ P5	
▲ ♥ F° ▲ ♥ 11 ▲ ♥ 12 ▲ ♥ 13 ▲ ♥ 14	30 Settings for '3D window 1 [Any]' Imfo Imfo Name: 3D window 1
nput Model: Favorites Windows	Color: Type: 3D window Visual group Linked to visual group: Second Comments
) 🗹 3D wind	Petrel filename: (Object can't be saved separately) Orig. filename: (Made by Petrel) ✓ Apply ✓ OK ✗ Cancel
rocess 鄃 Ca	ses 🕞 Workflo (

Рис.1.12.

Т.к. в данном упражнении мы задаем лишь координаты скважин на плоскости, т.е. вертикальные стволы, зачастую бывает удобным отображать их в 2D окне. Для этого кликните по вкладке Window, (как на puc.1.8), и выберите 2D window. Нажмите на флажок около Wells (puc.1.13), все скважины отобразятся в вашем двухмерном окне визуализации (рекомендуется использовать иконки, описанные выше).

Рис.1.13.

Обратите внимание, что окно визуализации 2D window 1 [Any] отобразилось на панели Windows (puc.1.14).

<u>ВАЖНО: ВСЕ АКТИВНЫЕ ВХОДНЫЕ ДАННЫЕ, МОДЕЛИ, ПРОЦЕССЫ, ОКНА</u> <u>ВЫДЕЛЕНЫ ЖИРНЫМ ЦВЕТОМ!!!</u>

💭 Windows 🗸 🕂 🗙	
Cursor tracking Cursor tracking 30 V 3D window 1 [Any] 20 V 2D window 1 [Any]	Message log
🞯 Cases 🔑 Process 🕞 Workflo 🦰 Windows	<

Рис.1.14.

Зачастую бывает необходимо поменять имя скважины или цвет ствола. Для этого кликните правой клавишей мышки по любой из скважин, расположенных на панели **Input**, и выберите

Show settings. В открывшемся диалоговом окне, перейдите на вкладку Info (рис.1.15); в поле Name можно поменять имя скважины, а в поле Color - цвет стола.

File Edit View Insert Project 1	ools Window Help		
	A	Settings for 'P2'	×
Input Wells Global well logs Global completions Global completions Global doserved data Well fitters Seved searches Vell attributes Vell Vell	A Make logs S Make logs S Make logs S Setti Wall symbol Domain: Setti Name: UWI: Color: Type: Well symbol Domain: Setti Color: Type: Well symbol Domain: Setti Marce Setti	Settings for P2 urface equipment Flow correlation ngs IIII, Statistics Correlation P2 Well path Nol: A (0) Undefined ZI Elevation depth History Original CRS	Quality attributes
			\sim

Рис.1.15.

Перейдите на вкладки Settings и Statistics в окне, изображенном на **puc.1.15** и самостоятельно разберитесь в их назначении.

Создание папок для сортировки скважин на панели Input

В представленном проекте загружены как добывающие скважины, начинающиеся символом "**P**", так и нагнетательные - с символом "**I**". Для сортировки скважин по папкам кликните правой клавишей мышки по вкладке Wells на панели **Input** и выберите **Insert folder** (**puc.1.16**).

Рис.1.16.

На панели **Input** <u>внутри вкладки</u> Wells появится новая папка Web sub folder 1 (puc.1.17). Переименуйте ее, для этого кликните по ней правой клавишей, выберите Show settings, и во вкладке **Info** наберите Producers (puc.1.18). Нажмите OK.

Рис.1.18.

Теперь «перетащите» все скважины с символом "Р" в данную папку.

Повторите данную процедуру, создав еще одну папку с именем **Injectors.** Перетащите все скважины с символом **''I''** в эту папку.

В результате, должно получиться так, как на рис.1.19.

Рис.1.19.

1.2. ЗАГРУЗКА ИНКЛИНОМЕТРИИ

В предыдущем разделе были загружены координаты вертикальных стволов скважин. Как правило, траектория скважин по оси Z бывает отклоняющейся от вертикального направления. В Petrel существуют различные варианты представления инклинометрических данных.

1) MD, INCL, AZ.

Относительная Глубина MD, то есть на расстояние от устья скважины до текущей точки в метрах.

Угол INCL – столбец указывает угол наклона скважины относительно уровня моря. Указывается в градусах или в радианах (проще говоря, θ в сферической системе координат).

Магнитный азимут AZ - столбец указывает угол между направлением скважины и направлением на магнитный полюс в горизонтальной плоскости. Указывается в градусах или в радианах (угол φ в сферической системе координат).

2) DX, DY,TVD

Смещение от вертикали по оси X - DX (+Восток – Запад) – столбец указывает на смещение ствола скважины в направлении X. Положительное значение указывает на смещение в восточном направлении, отрицательное – на смещение в западном.

Смещение от вертикали по оси Y - DY (+Север – Юг) – столбец указывает на смещение ствола скважины в направлении Y. Положительное значение указывает на смещение в северном направлении, отрицательное – на смещение в южном.

Абсолютная глубина TVD - столбец указывает на абсолютную координату скважины по оси Z.

3) X, Y, Z (X, Y, TVD)

Все столбцы указывают реальные координаты скважин в абсолютных величинах.

Для того, чтобы загрузить инклинометрические данные, кликните правой клавишей по вкладке Wells на панели Input и выберите Import (on selection). В открывшемся диалоговом окне выберите папку $D > Student_Education > Petrel > Input > Incl и тип файлов Well path/deviation (ASCII) (*.*) (puc.1.20). Выберите все предложенные скважины и нажмите Открыть.$

Рис.1.20.

В появившемся диалоговом окне нажмите ОК. В результате должно появиться следующая панель (рис.1.21). В зависимости ОТ того в каком формате представлены инклинометрические данные, предлагается выбрать один из предлагаемых. Для того, чтобы выбрать формат инклинометрии, откроем в текстовом редакторе один из загрузочных файлов, например "P1.txt" из папки Incl, (рис.1.22). Можно заметить, что из множества представленных столбцов, значимыми для загрузки являются столбцы 1, 2 и 3, характеризующие MD, INCL и AZ. (Заметим, что можно воспользоваться опцией Header info и не открывать вручную файл"P1.txt".)

Выяснив формат для загрузки, в диалоговом окне (рис.1.21) выбираем MD, INCL, AZ и номера столбцов из текстового файла, соответствующие данным параметрам. Если столбцы в текстовом файле представлены в каком то другом порядке, то каждому инклинометрическому параметру можно сопоставить соответствующий столбец со своим номером. Заканчиваем процедуру нажатием на OK for all.

	Settings 🖸 Co	ordinates and unit	S
Column inout data		General hints:	1
MD INCL AZIM	MDe MDe	xists on file	
Linear smooth	ing MD	1	1
Add extra poin	ts INCL	2	1
O DX. DY. TVD	INCL	2	4
O X, Y, TVD	2 AZIM		
O X. Y. Z	TVD:	6	
Automatic			
Minimum curvat	ture		
Unearization			
TVD elevation referen	ce		
Kelly bushing (KE	3)		
O Mean sea level ()	MSL)		
O Other: 0			
Other settings	285-11-122-1	120	
Line wrap	Tokens per line:	0	ļ
NULL value:		-299.25	
Header into first 2011 li	11-511		
Header into (first 200 li		Удлин	нe
line 1: MD	0.15 13	6 1.77	
Header into (first 200 lin Line 1: MD Line 2: 0 Line 3: 10	0.15 13 0.26 13	1.77 16 1.77	
Header into (inst 200 in Line 1: MD Line 2: 0 Line 3: 10 Line 4: 20	0.15 13 0.26 13 0.21 13	6 1.77 6 1.77 6 1.77	

Рис.1.21.

	Файл	Правка	Вид	Избранное	Настройки	Окно	Плагины	Спра	вка	
	P1.bt									
MD		Incl	Az	Удли	ннение	Або	с.Глубина	a 🛛	CM	ещение
Ó		0.15	136	1.77	-84.5	0	147	7.5	0	0
10		0.26	136	1.77	-84.5	0	147	.5	0	0
20		0.21	136	1.77	-84.5	0	147	.5	0	0
30		0.14	136	1.77	-84.5	0	147	.5	0	0
40		0.15	136	1.77	-84.5	0	147	.5	0	0
50		0.19	136	1.77	-84.5	0	147	.5	0	0
60		0.23	136	1.77	-84.5	0	147	.5	0	0
70		0.26	136	1.77	-84.5	0	147	.5	0	0
80		0.39	136	1.77	-84.5	0	147	.5	0	0
90		0.56	136	1.77	-84.5	0	147	.5	0	0
100	0	1.12	136	1.77	-84.5	0	147	.5	0	0
110	0	1.28	136	1.77	-84.5	0	147	.5	0	0
120	0	1.54	136	1.77	-84.5	0	147	.5	0	0
13	0	2.22	136	1.77	-84.5	0	147	.5	0	0
14	0	2.51	136	1.77	-84.5	0	147	.5	0	0
15	0	3.18	136	1.77	-84.5	0	147	7.5	0	0
16	0	3.55	136	1.77	-84.5	0	147	.5	0	0
17	0	4.33	136	1.77	-84.5	0	147	7.5	0	0
180	0	5.12	136	1.77	-84.5	0	147	.5	0	0

Рис.1.22.

Чаще всего бывает, что невозможно загрузить данные для всех скважин одновременно, т.к. могут не совпадать форматы представления данных или порядок расположения значимых столбцов. Чтобы загрузить любые данные по каждой скважине, кликните правой клавишей мышки по скважине во вкладке Wells на панели Input и выберите Import (on selection). Дальнейшая процедура загрузки повторяет методику, описанную выше.

Создайте новое окно визуализации (Window - 3D Window) и отобразите все скважины с новыми траекториями. Обратите внимание, что скважины, для которых были загружены инклинометрические данные, немного «искривлены» по оси Z (рис.1.23).

Рис.1.23.

1.3. ЗАГРУЗКА ГЕОФИЗИЧЕСКИХ КРИВЫХ (КАРОТАЖНЫЕДАННЫЕ)

Геофизические кривые являются одними из наиболее важных сведений для построения геологической модели. Каротажные данные служат основой для построения различного вида полей - пористости, проницаемости, нефтенасыщенности, фаций. В любых средах для разработки геологической модели данные поля и профили строятся на основе различных математических методов, включающих в себя методы интерполяции данных. Опорными точками для такого вида математических операций служат геофизические кривые.

Файл, содержащий информацию о каротажных данных, имеет общепринятый формат ***Las**. Структура таких файлов представлена на **рис.1.24**.

Рис.1.24.

Рассмотрим особенности загрузки каротажных данных скважин. Щелкните правой кнопкой мышки по полю на панели **Input** и выберите **Import file.** В открывшемся диалоговом окне (**puc.1.25**) выберите папку **D** > **Student_Education** > **Petrel** > **Input** > **Las** и тип файлов **Well logs** (**LAS**) (*.**las**). Выделите файлы для всех скважин и нажмите **Открыть**.

	Import file		×
Папка:	🌗 Las 🗸 🗸	G 🖻 🖻 🛄 -	
æ	Имя	Дата изменения	Тип
	[] [1.las	25.08.2014 13:12	Файл "LA
Недавние места	[] 12.las	25.08.2014 13:12	Файл "LA
	[]] 13.las	25.08.2014 13:12	Файл "LA
	14.las	25.08.2014 13:12	Файл "LA
Рабочий стол	P1.las	25.08.2014 13:10	Файл "LA
<u>Fa</u>	P2.las	25.08.2014 13:11	Файл "LA
1	P3.las	25.08.2014 13:11	Файл "LA
Библиотеки	P4.las	25.08.2014 13:11	Файл "LA
	P5.las	25.08.2014 13:11	Файл "LA
	P6.las	25.08.2014 13:11	Файл "LA
Этот компьютер			
Ceth	<		>
cen	Имя файла: "P6.las" "[1]Jas" "[2]Jas" "[3]Jas" "[4	Llas" "P1.la ∨ O	ткрыть
	Тип файлов: (Well logs (LAS) (*.las)	\rightarrow \circ	тмена
	Только чтение		
File example/description	n:		
This loader supports L The other standards a	AS 1.2, 2.0 and 3.0. The following sample is taken from a re described in the Help manual	LAS 2.0.	^
~VERSION INFORM	ATION CWLS Log ASCII Standard - VERSION 2.0		
WRAF. NO	.One line per depth step		~
<			>

Рис.1.25.

В следующем диалоговом окне нажмите **ОК.** В результате должна появиться следующая панель (**рис.1.26**). Выбираем метод автоматической загрузки данных **Automatic** и нажимаем **OK for all.**

				Import well	logs				0770	- ×
Data	Setting	s Log attributes								
Materia	ng		-							- ?
	Automa	tic (for regular logs or	nly)							
0	Specific	ed (can import time se	rries logs)							
	Time st	ep: DATE 2014-06	S-30 09:27:27 v 0	ate format: yyyy-MM-dd HH	mm:ss	Parsed dat	e:			1
Match	ed							Load:	All	None
Log	Load	Log name	Property template	Global well log	Unit (File)	Unit (Petrel)	Description			1
1	2	CALI	Calper	Create new regular log	in	in	CALI			
2	4	ĠR	Gamma ray	Create new regular log	gAPI	gAPI	GR			
3	4	ILD	Resistivity, deep	Create new regular log	ohm.m	ohm.m	ILD			
4	1	LLD	Resistivity, deep	Create new regular log	ohm.m	ohm.m	LLD			
5	4	SONIC	P-sonic	Create new regular log	us/ft	us/ft	SONIC			
ŝ	4	SP	Sportapeous potential	Create, new regular log	mV	mV	<p.< td=""><td></td><td></td><td></td></p.<>			
3nmat	ched							Load:	Al	None
Log	Load	Log name	Property template	Global well log	Unit	Unit	Description			
DATIN	IUR\Stu	ident Education\Inpu								
ND inc	reases	Not wrapped Un	#\Las\11.las -> 11 ndef = -999.250000							
eader LAS	reases format lo	Not wrapped Un	t\Las\I13as -> I1 idef = -999.250000							3
Versic Versic VRAP Well TRT TOP	reases format lo ct units n inform 2.0: NO: m 26 m 17	Not wrapped Ur g file from PETREL are specified as dept abion	4\Las\J1.las -> 11 idef = -999.250000 h units							
eader LAS Proje Versic (ERS, VRAP Well TRT TOP	format lo ct units 2.0: NO: m 26 m 17	Not wrapped Ur g file from PETREL are specified as dept abion 11.80000000 : 50.0000000 :	4\Las\J1.las -> 11 idef = -999.250000 h units							

Рис.1.26.

<u>Все</u> виды каротажных кривых для <u>всех</u> скважин отобразились во вкладке Global well logs внутри вкладки Wells на панели Input (кривые CALI, GR, LLD, neutron11 и др, puc.1.27). Чтобы узнать какие виды геофизических данных были загружены по каждой скважине, раскройте данную скважину, нажав на иконки, как показано на puc.1.28, и отобразите содержимое вкладки Well logs, также нажав на соответствующий значок около данной вкладки. Как видно по puc.1.28, для скважины "P1" загружены кривые типа CALI, GR, ILD, LLD, SONIC, SP, и neutron.

Рис.1.28.

Отображение каротажных кривых

В Petrel существуют очень удобные инструменты для визуализации и обработки каротажных кривых. Для отображения геофизических данных используется окно Well Section window (puc.1.29).

§ File	Edit	View	Insert	Project	Tool	s V	Wind	ow	Help
: I			Q 🖉	1 🖷	9; {	2	20	2D	window
i 💼 Ing	put						30	3D	window
⊿ ۸▲	٧	Vells] [1	Fun	nction window
⊿		Glo	bal well.	logs		[11	His	stogram window
	Φ	s. S	Log atti	ibutes				Inte	erpretation window
÷	.	Glo	bal com,	oletions		Ì		Inte	ersection window
	Ve.	Glo.	bal obse	erved da	ta	ľ		Ma	ip window
	₽S	vve We	li attribui Il filtere	tes				Plo	t window
	.	Sav	ii niicers ved sear	ches				Ste	ereonet window
4	Å	Pro	ducers					Chi	arting window
	Å	A	P1						
	▷ 🥻		P2			l		We	ell section window
	Þ 🖌	A	P3			[Тес	ctonic stress domain window
	▷ 🖌	A	P4				7	Tor	rnado plot window
	Þ A	A	P5			[Stra	atigraphic charts window
	⊳⊿	A	P6			[E <mark>o</mark>	Ne	w geotime window
_ ▲		Inje N	ctors					Un	display all data
		A	13					Hid	le window
	Þ	<u> </u>	12						
		Ā	14			{		Tile	e horizontal
Þ CT	$\overline{}$	m Dross si	ections					Tile	e vertical
`							==	Tile	e grid F4
						[Ē	Cas	scade
								Arr	ange minimized windows

Рис.1.29.

В появившемся диалоговом окне выбираем названия по умолчанию и нажимаем **ОК** (**рис.1.30**). В поле **Create new template** указывается название шаблона изображения, о котором будет подробно рассказано в следующих упражнениях. Нажмите OK.

\ge	Select ne	w well section window settings		×
83	Create new x-section:	X-section 1		?
1	Use existing x-section:		Y	?
o	• Create new template:	Well section template 2		?
1	O Use existing template:	TI Well section template 1	~	?
	Always do this for new we	ell section windows		?
	Show template settings			
		✓ OK	×C	ancel

Рис.1.30.

Обратите внимание, что новое окно визуализации Well section window 1 отобразилось на панели Windows (puc.1.31).

Рис.1.31.

Т.к. каротажные данные типа **GR** были загружены для всех скважин, отобразим их в **Well** section window 1. Для этого выделим все скважины и нажмем на окошко около соответствующей кривой на панели **Input** (puc.1.32).

Рис.1.32.

На **рис.1.33** показаны каротажные кривые **GR** для добывающих скважин. Основные инструменты работы с геофизическими кривыми в **Well section window** будут рассмотрены в следующих разделах.

Рис.1.33.

Загрузка геофизических данных при помощи других типов файлов

Рассмотрим загрузку каротажных при помощи файлов с типом Well Logs (ASCII) (*,*). Для этого нажмите правой клавишей мыши по полю на панели Input и выберите Import file. В открывшемся диалоговом окне выберите папку D > Student_Education > Petrel > Input > KPor и тип файлов Well Logs (ASCII) (*,*) (рис.1.34). Выделите все предложенные файлы и нажмите Открыть. В появившемся диалоговом окне нажмите OK (рис.1.35).

3	Import file		×
Папке	KPor S	G 🤌 📂 🛄 🔻	
A	Имя	Дата изменения	Тип
and the second s	11_KPor.las	25.08.2014 20:45	Файл "L/
Недавние места	2_KPor.las	25.08.2014 20:45	Файл "Ц
	3_KPor.las	25.08.2014 20:45	Файл "Ц
	14_KPor.las	25.08.2014 20:46	Файл "L
Рабочий стол	P1_KPor.las	25.08.2014 20:35	Файл "L
	P2_KPor.las	25.08.2014 20:35	Файл "L
6778	P3_KPor.las	25.08.2014 20:35	Файл "L
Библиотеки	P4_KPor.las	25.08.2014 20:35	Файл "L
	P5_KPor.las	25.08.2014 20:35	Файл "L
	P6_KPor.las	25.08.2014 20:35	Файл "L
Этот компьютер			
Сеть	<		
	Имя файла: "P6_KPor.las" "I1_KPor.las" "I2_KF	Por.las" "13_ ♥ 🛛 🗘	ткрыть
	Тип файлов: Well logs (ASCII) (*.*)		Отмена
	Только чтение		
File example /decorinti			
nie example/description	л.		
This loader is complet with different well log	ely general and can be used formats.		^
Important: When impo	rting multiple data files, make sure all files have the same f	omat.	
~Version Information	Block		
			v

Рис.1.34.

\ge	Match filename and well							
			?					
File	File name	Well trace	^					
1	I1_KPor	11 ()						
2	I2_KPor	12 ()						
3	I3_KPor	I3 ()						
4	I4_KPor	I4 ()						
5	P1_KPor	P1 ()						
6	P2_KPor	P2 ()						
7	P3_KPor	P3 ()	\sim					
,		✓ OK K Cance						

Рис.1.35.

В результате откроется следующая диалоговая панель (рис.1.36). Выберите режим Specify logs to be loaded, позволяющий контролировать объективность и правильность загрузки данных. В опциях Data type выберите относительную глубину MD, которая записана в первый столбец каждого из *Las файлов (так ли это проверьте самостоятельно, открыв вручную каждый из *Las файлов или использовав опцию Header info). Как видно по рис.1.36, Petrel распознал первый столбец, как каротажные кривые DEPT (см. также рис.1.37). Данную строчку, следовательно, необходимо удалить. Тем более, что в поле Column данного рисунка, относительная глубина уже считывается из первого столбца. Для

этого выделите ее, наведя курсор на цифру "1" столбца Log, и нажмите на иконку (delete selected row(s) in the table). Таким образом, единственная каротажная кривая заключена во второй столбец загружаемых файлов. Обратите внимание, что нажав на иконку

 \blacksquare (append item in the table) при необходимости можно добавить строку.

Рис.1.36.

Рис.1.37.

Нажмите на кнопку **OK for all.** Каротажные кривые **KP** отобразились во вкладке **Global well logs** на панели **Input** (рис.1.38). Для того, чтобы визуализировать данные кривые, используйте окно **Well section window** (рис.1.29).

Рис.1.38.

1.4. ЗАГРУЗКА ОТМЕТОК ПЛАСТОПЕРЕСЕЧЕНИЙ СКВАЖИН (ОТБИВОК)

Отметки пересечений пластов со скважинами - необходимая информация для построения горизонтов и поверхностей.

Для загрузки отбивок скважин, нажмите правой клавишей мыши по полю на панели **Input** и выберите **Import file.** В открывшемся диалоговом окне выберите папку $D > Student_Education > Petrel > Input, тип файлов Petrel well tops (ASCII) (*,*) и файл Well tops (puc.1.39). Нажмите Открыть.$

Рис.1.39.

В открывшемся далее диалоговом окне необходимо сопоставить столбцы из загруженного текстового файла **Well_tops** с таблицей, загруженной в Petrel (**puc.1.40**).

Как видно по **рис.1.40**, столбцы 1-3 характеризуют координату отметки пластопересечения скважины в декартовой системе; 4-ый столбец обозначает глубину отбивки относительно устья скважины; 5-ый столбец указывает на тип поверхности для построения поверхности (не является значимым); 6-ый столбец характеризует название отметки, в загруженном файле для каждой скважины представлено по три отбивки: BASE-MID-TOP; 7-й столбец указывает на название скважины.

Если таблицы из загруженного файла и таблицы в Petrel не совпадают, воспользуйтесь соответствующими опциями удаления и добавления столбцов (рис.1.40).

Нажмите **OK for all.**

Выйдет предупреждение о том, что программа будет использовать загруженные ранее траектории стволов скважин (если они имеются) для позиционирования точек пластопересечений, что, несомненно, является очень удобным, т.к. при составлении файла Well_tops необходимо лишь правильно расставить отметки по оси Z (puc.1.41). Нажмите OK.

Рис.1.41.

В последнем диалоговом окне (рис.1.42) проверьте данные и нажмите **ОК for all.** При необходимости в поле **Name** можно ввести любое имя обозначения отбивок.

\$ \$		Input data	×
Gene	ral		_
9	Name:	Well_tops	
\$\$	Type:	Well tops	
¥₿, ∳S	Template:	Z↓ Elevation depth ∨	
	Category:	×	
Coord	dinate reference sy	ystem (CRS)	_
	Project CRS:	Undefined	
	File CRS:	✓	?
		Other CRS	
Resul	ting data range (ap	oprox.)	
163.	X range: Y range: Z range:	UNDEF UNDEF m UNDEF UNDEF m UNDEF UNDEF m	
Unit o	XY conversion	none 🗸	?
	Z conversion:	none 🗸	
	✓ Negate Z-va	lues when mostly positive	?
		✓ OK for all ✓ OK Koncel	

Рис.1.42.

Загруженные отбивки Well_tops отобразились на панели Input (puc.1.43). Во вкладке Stratigraphy загружены отбивки уровней TOP, MID и BASE, в точности соответствуя исходному текстовому файлу.

Рис.1.43.

Для того чтобы отобразить отбивки, откройте окно визуализации (Window - 3D Window), отобразите все скважины и нажмите на окошко около вкладки **Well_tops** на панели **Input.** Отбивки "отмечены" на скважинах сферами, около которых отмечена координата пластопересечения по оси Z (**puc.1.44**).

"Дизайн" отбивок можно изменить по вашему желанию. Для этого кликните правой кнопкой мыши по вкладке Well_tops на панели Input и выберите Show settings. В открывшемся диалоговом окне перейдите а вкладку Style (puc.1.45). В меню Color предпочтительней выбирать Z-values, в таком случае цвет отбивок будет меняться в зависимости глубины пластопересечения. В меню Symbol можно выбрать различные геометрические формы отбивок, а в меню Size - их размер. Попробуйте самостоятельно различные варианты. Размер шрифта надписи уровня задается в меню Font части Number annotation.

Рис.1.44.

\$\$		Settings for 'Well_t	ops'	×
<mark>∥.</mark> ≪	Statistics Style	Stratigraphy Info	Quality attributes	
D	№ 🖿 🎴	Filter visible wells		
*	Common 🅥	Depth		
0	Color:	Z-values	~	
9	Symbol:	3D sphere	~	
9	Size:	40	~	
I	Material:	Plastic	~	
1	Transparency:	None	~	
0	Overpost	Always post	v ?	
Num	ober annotation Color: Show Font:	As points 40	v v □ 2D	_
		✓ Apply	OK 🗡 Cancel	

Рис.1.45.

1.5. ЗАГРУЗКА ПОВЕРХНОСТЕЙ, ВЫДЕЛЕНИЕ ГРАНИЦЫ ОБЛАСТИ

В данном упражнении загрузим поверхность, используя заготовленный текстовый файл. В целом, именно эта поверхность для построения геологической модели в данном курсе нам не будет нужна, а будет использоваться только для задания внешней границы объекта.

Для загрузки поверхности кликните правой клавишей мышки по полю на вкладке Input и выберите Import file. В открывшемся диалоговом окне выберите папку D > Student_Education > Petrel > Input, тип файлов IRAP classic grid (ASCII) (*,*) и файл Hd.dat (рис.1.46). Нажмите Открыть.

Рис.1.46.

Загруженная поверхность отобразилась на панели **Input (рис.1.47).** Используем ее для выделения внешней границы проекта. Для этого кликните правой клавишей мыши по поверхности **Hd.dat** и выберите **Create surface edge (рис.1.48).**

Рис.1.47.

Рис.1.48.

Сформированная граница области **Edge around Hd.dat** помещена на панели **Input (рис.1.49**). Отобразите ее в 3D window.

1.6. ЗАГРУЗКА МОДЕЛИ РАЗЛОМОВ

Для загрузки модели разломов в проект Petrel щелкните правой кнопкой мыши по панели **Models** и выберите **Import file**. В открывшемся диалоговом окне выберите папку $D > Student_Education > Petrel > Input, в поле$ **Тип файлов**выберите**Petrel fault model (ASCII)**(.*.) и откройте файл**Fault**, находящийся в данной директории (**рис.1.50**).

\ge		Import file		×
Папка:	Input	~	G 👂 🖻 🛄 -	
An	Имя	v	Дата изменения	Тип
	Well_tops		26.08.2014 10:29	Файл
Недавние места	Well_heads		24.08.2014 22:43	Файл
	📄 Hd.dat		02.10.2013 13:04	Файл "DA
	📄 Fault		26.08.2014 14:43	Файл
Рабочий стол	🌗 Las		25.08.2014 13:12	Папка с ф
<u></u>	퉬 KPor		25.08.2014 20:45	Папка с ф
1	ы Incl		25.08.2014 11:33	Папка с ф
Библиотеки				
Этот компьютер				
Сеть	<			>
CC10	Имя файла:	Enult		ткрыть
		Fault		
	Тип файлов: 🤇	Petrel fault model (ASCII) (*.*)	¥ ()тмена
		Только чтение		
File example/descripti	on:			
VERSION 2				•
FAULT "Fault 1" 1	0000 0005 10 00000	10000 000000		
PILLAR 824036./2 823987.90744	2 698502.998916 -12	2340.612857		
823939.09488	5 698459.367833 -11	797.335715		
823890.28232	/ 656415./36/49-1	1204.006072		~
<				>

Рис.1.50.

В открывшемся диалоговом окне проверьте данные и нажмите ОК.

<u>Модель разломов</u> помещена во вкладке **Models (рис.1.51).** Как видно по рисунку, файл **Fault** содержит 5 разломов. Переименуйте название модели на **Model_1.**

Откройте **3D window** и визуализируйте скважины, внешнюю границу области **Edge around Hd.dat** и загруженные разломы (**puc.1.52**).

О работе с разломами более детально будет рассказано в следующих разделах.

Сохраните проект под именем **Project_Input** в своей личной директории.

Рис.1.52.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) Сформулируйте, какие форматы данных, предусмотренные в Petrel, используются для загрузки:

а) координат скважин;

б) инклинометрии скважин;

в) каротажных данных;

г) отметок пластопересечений;

д) модели разломов.

2) В каких случаях длина ствола скважины меньше максимальной глубины ее залегания?

3) Если верхняя точка скважины 20.4 м (Offset), а глубина залегания 1723.1 м, то чему равна длина ствола скважины (MD)?

4) Какие окна используются для визуализации двух- и трехмерных изображений данных?

5) Сформулируйте, какие форматы инклинометрических данных имеются в Petrel? В чем их отличие друг от друга, какие удобней всего использовать?

6) Как называется вкладка, в которой хранятся каротажные кривые скважин, и на какой панели она находится?

7) Каким образом можно поменять цвет ствола скважины, формат подписи ее названия?

8) Как называется вкладка, в которой хранятся данные по отметкам пластопересечений (отбивок) и на какой панели она находится?

9) С помощью какой процедуры (или последовательности действий) можно "выделить" границу поверхности?

10) На какой панели хранится модель разломов?

11) На какой панели собрана информация об окнах визуализации (3D window, 2D window, Well section window)?

2. НАСТРОЙКА ШАБЛОНОВ WELL SECTION

2.1. ОТОБРАЖЕНИЕ НЕСКОЛЬКИХ КАРОТАЖНЫХ КРИВЫХ В ОДНОЙ КОЛОНКЕ ОКНА WELL SECTION WINDOW

Зачастую для качественного построения фациальной или петрофизической модели, необходимо отображение двух или более каротажных кривых в одной колонке окна Well section window.

Далее Вы можете использовать свой проект с загруженными данными из пункта 1 или воспользоваться готовым проектом из директории $D > Student_Education > Petrel > Project_EXC > Well template > Well template.pet (puc.2.1)$

🔀 Open project	COLUMN TWO IS NOT	a desta del		×
Nan <u>k</u> a:	🐌 Well template	• •	G 🌶 🖻 🛄 -	
An	Имя	*	Дата изменения	Тип
~	😴 Well templa	te.ptd	14.11.2014 13:54	Папка с ф
Недавние места	🔁 Well templa	te	14.11.2014 13:54	Petrel
рабочий стол				
Библиотеки				
М Компьютер				
(Сеть				
	•	III		F
	<u>И</u> мя файла:	Well template	-	<u>О</u> ткрыть
	<u>Т</u> ип файлов:	All Petrel files (*.pet; *.petR)	•	Отмена

Рис.2.1.

После загрузки проекта Project_input.pet откройте окно Well section window (Window - Well section window, puc.1.29) и отобразите каротажные кривые GR и neutron для всех загруженных скважин. Для этого отметьте галочкой окошко около вкладки Wells на панели Input, и по необходимым каротажным кривым, которые содержатся во вкладке Global well logs (puc.2.1). В результате данных операций должно появиться окно, соответствующее puc.2.3.

Рис.2.3.

Рассмотрим процесс создания шаблонов отображения каротажных кривых (GR и neutron в

данном случае) на одной колонке окна Well section. Для этого щелкните по иконке (open selected template settings page) или нажмите на «Т» (латиница) (рис.2.4).

Рис.2.4.

Откроется диалоговое окно (рис.2.5). Как видно по рис.2.5, в колонке **GR** отображается кривая **GR**, а в колонке **neutron** – кривая **neutron**. «Зацепите» левой кнопкой мышки кривую \boxed{n} neutron и перетащите ее в колонку **GR**. В итоге должно получиться так, как на рис.2.6 – две каротажные кривые находятся в одной колонке.

Settings for 'Well section template 4'	
 Info Well section template Template objects A Vetical tracks GR A neutron Borehole markers Borehole markers Deviated tracks 	Objects settings
	Anoly J OK X Cancel

Рис.2.5.

T Settings for 'Well section template 4'	
Info Well section template	
Template objects?	Objects settings ?
Verical tracks Index track Index Index Index Index track Index track Index tr	Info Image Image Image </td
	✓ Apply ✓ OK ズ Cancel

Рис.2.6.

Выделите в диалоговом окне (как на **puc.2.7**) кривую **GR** и перейдите во вкладку **Style.** В меню **Color** выберите **Selected** (это означает, что в поле **Color** можно выбирать цвет кривой, с которым она будет отображена в окне Well section). Рекомендуется выбрать синий цвет (**puc.2.7**). В меню **Line** по Вашему усмотрению можно отредактировать ширину и тип линии. Повторите описанную процедуру для кривой **neutron** (рекомендуется выделить ее красным цветом).

Нажмите ОК.

Еще раз обратите внимание, что кривые **GR** и **neutron** отобразились в одной колонке и каждая кривая окрашена в свой цвет (**puc.2.8**). Можно также заметить, что для скважин **P4**, **P5**, **P6**, **I3**, **I4** геофизические кривые типа **neutron** изначально загружены не были и, соответственно, не отображены в окне **Well section**.

Vertical tracks	Objects settings	nition 🔀 Limits	Style	
GB GB Genetron	Color			2
n neutron	Color	Color:	Selected	
Track	line		Specified	
Borehole markers Background Deviated tracks	Show	Line width:	Selected Black White	
C Devideo nacio		Line type:	Solid	-
		Block type:	None	•
	Points	1252		?
	Show	Point size:	5	
		Symbol:	O Circle	Ŧ
				-
	Backup style			?
	Automatic			
	Specified			
	Min wrap		Max wrap	
	Color:	Black -	Color: 📕 👻 Bla	ck 🔻
	Line width:		, Line width:	
	Line type:		Line type:	[+
	Fill Color: r=		Fill Color:	
		▼ No c ▼	No	C v

Рис.2.7.

30 3D window 1 [Any] × 20 2D wind	low 1 [Any] 🗙 🛐 3D window 5 [Any]	× 🕅 Well section window 1 [SSTV	D] ×	
P1 [SSTVD]	P2 [SSTVD]	←-+ P3 [SSTVD] <525 m	+ P4 [SSTVD] ← 1185 m ·	→ P5 [SSTVD] ← 223
SSTVD neutron 1:10212 -0.2026 m2/m2	n SSTVD neutron	SSTVD neutron	SSTVD GR 1:10549 0 77 gAPL 14 66	SSTVD GR 1:10144 0.84 gAPL 14.47
GR	GR	GR	gain Heod	0.04 gAIT 14.47
-87.3	-87.3	-75.8	-71	134.2
0			0	200
100	100	100	100	300
200	200	200	200	400
300	300	300	300	500
400	400	400	400	600
500	500	500	500	700
600	600	600	600	800
700	700	700	700	900
800	800	800	800	1000
000	900	900	900	1100
1000	1000	1000	1000	1200
1100	1100	1100	1100	1300
1200	1200	1200	1200 7	1400
1300	1300	1300	1400	1500
1400	1400	1400	1500	1600
1500	1500	1500	(1600)	1700
(1642.7)	(1600) (1652.7)	(1600) (1651.9)	(1715.4)	(1835.8)
•				

Рис.2.8.

2.2. ОСОБЕННОСТИ РАБОТЫ С ОКНОМ WELL SECTION

Как можно заметить по рис.2.8, кривые отображены довольно не удачно по масштабу в вертикальном направлении и его необходимо поменять.

Для того, чтобы изменения масштаба действовали сразу для всех скважин щелкните по

\$7 (Toggle synchronized well scrolling) или нажмите Shift+Y (рис.2.9) и по иконке иконке 99

(Toggle synchronized well scaling).

Рис.2.9.

Рис.2.10.

Далее наведите мышку на пересечение черной и белой шкалы и, нажав на левую клавишу, увеличьте или уменьшите масштаб (**puc.2.10**). Обратите внимание, что масштаб изменился для геофизических кривых <u>всех</u> скважин, т.к. активны режимы, указанные на **puc.2.9**. На **puc.2.11** показаны кривые после увеличения масштаба. <u>Отдельно</u> кривую каждой скважины можно «прокрутить» вверх или вниз, выключив режим **Toggle synchronized well**

scrolling . После этого щелкните левой кнопкой мышки по скважине и при помощи «колесика» поднимите кривые или опустите (рис.2.12).

Сохраните проект.

Рис.2.11.

Рис.2.12.

3. РАБОТА С ОТМЕТКАМИ ПЛАСТОПЕРЕСЕЧЕНИЙ (ОТБИВКАМИ)

В упражнении 1 были загружены отметки пластопересечений скважин с геологическими пластами. Данные отметки Well_tops расположены на панели Input (puc.1.43); во вкладке Stratigraphy находятся отбивки уровней TOP, MID и BASE.

При построении геологической модели часто случается, что отбивки скважин немного не совпадают по уровням и по глубине (абсолютным отметкам) с каротажными кривыми. Отбивки могут оказаться выше минимального или ниже максимального уровня, для которых имеются значения каротажных кривых, следовательно, бывает необходимость уметь редактировать отбивки, а также создавать новые. Продемонстрируем это на следующем примере.

Далее можно использовать свой проект, сохраненный после упражнений 2, или воспользоваться готовым проектом из директории D > Student_Education > Petrel > Project_EXC > Stratigraphy > Stratigraphy.pet (puc.3.1)

🔀 Open project	COLUMN TWO IS				-	x
Папка:] Stratigraphy		•	G 🤌 📂 🛙	•	
æ	Имя	*		Дата изменен	ия	Тип
	😴 Stratigraphy	.ptd		14.11.2014 13:5	51	Папка с ф
Недавние места	🔀 Stratigraphy	,		14.11.2014 13:5	51	Petrel
рабочий стол						
Библиотеки						
М Компьютер						
() Сеть						
	4					
						,
	Имя файла:	Stratigraphy		-		крыть
	Тип файлов:	All Petrel files (*.pet; *.pe	etR)	-	От	мена

Рис.3.1.

Откройте окно Well section window и отобразите каротажные типа GR для всех скважин (puc.3.2). Немного измените масштаб в сторону увеличения, как это было показано в упражнении 2.2. На этом же полотне Well section window отобразите уровни отбивок, поставив галочки около Well_tops и Stratigraphy (puc.3.3).

Рис.3.2.

Рис.3.3.

Как видно по **рис.3.4**, отбивки для скважин P2, P4, P5,P6 и I1, I4 (в правой части окна **Well_section**) вообще не пересекаются с геофизическими кривыми, значит есть необходимость редактировать отметки пластопересечений.

Рис.3.4.

Уровень отбивок будем редактировать для <u>каждой</u>скважины по отдельности. Для начала отредактируйте цвет отметок, особенно отбивку **BASE**. Нажмите правой клавишей мыши на отбивку **BASE** во вкладке **Well_tops** на панели **Input** и выберите **Show settings**. В открывшемся диалоговом окне во вкладке **Info** в секции **Color** поменяйте цвет, например, на зеленый (**puc.3.5**).

Settings for 'BASE'	X
🚯 Info 🔒 Settings	Statistics Stratigraphy
Name:	BASE
Color:	
Туре:	Horizon 🧔
Comments Original	CRS
Petrel filename: (Object c Orig. filename: (Made by	can't be saved separately) y Petrel)
✓ Ap	ply ✔ OK K Cancel

Рис.3.5.

Далее на правой части окна **Petrel** нажмите на иконку (create/edit well tops или нажмите «**E**»). Наведите курсор мышки на любую из отбивок и переместите уровень вверх или вниз (**puc.3.6**).

Рис.3.6.

Рекомендуется выполнить редактирование так, как на рис.3.7а и рис.3.7б.

Сохраните проект.

Рис.3.7а.

Рис.3.76.

Для того, чтобы самому создать новый горизонт пластопересечения (отбивку), щелкните правой клавишей мыши по вкладке Stratigraphy на панели Input и выберите Insert zone/horizon into (puc.3.8). Во вкладке Stratigraphy появится новый уровень Horizon 1 (puc.3.9).

Рис.3.8.

Рис.3.9.

Сделайте Horizon 1 активным. Для этого щелкните по нему левой клавишей мыши, данный горизонт должен выделиться жирным. Перейдите в окно Well section window (рис.3.7а и рис.3.7б) и щелкните левой кнопкой мыши в то место где хотите создать отбивку (это надо сделать для каждой скважины)

Также новый горизонт можно добавить, нажав правой кнопкой мыши по существующему и, выбрав **Insert zone/horizon above** или **Insert zone/horizon below** для добавления нового горизонта сверху или снизу существующего соответственно.

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ (к упражнениям 2 и 3).

1) Опишите последовательность действий для создания шаблона отображения нескольких каротажных кривых в одной колонке?

2) Какие пиктограммы (иконки) применяются при изменении масштаба окна Well section?

3) Какие инструменты существуют в Petrel для редактирования уровня отбивок?

4) Сформулируйте, как создать новый горизонт пластопересечения?

4. ФАЦИИ. РУЧНОЕ РИСОВАНИЕ ФАЦИАЛЬНОЙ КОЛОНКИ

Фациальное моделирование – один из основных процессов при моделировании недр. При загрузке данных, как правило, такие фациальные колонки даются разработчикам геологических моделей изначально. Но необходимыми навыками при работе с данным процессом необходимо обладать.

На основании фациальных колонок далее будет строиться фациальная модель коллектора.

Вы можете использовать свой проект, сохраненный после упражнений 3, или воспользоваться готовым проектом из директории **D** > Student_Education > Petrel > Project_EXC > Facies > Facies.pet

Для создания фациальной колонки щелкните правой кнопкой мыши по папке Global well logs на панели Input и выберите опцию Insert global well log (disc.) – рис.4.1. Новый объект появится во вкладке Global well logs.

Рис.4.1.

Новый вид каротажной кривой **Log18** (номер, в принципе, может отличаться) появилась во вкладке **Global well logs** на панели **Input.** Чтобы изменить ее название, щелкните по **Log18** правой клавишей мыши и выберите **Show settings.** В открывшемся диалоговом окне во вкладке **Info** в поле **Name** введите имя геофизической кривой **Facies (puc.4.2).** Нажмите **OK**.

Setting	s for 'Facies'	-		×
db	Histogram		Operations	
🥪 S	ityle 🕕	Info	Statist	tics
	Name:	Facies		
	Color:			•
	Туре:	Global well log (di	sc.)	
	Template:	General	discrete	- 🗖
	Category:			-
	Date:	10.09.2014		
🔇 Comr	ments			
				^
	(0)			*
Petrel file	name: (Object c	ant be saved sepa	arately)	
Orig. filen	ame: (Made by	Petrel)		
	🗸 Ap	ply VK	K Can	cel

Рис.4.2.

Каротажные данные Facies отображены во вкладке Global well logs (рис.4.3).

Рис.4.3.

Щелкните правой кнопкой мыши по Facies и выберите опцию Copy as derived log template. Далее правой кнопкой мыши по папке Wells на панели Input и выберите опцию Add empty 'Facies' log to all wells.

Откройте окно Well section window, отобразите все скважины и данные GR и Facies. Отобразите также поверхности отбивок Well_tops.

Для удобства просмотра щелкните правой кнопкой мыши по отбивке **TOP** или **MID** во вкладке **Stratigraphy** на панели **Input** и выберите **Flatten well section on horizon (puc.4.4)**.

Рис.4.4.

Щелкните по иконке **Maint discrete log class** или **A**). Начинайте отрисовывать фации в колонке **Facies.** Пусть, если сигнал более, чем 0.2 от максимального, то фация – непроводящая глина (Shale), а если менее, чем 0.2, то проводящий песчаник (Sand). Чтобы настроить тип Shale-Sand, щелкните правой клавишей по колонке **Facies** (режим **Paint discrete log class** при этом включен) и нажмите **Show settings** (рис.4.5).

Рис.4.5.

Введите имена Shale и Sand в поле **Name** и подберите соответствующие цвета в поле Color (**puc.4.6**). Нажмите **OK**.

Settings	for 'General discr	ete'	-161	×
🧹 Style	🗊 Info 🧧 Cole	ors		
				<u> </u>
Code	Name	Parent	Color Pattern	
0	Shale			
1	Sand			
2				
3				
4				
5			▼ ∐ ∐	
Selection -				
Pattem:	v			
Color:				
	 Apply 		ок 🛛 🗡 С	ancel

Рис.4.6.

Итак, все готов для отрисовки фаций. Нажмите правой клавишей мышки для выбора типа фации по колонке Facies в окне Well section window и проведите «кисточкой». Для отмены действия нажмите правой клавишей мышки и выберите Undefined (после чего проведите «кисточкой» и «закрашиваемая» область будет не цветной, а белой). Следите за тем, чтобы типы фаций были соединены, т.е., чтобы между ними не было белых пустот. (рис.4.7).

Рис.4.7.

Далее рекомендуется немного отредактировать поверхности отбивок, исходя из отрисованных фациальных колонок. Постарайтесь нарисовать фации и выправить согласно им отметки пластопересечений, как на **рис.4.8** и **рис.4.9**.

Рис.4.8.

Рис.4.9.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) Какой инструмент (пиктограммы или иконки) используется для "отрисовки" фациальных колонок?

2) Опишите процесс настройки рисования фаций типа Shale-Sand.

3) Проанализируйте, каким образом калибруется сигнал, полученный при помощи геофизических исследований и вычислите цену деления шкалы для каждой из скважин.

5. СОЗДАНИЕ ПОВЕРХНОСТЕЙ ПО ОТМЕТКАМИ ПЛАСТО ПЕРЕСЕЧЕНИЙ СКВАЖИН. ПРОЦЕСС MAKE/EDIT SURFACE

После загрузки всех данных и самостоятельной "отрисовки" фациальных колонок, следующим процессом при построении геологической модели является построение структуры недр, т.е. создание геометрического образа моделируемого объекта.

Создание визуального образа геологического объекта включает в себя несколько этапов: создание поверхностей по отбивкам пластопересечений скважин (процесс **Make/edit surface**), создание <u>простой</u> сетки по предварительно построенным поверхностям (процесс **Make simple grid**), разбивание сетки на слои (процесс **Make Layering**), редактирование модели разломов (процесс **Fault modeling**), создание сетки на основе модели разломов (процесс **Gorner point gridding**,), создание горизонтов по построенной модели, в которой учитываются разломы (процесс **Make horizon**), создание модели для гидродинамических расчетов (процесс **Pillar gridding**), и др.

В данном упражнении Вы познакомитесь с процессом Make/edit surface.

Для работы в данном упражнении откройте проект D>Student_Education>Petrel>Project_EXC>Make edit surface> Make edit surface.pet. <u>Не</u> используйте проект, сохраненный после предыдущего упражнения.

При создании геометрических образов Вы будете пользоваться различными процедурами и процессами, расположенными на вкладке **Processes (рис.5.1).**

Рис.5.1.

На вкладке Processes раскройте каталог Utilities и выберите процесс Make/edit surface (рис.5.2).

Рис.5.2.

Раскроется диалоговое окно (**рис.5.3**). При помощи данного окна будет загружена поверхность по <u>одному уровню</u> отметок пластопересечений с использованием границы **Edge around**, которую Вы загрузили ранее.

Make/edit	surface ×
Make surface Hints	
Input data:	Result surface:
Main input: 🔿	➡ ★ Deleted object
	🌛 🗌 Name: Surface
Boundary:	Run for all main input in
Fault center	Suggest settings from input
iines/polygons:	
Post proc 🐶 Well adjustr	ent Additional inputs
Geometry Se Pre	oroc 🥝 Algorithm
Grid size and position	
 Automatic (from input data/boundary) 	
User defined: Get all settings from	m selected Get limits from selected
X min: 0	
Ymin: 0	
X max: 1000 Width: 100)
Y max: 1000 Height: 100	
Grid increment	
→ Xinc: 50 Yinc: 50	Nodes: 21 x 21
Boundan/	
Make boundary from input and extend	with 2 podes
Note: If toggled on, the boundary in the	input data will not be used.
Save computed boundary for: data e	de A
🗸 Apply	✓ OK X Cancel

Рис.5.3.

Построим поверхность для отбивки **TOP.** Для этого выделите отбивку **TOP** во вкладке **Stratigraphy** на панели Input и нажмите на синюю стрелку около меню **Main input** вкладки **Geometry** окна **Make/edit surface**. Выделенный уровень пластопересечения появится в поле **Main input (рис.5.4)**.

✓ \$\$ ✓ Well_tops > \$\$ Or Attributes	Make/edit surface
⊿ 🚔 🗹 Stratigraphy	Make surface Hints
	Input data: Result surface:
Zone TOP	Main input: TOP (Well_tops)
Zone MID	Attribute: 🐉 ZIZ 🗸 🗸 Attribute: Surface
😂 🗹 BASE	Boundary: 📄 📿 Edge around Hd.dat 📄 🔲 Run for all main input in 👔
G Faults	Fault center
33 Others	
▷ ♣Ă Well fitter	🚰 Post proc 🥨 Well adjustment 📩 Additional inputs
▷ ♥ Interpreter filter	Geometry Reproc 3 Algorithm
A I Cross sections	Grid size and position
C • X-section 1	
X-section 2	 Automatic (from input data/boundary)
🖽 🗌 Hd.dat	User defined: Get all settings from selected Get limits from selected
Edge around Hd.dal	
Filters folder	X min: 37350
📩 Input 🙀 Models 🔢 Result	Y min: 17150
😭 Favorites	X max: 42850 Width: 5500
	Y max: 21200 Height: 4050
J Processes	Rotation: 0

Рис.5.4.

Далее загрузим границу геологической модели. Для этого выделите границу Edge around Hd.dat на панели Input и нажмите на синюю стрелку около меню Boundary вкладки Geometry окна Make/edit surface. Выделенный граница области отобразится в поле Boundary (puc.5.4).

Далее выберите режим Automatic (from input data/boundary) - рис.5.5. Выбрав эту опцию, Вы подтверждаете, что граница области совпадает с границей Edge around Hd.dat, которую вы загрузили в поле Boundary.

<u>Замечание.</u> Если Вы выберите User defined и нажмите на Get limits from selected, то граница области будет привязана к минимальной и максимальной координатам загруженных скважин. Сделайте эту процедуру самостоятельно.

В поле **Grid increment** вводятся значения, характеризующие степень "плавности" построения поверхности. Чем меньше данные значения, тем поверхность более "гладкая". Поэкспериментируйте самостоятельно с данными значениями.

lake sunace	Hints				
	Inpu	it data:		Result surface:	
lain input:	چ 🖏	TOP (Well_tops)		X Deleted object	
ttribute:	S Z	ĮZ	× 🕞	Name: Surface	
oundary:	⇒ C	Edge around Hd.	jat 🛅	Run for all main input in	
ault center nes/polygons:	⇒		S	uggest settings from input	-
Post p	roc	🚱 Well adju	stment	Additional inputs	8
Geo	metry	Se F	re proc	2 Algorithm	
X max: 1000 Y max: 1000)) :	Width: Height: 0	1000		
A Xinc	50	Yinc: 50	\supset		
Boundary — Make bo	oundary toggled	from input and exter	nd it with 3 the input dat	nodes. a will not be used.	

Рис.5.5.

Далее перейдите на вкладку Well adjustment окна Make/edit surface. Выберите вкладку TOP во вкладке Stratigraphy на панели Input и нажмите на синюю стрелку около меню Well tops вкладки Well adjustment окна Make/edit surface (рис.5.6).

На следующем этапе перейдите на вкладку Algorithm и в поле Method (в данном поле заложен математический аппарат построения поверхностей) выберите Isochore interpolation (рис.5.7).

🗂 Input 🗸 🗸 🗸	30 3D window 1 [Any] × 20 2D window 1 [Any] × 30 3D window 5 [Any] ×
Global well logs	Make/edit surface
Global completions Global observed data Global observed data Well stitutes Well stitutes Saved searches Producers Producers Producers Global completions Cross sections Cross sections Cross section 1 Cross section 2 Well_tops	Make surface Hints Input data: Result surface: Main input: TOP (Well_tops) Attribute: Z Z Z Ø C(TOP) Attribute: Edge around Hd.dat Fault center Edge around Hd.dat Ines/polygons: Suggest settings from input Geometry Pre proc Well adjustment Additional inputs
	Input Well tops: TOP (Well_tops) Strate of the second s

Рис.5.6.

Make surface	Hints				
	Input d	ata:		Result surface:	
Main input:	🔿 🐶 т	OP (Well_to	ops)	49 Z (TOP)	
Attribute:	zī s	Z	× E	Name: Z (T	OP)
Boundary:	⇒ O E	dge around	Hd.dat	Run for all m	ain input in der
Fault center	⇒			Suggest settings f	rom input 🔻
😵 Post p	roc 🖏	Well	adjustment	Additio	onal inputs
∰ Geo	metry	Fo	Pre proc	🥹 A	lgorithm
	N	lethod:	Convergent in	nterpolation	-
Settings	Q Ex	pert 🖸 H	Conve	rgent interpolatio	on I
		Isocho	ore interpolation		
Z.Value	li	nportant hin	Minim	um curvature	
2-Value	Allow res	idual with to	Gaussi	ian	•
Maximum value: 10		Krigin	Kriging		
Micimum value: 10		Moving average			
The Fault po	lygons -	value1(Cos ex	pansion	
Influence	100	7. 🕜 🗸	Functi	onal	
Dip and	azimuth da	ta	Closes	t	
None Azimuth c		Artificial algorithms			
Influence radius: 10		Surfac	e resampling		
Settings		122	Neura	Inet	-
	tranolation	Method: N	recura	11124	1000

Рис.5.7.
Загрузка данных для процесса Make/edit surface закончена. Нажмите OK.

Загруженная поверхность **Z**(**TOP**) отразилась на панели **Input (рис.5.8).** Визуализируйте ее в окне **3D window (рис.5.9).**

Рис.5.8.

Рис.5.9.

Отредактируйте "цветовую схему" отображения поверхности. Нажмите правой клавишей по поверхности **Z**(**TOP**) на панели **Input** и выберите **Edit global color table (рис.5.10).**

Рис.5.10.

Нажмите на стрелки около поля **Min** и **Max**, чтобы цветовая схема была откалибрована по максимальному и минимальному уровню поверхности (**рис.5.11**).

🥪 Style 🕕 Info	Colors	
		-
-1284.72	1220	Ma
	-1320	
Color interpolation:	-1360	~
HSV (Max) HSV (Min) DCP	-1400	
Fmphasize	-1440 🗧	Ģ
Non linear gradient	-1480	20 20
s: 0	-1520	
V: 0	-1560	Min
-1593.92	b	
	lash COK	× Canaal

Рис.5.11.

Нажав на иконку **В** окне **3D Window**, можно отобразить вид Вашей цветовой схемы поверхности.

Теперь постройте поверхности для уровней MID и BASE (получившиеся результаты на рис.5.12).

ВАЖНО: Для того, чтобы Petrel новые поверхности записывал в новые файлы, в поле Result surface окна Make/edit surface удаляйте старую поверхность (рис.5.6).

После построения трех поверхностей Z(TOP), Z(MID), Z(BASE), создайте папку (**Insert-New folder**) и назовите ее **Surfaces**. Перетащите поверхности в данную папку.

Сохраните проект.

Рис.5.13.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) На какой панели и на какой вкладке расположен процесс **Make/edit surface**, применяемый для построения поверхностей?

2) Какие из загруженных входных данных используются для построения поверхностей и какой принцип лежит основе построения поверхности

3) Сформулируйте, какие параметры закладываются в поле Grid increment в диалоговом окне Make/edit surface?

4) На какой панели будут расположены поверхности после их построения?

5) Какие методы интерполяции используются для построения поверхностей?

6) Опишите последовательность действий, направленные на изменение цветовой схемы изображения?

6. СОЗДАНИЕ ПРОСТОЙ СЕТКИ. ПРОЦЕСС МАКЕ SIMPLE GRID И LAYERING

Продолжаем процесс создание геологической модели недр. В прошлом упражнении были построены 3 поверхности по отбивкам скважин. Следующим этапом является дискретизация построенных поверхностей – то есть создание простой сетки. Сетка в математическом толковании представляет собой узлы, которые соединены между собой линиями. Если сетка двухмерная, то ячейка, как правило, представляет собой параллелограмм, треугольник или шестигранник. Если рассматривается трехмерная область, то ячейка представляет собой параллелограмм, с Реtrel, мы столкнемся с ячейками, в основании которых лежат четырехугольные фигуры.

Для работы над этим упражнением откройте проект D>Student_Education>Petrel>Project_EXC>Make edit surface> Make simple grid.pet. или работайте в проекте, который был сохранен после предыдущего упражнения.

<u>Особенностью процесса Make simple grid является то, что при построении сетки не учитываются модель разломов.</u>

Раскройте вкладку Utilities на панели Processes (рис.6.1) и откройте процесс Make simple grid.

Рис.6.1.

В поле Create new на вкладке Input data окна Make simple grid (рис.6.2) введите имя сетки (рекомендуется 3D grid). Выбрав опцию Insert surfaces, сетка будет построена на основе построенных поверхностей.

Make simple	grid 🧧	x
Make simple gri	id	
🛛 💿 Create r	new: 3D grid	?
🥒 💿 Edit exis	sting (current active)	
Boundary:		
🔄 Input data	Geometry 🗰 Tartan grid	
🛄 💿 Ske	eleton only	?
	ert surfaces	
Top limit:	Constant 👻	
	-1000 Z-value	
Base limit:	Constant 🗸	
	-2000 Z-value	
1	✓ Apply ✓ OK	

Рис.6.2.

Выберите поверхности Z(BASE), Z(MID), Z(TOP) и нажмите на иконку (аppend item in
the table), далее границу поверхности Edge around Hd.dat и нажмите на стрелочку около
Boundary (рис.6.3).

Рис.6.3.

Обратите внимание, что поверхности должны быть добавлены в порядке убывания то есть **TOP-MID-BASE**. В обратном случае, сетка будет построена неверно.

Далее перейдите на вкладку Geometry окна **Make simple grid** и выберите режим **Get limited from selected (рис.6.4),** определив таким образом численные границы области. В поле **Grid increment** введите шаг сетки (чем меньше шаг сетки, тем количество узлов на единицу длины будет больше). Поле **Nodes** укажет количество узлов. Поэкспериментируйте самостоятельно с различными шагами сетки. Нажмите **OK.**

Make simple grid ×
Make simple grid
O Create new: 3D grid
Edit existing (current active)
Boundary: 🔿 C Edge around Hd.dat
🚱 Input data 🏢 Geometry 🏢 Tartan grid
Grid size and position
Automatic (from input data/boundary)
User defined: Get all settings from selected Get limits from selected
X min: 37350
Y min: 17150
X max: 42850 Width: 5500 🚔 🛄 Expand
Y max: 21200 Height: 4050
Rotation: 0
Grid increment
→ Xinc: 50 Yinc: 50 Nodes: 111 x 82
✓ Apply ✓ OK ズ Cancel

Рис.6.4.

Сетка **3D grid** отобразилась на панели **Models (рис.6.5).** Три поверхности сеток **Top, Mid и Base** находятся на вкладке **Skeleton**, а горизонты на вкладке **Horizons.** Отобразите сетку в окне 3D window (**рис.6.6**).

Рис.6.5.

После построения сетки, состоящей из трех уровней, необходимо разбить пространства между уровнем **Top** и **Mid**, и между уровнем **Mid** и **Base** на слои. Для этого на вкладке **Processes** выберите вкладку **Corner point gridding** и процесс **Layering** (разбиение на слои, **puc.6.6**). **Zone 1** – зона между уровнем **Top** и **Mid**, **Zone 2** – зона между **Mid** и **Base**. Введите количество слоев, например 10 и 5 (**puc.6.7**). Самостоятельно сами поэкспериментируйте с различными вариантами разбиения. Нажмите **OK**.

Рис.6.6.

2			Lay	vering with	'Model_1/	3D grid'				×
Make layers Common settings	Mara	the collare			11					
Zone specific set	tings	cell thickne	ss: 1	Rest	I Horizons with	steep stopes itional/fractions Restore b	s, start from: base: 👔	Top v	?	×
Name Zone 1 Zone 2	Color V V	Calculate Yes Yes	Proportional Proportional	Zone division Number of la Number of la	yers: 10 yers: 5	Reference surface	Restore eroded Yes Yes	Restore base Yes Yes	Status Status New New	}
						√ Ap	ply 🗸	ОК	术 Cancel	

Рис.6.7.

Для того, что отобразить боковые ячейки, нажмите на окошко около **Edge** на панели **Models** во вкладке **3D grid (рис.6.8).** Сохраните проект.

Рис.6.8.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) Сформулируйте, что такое расчетная сетка? Что такое узел и шаг сетки?

2) На какой панели и на какой вкладке расположен процесс Make simple grid?

3) В чем особенность процесса Make simple grid? Почему созданная сетка называется простой?

4) Какие данные используются для построения простой сетки?

5) На какой панели располагается загруженная сетка?

6) Какой процесс используется для разбиения сетки на слои?

7) Рассчитайте, чему равен шаг сетки вдоль оси X и У, если размеры исследуемой области 10000м×20000м, а количество узлов - 34×48?

8) Рассчитайте количество узлов исследуемой области вдоль X и У направлений, если размеры модели 3450м×42325м, а шаг сетки вдоль направления X составляет 50м, а вдоль У - 25м?

7. РЕДАКТИРОВАНИЕ МОДЕЛИ РАЗЛОМОВ. ПРОЦЕСС FAULT MODELING

В упражнении 1 была загружена модель разломов (**Faults**), которая расположена на панели **Models.** Основная цель данного упражнения - освоение навыков работы с поверхностью разломов, их редактирование и подготовка для построения геологической модели (сетки), в которой они учитываются.

Вы можете работать в проекте, который был сохранен в предыдущем упражнении, или открыть проект из директории D>Student_Education>Petrel>Project_EXC>Fault modeling> Fault modeling.pet.

Для работы в данном упражнении создайте новую модель. Для этого выберите процесс **Define model** на панели **Processes** во вкладке **Corner point gridding (рис.7.1)** и в поле **Model name** введите название модели **Corner point gridding (рис.7.2)**. Нажмите **OK**.

Рис.7.1.

	Define model	×
Define model		
Model name: (Comer point gridding] 💽
✓ Apply	✓ OK 🗡 Cancel	

Рис.7.2.

Созданная модель под названием Corner point gridding отобразилась на панели Models (рис.7.3).

Перед тем, как совершать следующие действия, отобразите разломы из модели Model_1 в 3D window (рис.7.4). Обратите внимание, что все поверхности состоят из вертикальных отрезков - пилларов. <u>Пиллар - это вертикальная, линейная или искривленная линия,</u> состоящая из двух или более точек. Объединенная группа пилларов составляет поверхность разлома и определяют его форму и наклон. Пиллары используются прежде всего для создания структурного 3D каркаса (при работе с процессом Pillar gridding)

Далее раскройте модель Model_1 на панели Models и нажмите правой клавишей мыши на вкладку Faults и выберите Convert to fault sticks (рис.7.5). Совершив данную процедуру, поверхности разломов переводятся в набор пилларов (но при этом информация о том, что каждой поверхности разломов соответствует свой набор пилларов (линейных отрезков), сохраняется).

Рис.7.5.

Пиллары расположены на панели **Input** и разделены на группы, соответствующие поверхностям разломов (**рис.7.6**).

Рис.7.6.

Визуализируйте пиллары в **3D window** (**рис.7.7**). Как уже было сказано выше, поверхности разломов превратились в набор линейных отрезков.

Рис.7.7.

Совершим обратный процесс - превратим пиллары в поверхность разломов. Данная процедура особенно необходима в тех случаях, когда в качестве входных данных загружены пиллары, а не готовые поверхности разломов, как в нашем случае.

Нажмите на модель Corner Point Gridding на панели Models, сделав ее жирной. Таким образом, все результаты процедур и операций будут сохранены в данной модели. Нажмите правой клавишей по папке Fault sticks from Fault model на панели Input и выберите процедуру Convert to faults in Fault model (рис.7.8).

Рис.7.8.

В открывшемся диалоговом окне (**рис.7.9**) в поле **Make a pillar for every** введите 3, это значит, что поверхности разломов будут построены на основе каждого третьего пиллара, а все остальные учитываться не будут; в поле **Maximum search distance...** введите 300000, т.е. каждый пиллар "ищет" следующий на расстоянии не более, чем 300000 м. Нажмите **OK**.

🔀 Convert to fault in the active – 🗖 🗙
Make a new fault from selected object and add it to the active fault model. Possible sources are:
IIII Fault sticks Ø Fault surface ⇒ G III Fault interpretation Folder containing fault sticks, surfaces or interpretations
You have to connect the faults together manually after this operation.
Make a pillar for every 3 th fault sticks.
Maximum search distance to nearest neighbor pillar: 300000
Extra height above 0% 50% 100% given min point and below given max point:
✓ OK K Cancel

Рис.7.9.

Созданные только что поверхности разломов отображены в модели Corner Point Gridding, которая предварительно была выделена (рис.7.10). Визуализируйте их в **3D window**.

Рис.7.10.

Как можно заметить, поверхности разломов построены на основе гораздо меньшего количества пилларов, по сравнению с **рис.7.4**.

Теперь сгенерируем поверхности по каждому первому пиллару. Удалите старые разломы, нажав правой клавишей по вкладке **Faults** и выбрав **Delete content** (**рис.7.11**).

Рис.7.11.

Повторите процедуру, начиная с нажатия правой клавишей по папке Fault sticks from Fault model на панели Input и выбирая процедуру Convert to faults in Fault model (рис.7.8). В открывшемся диалоговом окне (рис.7.9) в поле Make a pillar for every введите 1, это значит, что поверхности разломов будут построены на основе каждого пиллара; в поле Maximum search distance... введите 300000. Нажмите OK. (Не забудьте выделить модель Corner point gridding на панели Models).

Новые поверхности разломов отобразились в модели Corner point gridding на панели Models (puc.7.12). Как видно по рисунку, созданные поверхности в точности повторяют исходные разломы.

Рис.7.12.

Далее освоим навыки редактирования разломов. Нажмите на процесс Fault modeling на вкладке Corner point gridding панели Processes, сделав его жирным (puc.7.13).

Рис.7.13.

Новые иконки появились на функциональной панели справа, и новые опции стали доступны в меню Petrel.

Закрасим поверхности разломов. Для этого нажмите на иконку (Toogle fill between pillars). Можно изменить цвет поверхности каждого разлома. Для этого выделите разлом, нажав на него левой клавишей мыши (он станет жирным, а в 3D окне "подсветится"), а затем щелкните правой клавишей и выберите Show settings. В открывшемся диалоговом окне, можно изменить название разлома в поле Name, а также цвет разлома в поле Color (рис.7.14).

G	Settings for 'Fault 1'
🕕 Info 🚻 Statistics	Structural analysis
Name:	Fault 1
Color:	
Type:	Fault 6
Comments	
	^
	×
Petrel filename: (Object c	an't be saved separately)
Orig. filename: (Made by	' Petrel)
	✓ Apply ✓ OK ズ Cancel

Рис.7.14.

Далее отредактируем сами разломы.

1) Объединение разломов. При построении структурного каркаса геологической модели, поверхности разломов играют ключевую роль. Как можно заметить, в загруженной модели разломов имеются поверхности, очень близко расположенные друг к другу. Эта ситуация чаще всего нефизична и должна быть исправлена, т.е. такие разломы должны быть соединены в одну поверхность. Выделите модель Corner point gridding и процесс Fault

modeling. Нажмите на иконку Select/pick mode (P). Выделите левой кнопкой мыши пиллар разлома номер 2 (Fault 2) - действие 1 на рис.7.15, нажмите на клавишу Ctrl и нажмите на пиллар разлома номер 1 (Fault 1) - действие 2 на

рис.7.15. Далее кликните на иконку (Connect two faults), совершая операцию

соединения разломов. Откроется диалоговое окно (**рис.7.16**), в котором предлагается "приписать" поверхность, построенную между выделенными пилларами разлому №2 (extend fault 'Fault 2') или создать новый разлом. Выберите режим extend fault 'Fault 2' и нажмите OK.

Рис.7.15.

Connect pillars	×
	?
O Extend fault 'Fault 1'	\$
Extend fault 'Fault 2'	\$
Create a new fault	¢
O Merge 'Fault 1' and 'Fault 2' into one fault	🎲 + 🎲
Fit the connected pillar to both fault planes	
✓ ОК	★ Cancel

Рис.7.16.

Как видно по рис.7.17, разломы 1 и 2 соединились.

Рис.7.17.

Проделайте такую же процедуру с разломами 3 и 4. Разъединить разломы можно путем выделения двух пилларов (при активном режиме

Select/pick mode (P)) и нажатием на иконку (Disconnent fault).

2) Добавление и удаление пилларов. Для того, чтобы вставить пиллар между двумя другими,

активируйте режим Select/pick mode (P), нажав на иконку Далее выберите два каких нибудь пиллара внутри одного разлома, не забывая при этом зажать клавишу Ctrl, и нажмите

на иконку (Add pillar between). Новый пиллар появится между двумя отрезками, которые были выбраны.

Удалить пиллар можно выбрав, кликнув на него левой клавишей мыши при активном режиме **Select/pick mode** (**P**) и нажав на клавиатуре **Delete.**

3) Расширение границ разломов путем добавления новых пилларов. Выделите крайний

(граничный) пиллар разлома 5 (Fault 5) и нажмите на иконку [[] (Add pillar to end) (puc.7.18).

Рис.7.18.

К данному граничному пиллару добавится еще один (рис.7.19). Обратите внимание, что расстояние между граничным пилларом и теми, что справа и слева от него, одинаковое.

Рис.7.19.

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) С помощью какой процедуры можно создать новую модель?

2) Что такое пиллар? Для чего они используются в Petrel?

3) С помощью какой процедуры "трансформировать" разлом в набор пилларов? На какой панели будут находиться эти пиллары и в какой вкладке (папке)?

4) С помощью какой процедуры "превратить" набор пилларов в поверхность разлома? Какие особенности встречаются при выполнении данной процедуры?

5) Как называется процесс, предусмотренный в Petrel, для редактирования разломов?

6) С помощью каких инструментов можно соединять, разъединять разломы, добавлять и удалять пиллары, расширять разломы?

8. ПРОЦЕССЫ GEOMETRY DEFINITION, FAULT FRAMEWORK MODELING И HORIZON MODELING. ФОРМИРОВАНИЕ СТРУКТУРНОГО КАРКАСА, УЧИТЫВАЮЩЕГО РАЗЛОМЫ

Процессы, расположенные на вкладке Structural framework панели Processes также формирует модель разломов, которая в дальнейшем может быть использована для 3D построений. Но если сравнивать с процессом Fault modeling, процесс Failt framework modeling, о котором говорится в данном упражнении, создает модель разломов автоматически, без возможности ручного редактирования. А процесс Horizon modeling создает горизонты (или поверхности), в которые данные разломы будут встроены.

Для работы в данном упражнении откройте проект D>Student_Education>Petrel>Project_EXC>Structural framework> Structural framework.pet или продолжайте работать в проекте, который был сохранен в предыдущем упражнении.

Для начала создадим новую модель, в которой будут представлены разломы. Перейдите на вкладку Structural framework на панели Processes и выберите процедуру Geometry definition (puc.8.1). Данный процесс позволяет определить граничные значения области моделирования.

Рис.8.1.

Выбрав данный процесс, откроется диалоговое окно (рис.8.2). В поле Create new введите название модели " Structural framework ". Для того, чтобы заполнить поле Geometry, необходимо определить геометрические размеры модели. В более ранних упражнениях была создана простая сетка 3D grid. Именно ее используем для определения данных параметров. Щелкните правой клавишей мыши по сетке 3D grid, которая была создана в упражнении 6 и выберите Show settings (рис.8.3).

)		Geometry definiti	on		X
Define geon	netry Hints				
🔀 🖲 Cre	ate new: Structural	framework	Domain: () Time	
🥒 🔵 Edi	t existing:	~	0	Depth Depth	
	Get ge	ometry from selected	Autom	atic coarsening	?
Geometry			Inline:	Crossline:	?
Origin:	0	0			
l axis:	10000	0			
Jaxis:	0	10000			
Width:	10000.0000000	Z extents			- 김 🛛
Height:	10000.0000000	Shallowest:			
Rotation:	0.00	Deepest:			
	Jaxis	Boundary:			?
	Rotation	1 The b ignore used	oundary poly ed when the for horizon mo	gon is currently /BM method is odeling.	
Grid incre	ment				- ?
lincrem	ent: 100	Coarsenin	g: 1	-	
J increm	ent: 100	Nodes:	101 x 101		
		🗸 Apply	✓ 0	K 🗡 Can	cel

Рис.8.2.

Рис.8.3.

В открывшемся диалоговом окне перейдите на вкладку **Statistics (рис.8.4).** На данной вкладке указано минимальное и максимальное значения X и Y координат расчетной области,

а также расстояние между минимальным и максимальным и максимальным значениями координат (столбец **Delta**).

#	Settin	gs for '3D grie	d'	×			
🕕 Info 🗾 M	lapping 📊 Sta	tistics 🛅 Ope	erations Outpu	ıt			
Axis	Min	Max	Delta	^			
X Y Elevation dept	37400.00 17200.00 -1554.59	42800.00 21150.00 -1275.48	5400.00 3950.00 279.10				
Lat Long		-		~			
Description			Value	^			
Is depth converter Is upscaled ? Is stair-stepped ? Has explicit layer Has piecewise-lir Number of iconiz Number of iconiz Number of faults: Number of segme Number of prope	ed ? map ? near pillars ? red horizons: red zones: : ents: rties:		No No No 3 2 0 1				
Grid cells (nl x nJ	Ix nGridLayers)	1	108 x 79 x 15	¥			
	Copy to output sheet: V List 1 V List 2 Reset						

Рис.8.4.

В диалоговое окно Geometry definition (рис.8.2) в поле Origin введите 37400 и 17200 соответственно, а в поле Width и Height значения 5400 и 3950. Поля I axis и J axis заполнятся автоматически. В поле Boundary, нажав на синюю стрелку, "перетащите" границу Edge around Hd.dat из панели Input. В поле Grid Increment указаны шаги сетки (в метрах), а в поле Nodes количество узлов сетки создаваемой расчетной области (рис.8.5). Нажмите OK. Выплывет предупреждение, что заданные границы выходят за пределы Edge around Hd.dat (рис.8.6). Игнорируйте, нажав OK.

		G	eometry definition	on		X
Define geom	etry Hints					
🔀 🖲 Crea	ate new: : existing:	Structural fro	amework V	Domain: 🔾) Time) Depth	
		Get geom	netry from selected	Automa	atic coarsening	?
Geometry				Inline:	Crossline:	?
Origin:	37400		17200			
l axis:	42700		17200			
Jaxis:	37400		21100			
Width:	5300.0000	0000	Z extents			- ?
Height:	3900.0000	0000 🖨	Shallowest:			
Rotation:	0.00	-	Deepest:			
	J axis	h ≁ I axis Rotation	Boundary: The bo ignore used fo	oundary polyg d when the V or horizon mo	Edge around gon is currently /BM method is odeling.] ?
Grid increr	ment —					- ?
lincreme	ent: 100		Coarsening	j: 1	•	
Jincrem	ent: 100		Nodes:	54 x 40		
			✓ Apply	 ✓ 0 	K KCan	cel

Рис.8.5.

Новая модель Structural framework отобразилась на панели Models.

Далее необходимо создать модель разломов из пилларов, которые расположены на панели **Input** и были созданы в упражнении 7. Перейдите на вкладку **Structural framework** на панели **Processes** и выберите процедуру **Fault framework modeling (puc.8.7).** Откроется диалоговое окно (**puc.8.8**), в которое надо перетащить пиллары из панели **Input**. В Petrel существует упрощенная процедура добавления большого количества элементов в диалоговые окна, будь то поверхности, отбивки, пиллары и т.д.

Рис.8.7.

1							Fault f	ramework	mo	deling				
Μ	odel fault	ts Hints												
1	P Edit ex	isting: Structur	al framework	k ⊻										
Compute faults Edit relationships Settings														
all and a second and a second and a second and a second a											? Fault inputs: ?			
	Index	Fault	Color	Size	Status	Grid interval	Smoothing	Tip loop style		Tip loop sculpting diameter	Extrapolation distance	Gridding plane	Fault top	Input #1
	1 🛃	Fault	¥	0	🔀 New	100.00	2	Convex hull	¥	400.00	50.00	Plane1 V	⇒	•
												🗸 Ap	oply 🗸 C	K KCancel

Рис.8.8.

Для этого:

1) перейдите на панель **Input**, и нажмите на набор пилларов **Fault 1**, который соответствует первому разлому (**рис.8.9**).

2) Затем нажмите на иконку **Multiple drop (рис.8.8)** и на синюю стрелку около меню **Input #1.** Все пиллары отображены в окне **Fault framework modeling (рис.8.10).** Нажмите **OK**.

Рис.8.9.

7										Fault f	framework	mo	deling						
Mo	ode	el fau	ults Hints																
/	E	Edit e	xisting: Structure	al framew	vorł	k V													
Compute faults Edit relationships Settings																			
E C C C C C C C C C C C C C C C C C C C										Fault	inputs: <table-cell></table-cell>								
	Ind	dex	Fault	Color	r	Size	:	Status	Grid interval	Smoothing	Tip loop style		Tip loop sculpting diameter	Extrapolation distance	Gridding plane		Fault top	Inp	ut #1
ŀ	1	1	Fault 1		~	30		New	100.00	2	Convex hull	¥	400.00	50.00	Plane1	-	♦	⇒ {	K Fault 1
1	2	1	Fault 2		~	8		New	100.00	2	Convex hull	~	400.00	50.00	Plane1	/ -	♦	⇒ {	Fault 2
	3	1	Fault 3	•	~	18		New	100.00	2	Convex hull	~	400.00	50.00	Plane1	/ -	*	\Rightarrow	Fault 3
4	4	1	Fault 4	•	~	10		New	100.00	2	Convex hull	~	400.00	50.00	Plane1	/ =	♦		Fault 4
!	5	M	Fault 5	•	~	6		New	100.00	2	Convex hull	~	400.00	50.00	Plane1	/ =		⇒ {	Fault 5
_															✓ A	pply	✓ OK	(× Cancel

Рис.8.10.

Созданные разломы при помощи данного процесса отобразились в модели **Stractural Framework** во вкладке **Faults (рис.8.11).** Визуализируйте их в трехмерном окне.

Рис.8.11.

Следующим этапом при формировании структурного каркаса является построение горизонтов, в которых учитываются поверхности разломов, созданных при помощи процесса Fault framework modeling. Для создания данных поверхностей воспользуемся процедурой Horizon modeling, которая расположена на вкладке Structural framework на панели Processes (рис.8.7). Выбрав данную опцию, откроется диалоговое окно (рис.8.12). В поле Input #1 перетащите поверхности Z(TOP), Z(MID) и Z(BASE) из панели Input способом, который был описан для пилларов. В поле Horizon modeling technique выберите режим Fault center and dislocation.

	Horizon modeling		
lodel horizona Hinta			
Edit existing Structural framework v Horizon modeling technique	Refine and create zone model Refine and create zone model Coarse resolution		
Compute horizons Common settings Fault settings Agonthen	settings Secuence: 7 Hotoon hose 7 Conformation	Snothness Dinut D	
Index Horizon Sequence Color Status	Horizon type Conforms to Smoothness Well tops	Non-filtered Isochore	input #1
1 🙀 Horazon 1 🗸 New	Conformable v None v 35 📫	⇒ ⇒ =	\$
			J Annaho J OK K Concord

Рис.8.12.

Выбрав режим Fault center and dislocation появится опция Apply geological rules and create zone model (puc.8.13), активировав которую становится возможным использование созданных горизонтов при работе с другими процессами. Нажмите OK. Процесс построения поверхностей может занять некоторое время.

1		ň							Horizon	modeling		
Edit ex Horizon m Compute	odeling tech	ctural fran mique [nework Fault center g ettings Fault	v nd delocation		ovo	eological rules	and create :	one model	2		
_9 -8	-8 80	N ^B q	1 7 8	1	4		Hotson	type: 🔟	Conforme to:	🔄 Snoothing 📝	input:	
Index	Horizon	Color	Calculate	Status	Horizon type		Conforms to	o Smooth	hing Wells	opa Non-filtered data	f Isochore	Input #1
1 59	Z (TOP)			New	Conformable	¥	None	¥ 1				 Z (TOP)
2 18	Z (MID)			New	Conformable	-	None	4 T	ж¢		100	 Z (MD)
3 🖼	Z (BASE)			New	Conformable	4	None	v 1	-		100	 Z (BASE)
										_		√ Apoly ✓ OK 🛛 🗚 Can

Рис.8.13.

Поверхности отобразились на вкладке Horizons модели Structural Framework (рис.8.14).

Рис.8.14.

Отобразите построенные поверхности в окне визуализации. Как можно заметить, внутри горизонтов наблюдаются разрывы в местах пересечений с поверхностями разломов (**рис.8.15**).

Сохраните проект.

Рис.8.15.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) В чем основное отличие процесса Fault framework modeling от процесса Fault modeling?

2) Какой процесс используется для создания новой модели, а также на какой панели и вкладке он расположен?

3) Какие входные данные используются для создания поверхности разлома при работе с процессом Fault framework modeling?

4) Опишите процедуру добавления большого количества входных данных (пилларов, поверхностей и т.д.), используя пиктограмму **Multiple drop**.

5) Какой процесс используется для создания горизонтов, учитывающих разломы, которые были созданы при помощи процедуры **Fault framework modeling**? На какой панели и вкладке данный процесс расположен? Опишите основные особенности данного процесса.

9. ПРОЦЕСС FAULT MODEL FROM STRUCTURAL FRAMEWORKS. ПРЕОБРАЗОВАНИЕ РАЗЛОМОВ ИЗ STRUCTURAL FRAMEWORK B CORNER POINT GRIDDING

После построения структурного каркаса разломов может возникнуть необходимость в его ручном редактировании. Для возможности редактирования разломов, созданных при помощи процесса Fault framework modeling, они должны быть описаны ключевыми пилларами, сгенерированными при помощи процесса Fault modeling. Иными словами, задача сводится к преобразованию модели разломов, созданных при помощи процесса Fault framework modeling, к формату поверхностей, которые описаны пилларами и могут быть отредактированы, используя процесс Fault modeling.

Прежде чем начинать выполнять данное упражнение, необходимо сделать небольшое замечание. Можно заметить, что модель разломов, сформированная в предыдущем упражнении при помощи Fault framework modeling, уже итак создавалась на основе пилларов. Это действительно так. Особенность процесса Fault model from structural framework заключается в том, что используя его основные инструменты, поверхность разлома можно описать необходимым количеством пилларов, вручную задавая расстояние между ними и количество точек, из которых они состоят, что позволит в дальнейшем проводить более качественное редактирование разлома.

Для работы в данном упражнении, откройте проект D>Student_Education>Petrel>Project_EXC> Fault model from framework > Fault model from framework.pet или работайте в проекте, который был сохранен в предыдущем упражнении.

Откройте процесс Fault model from structural framework, из вкладки Corner point gridding на панели Processes (рис.9.1). В открывшемся диалоговом окне (рис.9.2) в поле Create new предлагается создать новую модель New model, а модель разломов конвертируется из модели Structural framework, которая была создана в упражнении 8. В поле Horizons обозначены нижние и верхние поверхности горизонтов, также созданные при работе с процессом Horizon modeling в предыдущем упражнении, т.е. это уровни по которым разломы будут обрезаны (рис.9.3). В нижней части данного окна в поле Set all shape points предлагается создавать пиллары из 2-х, 3-х, или 5 точек (рис.9.4); в поле Padding above/below interval предлагается поднять (опустить) уровень разломов над поверхностями Z(TOP) и Z(BASE) на нужное количество метров (50 м на рис.9.2). В поле Pillar spacing указано расстояние между пилларами (200 м, рис.9.2). Нажмите Apply.

Рис.9.1.

🌜 Fault model fro	om structu	ral framev	vork		-	1000	×					
Fault model from str	ault model from structural framework											
Create new	Create new: New model											
Edit existing	Edit existing: New model											
Structural frame	Structural framework											
Horizons	Horizons											
Top: 🛋	Z (TOP)											
Base: 🛋	Z (BASE)											
Faults							?					
	All None											
N	lame	Include	Shape points		Result quality	Result status						
🕨 🖬 Fa	ult 1	V	2	•								
🚅 Fa	ult 2	V	2	•								
🛱 Fa	ult 3	V	2	•			_					
🚅 Fa	ult 4	V	2	•			_					
🛱 Fa	ult 5	V	2	•								
Set all shape points: 2 3 5 Add truncation												
			✓ Apply	✓ OK	K Cancel							

Рис.9.2.

Рис.9.4.

В поле Shape points (**рис.9.2**) количество узлов, из которых состоит пиллар, можно задавать для каждого из разломов отдельно.

Самостоятельно преобразуйте разломы, варьируя параметры Set all shape points, Padding above/below interval, Pillar spacing, не забывая при этом сохранять изменения в уже созданную модель New model, выбрав опцию Edit existing на рис.9.2. При завершении работы с данным окном, нажмите OK.

После того, как разломы, созданные при процедуре **Fault framework modeling** в упражнении 8, описаны при помощи пилларов, их можно редактировать, используя **Fault modeling** (на вкладке **Corner point gridding**). Основы работы с данным процессом описаны в упражнении 7.

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) Сформулируйте, для чего используется процесс Fault model from structural framework? Для чего нужны поверхности, созданные при работе с процессом Horizon modeling в предыдущем упражнении?

2) Что такое двух-, трех- и пятиточечные пиллары?

3) Сформулируйте, для чего можно увеличивать или уменьшать расстояние между пилларами внутри разлома (**Pillar spacing**)?

10. ПРОЦЕСС STRUCTURAL GRIDDING. ПОСТРОЕНИЕ СЕТКИ НА ОСНОВЕ РАЗЛОМОВ И ПОВЕРХНОСТЕЙ, СОЗДАННЫХ В ПРОЦЕССЕ STRUCTURAL FRAMEWORK

В данном упражнении будут освоены навыки построения сетки на основе разломов и поверхностей, которые были созданы с использованием процедур, расположенных на вкладке **Structural Framework** в упражнении 8.

Для работы в данном упражнении откройте проект D>Student_Education>Petrel>Project_EXC> Structural Gridding > Structural Gridding.pet или работайте в проекте, который был сохранен в предыдущем упражнении.

Создайте новую модель. Для этого откройте процесс Define model на вкладке Corner point gridding панели Processes и введите название модели Structural gridding (рис.10.1). Нажмите OK. Данная модель отображена на панели Models.

JP Processes	→ 4 ×	
 Structural framework Geometry definition Fault framework model Horizon modeling Corner point gridding Structural gridding Define model Fault model from struct Fault modeling Pillar gridding Make horizons Depth convert 3D grid 	Define model Define model Model name: Structura	I gridding ? K Cancel Structural framework structural f Structural framework structural Structural framework structural
Make zones	vorkflows	Structural framework structural framework structural

Рис.10.1.

Далее откройте процесс Structural gridding на вкладке Corner point gridding панели Processes. В открывшемся диалоговом окне (puc.10.2) в поле Create new введите имя сетки Structural grid 1. <u>Важно</u>: нажмите на модель Structural Framework на панели Models, сделав ее жирной. Тем самым, сетка Structural grid 1 будет использовать разломы и поверхности, относящиеся к модели Structural Framework.

В поле Structural framework автоматически выбраны поверхности и разломы из одноименной модели. В поле Zone layering предлагается разбить зоны между поверхностями на слои.

Structural gridding			X										
Generate structural grid													
🗴 💿 Create new:	O Create new: Structural grid 1												
🥒 🔘 Edit existing:	C Edit existing:												
Structural framework:	Structural framework: 🔿 键 Structural framework												
Setup 🗂 Geometry 📢 Faults													
General settings	General settings Advanced options												
Create grid type: Stair-s	step 🔻	Use minimum cell thicknes	s: 1										
Allow reverse faulting]	Include proportional/fractional	ons, start from: Top 🔻										
Vertical interval	-		?										
Horizon Co	olor Use Well to	os Region boundary											
🛃 Z (TOP)	▼ ▼ 🔿												
Z (MID)													
Z (BASE)	▼ 🛛 🔿												
Zone layering			?										
Name Colo	or Horizons	Division	Layer gui										
Zone 1	Z (TOP) - Z (MID)	Proportional Number of la	yers: 10										
Zone 2	▼ Z (MID) - Z (BASE) [I	roportional Number of la	yers: 10										
•			4										
		 Apply 	✓ OK 🖌 Cancel										

Рис.10.2.

Далее перейдите на вкладку Geometry диалогового окна Structural gridding (рис.10.3). «Перетащите» Edge around Hd.dat в поле Boundary, нажав на стрелку. В поле Grid column size введите шаг сетки по X и Y направлениям (в метрах). Количество узлов сетки указано в колонке Column count (approx.) поля Statistics.
Structural gridding			×
Generate structural grid			
 Create new: Edit existing: Structural framew Setup Geo Areal extent Boundary: Grid column sizes I increment: J increment: Coarsening: 1 	Struc imit i ork: i i i i i i i i i i i i i i i i i i i	tural grid 1 3D grid Structural framework	?
Rotation: 0.0	00		
Rotation: 0.0	0		 ?
Rotation: 0.0 Statistics Direction	Column size	Column count (approx.)	?
Rotation: 0.0 Statistics Direction	Column size	Column count (approx.)	?
Rotation: 0.0 Statistics Direction 1 J	Column size 100 100	Column count (approx.) 53 39	?
Rotation: 0.1 Statistics Direction 1 J Total	Column size 100 100 -	Column count (approx.) 53 39 2067	?
Rotation: 0.1 Statistics Direction 1 J Total	00 Column size 100 100 -	Column count (approx.) 53 39 2067	

Рис.10.3.

На вкладке **Faults** данного диалогового окна (**рис.10.4**) указаны разломы, которые будут учитываться при построении сетки. При необходимости любой из разломов можно исключить из данного процесса сняв галочку из соответствующего окошка. Нажмите **OK**. Сетка **Structural grid 1** появилась в модели **Structural gridding**.

Generate structural grid 1	Structural gridding	
© Create new: Structural grid 1 © Edit existing: 30 grid Structural framework: Structural framework Setup © Geometry P Faults Included faults Pault Use Pault 1 Pault 2 Pault 3 Pault 3 Pault 5	Generate structural grid	
Structural grid 1 Structural framework S		
 Edit existing: Structural framework: Structural framework: Setup © Geometry Faults Included faults Fault 1 Fault 2 Fault 2 Fault 4 Fault 5 	📰 💿 Create new:	Structural grid 1
Structural framework:	🥒 🔘 Edit existing:	🗰 3D grid 👻
Setup Ceometry Included faults All None Fault Fault <	Structural framework:	Structural framework
Included faults All None Fault Use Fault 1 Image: Comparison of the second	🚰 Setup 🎒 Geometry 🗾	Faults
All None Fault Use Fault 1 Image: Comparison of the second of the se	Included faults	?
Fault Use Fault Ø Fault <		All None
Fault 1 IV Fault 2 IV Fault 3 IV Fault 4 IV Fault 5 IV	Fault	Use
Fault 2 Ø Fault 3 Ø Fault 4 Ø Fault 5 Ø	🚅 Fault 1	
Fault 3 Image: Comparison of the second se	🚅 Fault 2	
Fault 4 V Fault 5 V	🚅 Fault 3	
Fault 5	🚅 Fault 4	
	Fault 5	
🗸 Apply 🖌 OK 🖌 Cancel		Apply OK KCancel

Рис.10.4.

Рис.10.5.

Отобразите сетку и разломы в 3D окне. Обратите внимание, что разломы из плавных поверхностей превратились в «зигзагообразные», т.е. встроились в построенную сетку (рис.10.6).

Сохраните проект.

Рис.10.6.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) В чем особенность процесса Structural gridding?

2) Для чего, при работе с процессом Structural gridding, нужно выделить модель Structural framework?

3) Опишите процедуру и особенности создания сетки, при работе с процессом Structural gridding?

4) Проанализируйте, как изменится сетка и разломы, встроенные в нее, при увеличении или уменьшении шага сетки?

11. ПРОЦЕСС PILLAR GRIDDING. РУЧНОЕ РЕДАКТИРОВАНИЕ СЕТКИ

Процесс **Pillar Gridding** - это процесс генерации пространственного скелета (структурного каркаса) на основе разломов, которые (при необходимости) могли быть отредактированы с использованием процедуры **Fault modeling** (упражнение 8). Основная особенность и отличие процесса **Pillar gridding** от **Structural gridding** в том, что при работе с **Pillar gridding** имеется возможность редактировать направления сетки вручную путем задания «трендов» или «приказывать» сетке придерживаться направления разломов. Данный процесс чаще всего является вспомогательным для построения расчетной гидродинамической сетки, т.к. вид, масштаб и структура ячеек играет важную роль при фильтрационных процессах в нефтяных коллекторах.

После процесса <u>не будет</u> создана готовая сетка, которая опишет свойства геологической модели. На основе процесса **Pillar gridding** будут созданы структурные каркасы, «одетые» на разломы. Данные структурные каркасы будут представлять собой набор пилларов, по которым будут построены горизонты (процесс **Make horizon**)

Для работы в данном упражнении откройте проект **D>Student_Education>Petrel>Project_EXC> Pillar_gridding > Pillar gridding.pet** или работайте в проекте, который был сохранен в предыдущем упражнении.

Для работы в данном упражнении понадобится модель разломов из модели Corner point gridding.

Откройте процесс Pillar gridding на вкладке Corner point gridding на панели Processes (рис.11.1).

Рис.11.1.

Откроется диалоговое окно (puc.11.2). Выделите модель Corner point gridding на панели Models, таким образом подтверждая, что новый каркас (Skeleton) будет создан в данной модели. В поле Create new введите имя модели Pillar gridding. В поле I- и J-increment вводятся шаги сетки по X и Y направлениям. Оставьте данные значения по умолчанию. Поставьте галочку около Insert horizon objects; поставьте галочку около Make zig-zag type faults (создание зигзагообразных разломов). <u>Не нажимайте Apply</u>.

Pillar gridding	with 'Corner	point gridding/	Fault m 🗶
Faults	Le	gend	Hints
Settings	More	Geometry	Expert
Result 3D grid -			
💽 💿 Create ne	w: Pillar griddi	ng	
🥖 🔘 Edit existir	ng (current activ	ve 3D grid)	
l increment:	100		
J increment:	100		
Insert hori	zon objects		?
📃 Edge limit	by trends and o	firected faults	?
	Mir	imum curvature :	settings
Layout of arbitrary	directed faults		?
Make zig-	zag type faults		
For	ce equally spac	ed cells along fa	ult
More	ve grid cells to (closest point on f	ault
	/ Apply	√ ОК	K Cancel

Рис.11.2.

Для дальнейшей работы непрерывную границу области Edge around Hd.dat (на панели Input) необходимо конвертировать в сеточную область. Перейдите на панель Input, нажмите правой клавишей по Edge around Hd.dat и выберите Convert to grid boundary (puc.11.3). Граница Boundary отображена в модели Corner point gridding на панели Models (puc.11.4). (Процесс Pillar gridding при этом все еще открыт).

Рис.11.3.

🛱 Models 🗸 🗸	ą	×
▷ 📁 🔲 Model_1		
🛛 🧊 🔲 Comer point gridding		
4 🏠 📃 Fault model		
4 🎯 📃 Faults		
🐯 🔲 Fault 1		
🔯 🔲 Fault 2		
😚 🔲 Fault 3		
😚 📃 Fault 4		
🕼 🔲 Fault 5		
Trends		
O Boundary		
📩 Input 🙀 Models 🔢 Results 🗾 Templates		
Рис.11.4.		

Далее работы необходимо отобразить разломы **Faults** и границу **Boundary** в 2D окне, а также выполнить некоторые предварительные процедуры. Перейдите на вкладку **Geometry** и оставьте галочки только около пилларов с формой **Vertical** и **Linear**, таким образом подтверждая, что пиллары сетки не будут изогнутыми и пересекающимися (**puc.11.5**).

I Pillar gridding with 'Petrel RE/Fault model'	X
Settings More Geometry Expert Faults Legend Hi	nts
Pillar geometry Vertical Linear Listric Curved I I I I I I I I I I I I I I I I I I I	?
Tolerance distance: 10 📝 % of increment	
Faulted pillar geometry O Use closest pillar in fault O Create pillar geometry type: ✓ Vertical ✓ Linear Tolerance distance:	
Resample shape points (recommended)	?

Рис.11.5.

Далее перейдите на вкладку **More** и выберите режим построения **Vector field method.** Нажмите **Apply.** Сетка построенная на основе процесса **Pillar gridding** отображена в 2D окне (**puc.11.6**). Как видно по данному рисунку, поверхности разломов были встроены в сетку в виде зигзагообразных линий (т.к. выбран режим **Make zig-zag type faults**).

Далее необходимо редактировать данную сетку, используя основные методы, предлагаемые в Petrel.

1) «Точное» встраивание сетки по направлению выбранного разлома.

Активировав процесс **Pillar gridding**, на правой панели окна отобразились различные иконки для редактирования сетки. Для того, чтобы сетка точно встроилась в выбранный разлом

используются иконки и и и и и (Set I- direction (или J)). Перейдите в режим Select/pick mode и щелкните на разлом находящийся, например, в правом верхнем углу, а затем на иконку . Разлом окрасился в зеленый цвет. Нажмите Apply. Как можно заметить, сетка полностью встроилась в выбранный разлом. Повторите данную процедуру с другими разломами, выбирая данные режимы (рис.11.7). При работе в режиме и, разлом окрашивается в красный цвет. Если разлом имеет преимущественное направление вдоль оси X, не рекомендуется использовать режим и наоборот. В противном случае, Petrel выдаст ошибку или

Не нажимайте ОК, не будучи уверенными, что редактирование сетки завершено.

зависнет.

Рис.11.6.

Рис.11.7.

Если сетка, встроенная в разлом не устроила Вас, можно сделать обратную процедуру.

Перейдите в режим Select/pick mode , кликните на тот разлом, который необходимо

исключить из тех, по которым происходит встраивание сетки и нажмите на иконку (Set arbitrary direction (A)). Нажмите Apply. Вы заметите, что теперь сетка не «подстраивается» под данный разлом.

2) Указатель направлений, создание трендов.

Редактировать сетку можно не только при помощи ее встраивания в поверхность разлома, но

и при помощи «ручного» указания направления сетки, используя режимы (New I-trend (или J)).

Предварительно отредактируйте разломы так, как показано на рис.11.7. Перейдите в режим

, появится курсор , с помощью которого вручную рисуются **тренды** – отрезки, «приказывающие» сетке встраиваться в них. Для того, чтобы «замкнуть» тренд, то есть закончить его рисование, кликните два раза по точке его окончания. Нарисуйте вертикальное

направление, используя режим (рис.11.8).

Рис.11.8.

Перейдите в диалоговое окно режима **Pillar gridding** на вкладку **Faults** (puc.11.9). Нарисованные тренды отразились в меню **All trends**. Нажмите **Apply**.

Settings	More	Geometry	Expert			
Faults	1	egend	Hints			
Grid with visible	ed faults / trend	ls nds				
 Update lists from 	om visible	(2) Update visible f	rom lists			
Al faults		All trends				
Faults Fault 1 Fault 2 Fault 2 Fault 3 Fault 4 Fault 5						

Рис.11.9.

В результате созданных трендов сетка приобрела вид, соответствующий **рис.11.10.** Сетка точно встроилась в указанные направления, но, как видно по данному рисунку, довольно неудачно встроилась по направлению j-тренда. Для того, чтобы удалить данный тренд,

перейдите в режим Select/pick mode щелкните по данному тренду и нажмите Delete на клавиатуре. Кликните на Apply. Сетка отредактирована (puc.11.11).

Рис.11.10.

Рис.11.11.

Очень удобно редактировать тренды, используя режим select and edit/add points (E). Активируйте данный режим, и при помощи курсор мышки двигайте в любых направлениях любую из точек нарисованного тренда.

После завершения редактирования сетки нажмите **ОК**. Выйдет диалоговое окно, спрашивающее пользователя, действительно ли завершен процесс редактирования и можно ли генерировать структурный каркас (**рис.11.12**). Нажмите **ОК**.

Рис.11.12.

Построенный <u>каркас</u> Pillar gridding отображен в модели Corner point gridding на панели Models (рис.11.13).

Рис.11.13.

Отобразите каркас Skeleton и разломы Faults в 3D окне (рис.11.14). Обратите внимание, что построенные сеточные поверхности не являются горизонтами геологической модели, а лишь структурным каркасами, в которые врезаны разломы. Сохраните проект.

Рис.11.14.

12. ПРОЦЕСС MAKE HORIZONS. ВСТРАИВАНИЕ РАЗЛОМОВ В СТРУКТУРНЫЙ КАРКАС, СОЗДАНЫЙ В ПРОЦЕДУРЕ PILLAR GRIDDING

В предыдущем упражнении была создан структурный каркас, состоящий из пилларов. Следующим этапом при построении модели является встраивание разломов в созданный при помощи процесса **Pillar gridding** структурный каркас. Данный процесс осуществляется при помощи процедуры **Make horizons.**

Для работы в данном упражнении откройте проект **D>Student_Education>Petrel>Project_EXC> Make horizons > Make horizons.pet** или работайте в своем проекте, который был сохранен в предыдущем упражнении.

Откройте процесс Make horizons, который расположен на вкладке Corner point gridding на панели Processes.

В открывшемся диалоговом окне перейдите на вкладку **Horizons (рис.12.2)**. В данном упражнении в качестве начальных горизонтов будут использоваться поверхности из модели

Structural framework. Добавьте три строчки, нажав на иконку три раза и перетащите в поле Input#1 поверхности Z(TOP), Z(MID) и Z(BASE) из модели Structural framework (или из панели Input). Модель Corner point gridding должна быть активна, чтобы генерированные разломы были сохранены в ней. Нажмите OK.

Horizons Settings	1 1					🥙 Make horizons with 'Model_1/3D grid'								
Horizons Settings Faults Segments Well adjustment ? Uncertainty Hints														
Hints for the table: Horizon type: 🛜 Conform to: 😰 Use horizon fault lines: 🕜 Input: 👔														
Index Horizo	ⁿ Status	Smooth iterations	Use horizon -fault lines	Well tops	Input #1									
1 🥘 Z (TOP)	New	0	V Yes		🔿 🚼 Z (TOP)									
2 🤣 Z (MID)	New	0	V Yes		🔿 🚰 Z (MID)									
3 🧶 Z (BASE)	New	0	V Yes	\$	🔿 🔂 Z (BASE)									
4														

Рис.12.2.

Поверхности, построенные на основании сетки, созданной при процессе Pillar gridding отобразились в модели Corner point gridding в сетке с названием Pillar gridding (рис.12.3). Разбейте модель на слои, используя процесс Layering (puc.12.4, упражнение 6).

Рис.12.3.

Рис.12.4.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ (к упражнениям 11 и 12)

1) В чем главное особенность процесса **Pillar gridding**? Чем данный процесс отличается от процедур **Make simple grid**, **Structural framework** и **Structural gridding**?

2) В чем его основное преимущество процесса **Pillar gridding** от процедур создания сеток, описанных в предыдущих упражнениях?

3) Что будет создано при завершении работы с процессом **Pillar gridding**?

4) Какие входные данные используются для работы с процессом Pillar gridding?

5) В чем особенность использования трендов и направлений при редактировании сетки?

6) При помощи какого процесса поверхности модели встраиваются в структурный каркас? Каковы основные особенности данной процедуры?

13. СОЗДАНИЕ ФАЦИАЛЬНОЙ МОДЕЛИ. ПРОЦЕССЫ SCALE UP WELL LOGS И FACIES MODELING

После освоения навыков построения сеток различными методами, предусмотренными в Petrel, следующим этапом при построении геологической модели является создание моделей, характеризующих различные свойства геологических недр – пористость, абсолютная проницаемость, фации. Поле пористости и проницаемости строятся на основе каротажных данных (KP, KPerm), а поле фаций на основе "отрисованных" вручную в упражнении 4 фациальных колонок.

Для работы в данном упражнении откройте проект **D>Student_Education>Petrel>Project_EXC> Facies modeling > Facies modeling.pet** или работайте в своем проекте, который был сохранен в предыдущем упражнении.

На первом этапе построения фациальной модели необходимо «отобразить» фации, которые были "отрисованы" вручную, на сетку. У нас есть приличный выбор сеток для выбора той, на которой будем создавать интересующие нас поля – **3D grid** в модели **Model_1**, **Pillar Gridding** в модели **Corner point gridding** и **Structural grid 1** в модели **Structural gridding**.

В данном упражнении (и в следующих) предлагается использовать сетку **Pillar Gridding**, которая расположена в модели **Corner point gridding**. Проверьте, разбита ли данная сетка на слои, отобразив скважины и нажав галочку около **Edges**. Если сетка **Pillar Gridding** не разбита на слои, то выделите модель **Corner point gridding** (сделав ее жирной) и откройте процесс **Layering**, который расположен на вкладке **Corner point gridding** на панели **Processes**. Разбейте сетку таким образом, чтобы на каждую зону приходилось по 10 слоев (**рис.13.1**).

翼 Lay	ering with	'Corner	point gridd	ling/Pillar grid	dding'							x
Make	layers											
Commo	on settings											\square
	Build along:	Along	the pillars	•	?	Horiz	zons with	steep slopes			?	
0	🥰 🔳 Use	minimun	n cell thickne	ss: 1	?	√ Inclu	ide propa	rtional/fractions	s, start from:	Тор 👻	?	
Zones	specific setti	ngs —										
	Zone div	ision:	? Refe	rence surface:	?	Restore ero	ded: [Restore b	oase: ?			
	Name	Color	Calculate	1	Zone di	vision		Reference surface	Restore eroded	Restore base	Status	
	Zone 1		Ves 🗸	Proportional	Numbe	r of layers:	10		Yes	Yes	✓ Done	
	Zone 2		Ves 🗸	Proportional	Numbe	r of layers:	10		Yes	Yes	✓ Done	
								🗸 Ap	ply 🗸	ок	🗙 Cancel	

Рис.13.1.

Далее откройте процесс Scale up well logs, расположенный на вкладке Property modeling на панели Processes (puc.13.2). При помощи данного процесса, фациальная колонка будет "одета" на сетку вдоль скважин.

Откроется диалоговое окно (см. **рис.13.3**, при этом модель **Corner point gridding** и сетка **Pillar gridding** должна быть выделена). Выберите **Create new** и **Well logs** в поле **Input**, подтверждая тем самым, что в качестве входных данных используются каротажные данные из вкладки **Global well logs** на панели **Input**. В поле **Select** выберите **Facies**, тем самым фациальная модель будет строиться на основе фациальных колонок. Нажмите **OK**.

😫 Scale up well logs with 'Corner point gridding/Pillar griddin
Make property
Create new Show result in well section
🥖 💿 Edit existing:
Overwrite
Use local grid filter 🧭 💿 Replace and add new 🤗
Input Leave all other cells unchanged
📄 💿 Well logs
🖏 🔘 Welltop attributes
🐉 🔘 Point attributes
Select CALI
Settings Zones Zo
✓ Apply ✓ OK ズ Cancel

Рис.13.3.

На панели Models в модели Corner point gridding и сетке Pillar gridding в поле Properties появилась вкладка Facies(U) (рис.13.4).

Отобразите все скважины и **Facies(U)** в 3D окне **(рис.13.5).** Как видно по данному рисунку, фациальные колонки «легли» на сетку согласно ее слоистому разбиению.

Рис.13.5.

Для того, чтобы процесс Scale up well logs был более понятен, откройте окно Well section window, отобразите на нем каротажные данные Facies из панели Input, вкладки Global well logs и Facies(U) из модели Corner point gridding (puc.13.6). Как видно по данному рисунку, каждая из зон колонки Facies(U) разбита на 10 слоев.

Рис.13.6.

На следующем этапе построения фациальной модели будет использоваться процесс Facies modeling, который расположен во вкладке Property modeling на панели Processes (puc.13.7).

Активируйте (откройте) данную процедуру. В открывшемся диалоговом окне (рис.13.8) выберите Edit existing, тем самым для построения модели будут использоваться фации,

наложенные на сетку, и результирующее поле будет записано в Facies(U). Затем, кликнув левой кнопкой мышки на иконку с замочком, раскроется меню (рис.13.9).

□ ○ Create new ✓ ○ Edit existing: Image: Facies [U] Image:
Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the existing: Image: Constraint of the exist of the exi
Status: Is upscaled
Common Zone settings 😭 🔲 Global seed: 21322
Zones: Zone 1 - I - I - I - I - I - I - I - I - I -
Facies: No conditioning to facies. The zone is modeled in one single operation.
Method for zone/facies: Sequential indicator simulation
λ
✓ Apply ✓ OK

Рис.13.8.

Перейдите на вкладку **Facies**. В данной вкладке отображены виды фаций, используемые для построения модели и их процентное содержание (в скобках). При помощи синей стрелки перетащите фации **Shale** и **Sand** в правое окошко (Обратите внимание, что все действия делаются для Zone 1). Выберите метод построения **Sequential indicator simulation**. Нажмите **Apply**.

Make model Hints
🖬 🔘 Create new
🥒 💿 Edit existing: 🚹 Facies [U] 👻
Status: Is upscaled
Common Zone settings 😭 🔲 Global seed: 21322
Zones: Zone 1 - I I I I I I I I I I I I I I I I I I
Facies: No conditioning to facies. The zone is modeled in one single operation.
Method for zone/facies: Method for Transformed and the sequential indicator simulation
🔄 Facies 🔥 Settings 🔗 Expert 😰 Hints
0: Shale [52.01 %] ? 1: Sand [47.99 %] ? 2: No name [0 %] ? 4: No name [0 %] ? 5: No name [0 %] ? Same variogram for all facies ?
✓ Apply ✓ OK

Рис.13.9.

После проделанных действий, нажмите на иконку (Show data analysis dialog, puc.13.9).

Активируйте режим Use upscaled, выделив иконку , выберите Zone 1 в поле Zones и

Рис.13.10.

Как и в предыдущем случае, раскроется меню (рис.13.11), в котором предоставляется возможность использовать вероятностные механизмы построения фильтрационно-емкостных и петрофизических свойств геологической модели (совместно с методом интерполяции, которые были выбраны в окне, соответствующем рис.13.9). Используйте различные варианты корреляции скважин, используя режимы, показанные на рис.13.11 красными стрелками. Каждый слой характеризует долю каждой фации в нем. Узлы кривой можно перемещать, удерживая левую кнопку мыши. Редактирование кривой позволит изменить долю песчаника в том или ином слое 3D сетки. Нажмите OK.

Рис.13.11.

Нажмите **ОК**. Вы снова оказались в диалоговом окне, как на **рис.13.9**. В поле **Zones** выберите **Zone 2** и повторите описанную процедуру. Нажмите **ОК**. Итак, фациальная модель **Facies**(**U**) построена. Отобразите данную модель в 3D окне (**рис.13.12**).

Рекомендуется построить различные варианты фациальных моделей, используя разные методы интерполяции (Method for zone /facies, puc.13.9) и режимы, указанные стрелками на puc.13.11.

Сохраните проект.

Рис.13.12.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) На основании чего строится модель фаций?

2) Для чего используется процесс Scale up well logs?

3) Какой процесс используется для построения фациальной модели?

4) Назовите методы интерполяции, которые применяются для построения модели?

5) Какие существуют инструменты при работе с процессом **Facies modeling** для варьирования доли каждой из фации в каждом слое?

14. НАСТРОЙКА ШАБЛОНОВ ОТОБРАЖЕНИЯ ДЛЯ ОКНА WELL SECTION

Для работы в данном упражнении откройте проект, сохраненный после предыдущего упражнения.

В межскважинном пространстве окна **Well section** можно отобразить разрез какого-либо свойства 3D сетки для более удобной корреляции скважин. <u>Основное удобство</u> использования шаблонов изображения заключается в том, что один раз создав правило, по которому данные будут отображаться в окнах визуализации, данный шаблон можно применять ко всем окнам, принадлежащих к типу (Well section, 2D, 3D и т.д.), для которого этот шаблон был создан.

Откройте окно Well section и отобразите все скважины, фациальные колонки из вкладки Global well logs и Facies(U) из модели Corner point gridding, которая расположена на панели Models.

В правом верхнем угле окна Petrel указан шаблон отображения Well section template 2 (рис.14.1).

Рис.14.1.

Рис.14.2.

Перейдите на панель Templates, щелкните правой клавишей мыши по Well section template 2 и выберите Show settings (puc.14.2).

Перейдя на вкладку Well section template данного диалогового окна, выделите режим

Background, нажмите на иконку *и* выберите **Property** (рис.14.3).

T Settings for 'Well section template 2'		-		-	
1 Info Well section template					
Template objects	Objects settings				
< <u>Ⅲ</u> ►					
		[✓ Apply	✓ ОК	★ Cancel

Рис.14.3.

В данном окне раскроется новое меню (рис.14.4). Перейдите на вкладку Definition. В поле **Templates** выберите Facies, а в поле Grids выберите Pillar gridding, т.к. фациальная модель была создана именно на данной сетке. В поле Local grid sets выберите Facies, тем самым разрез сетки между скважин будет создан только для фаций. Как видно, подходящее свойство подставилось автоматически. Нажмите OK.

Рис.14.4.

Как видно по **puc.14.5**, после редактирования шаблона отображения, в окне **Well section window** отобразился разрез в межскважинном пространстве для свойства типа фаций. Теперь при открытии нескольких окон, можно использовать один шаблон, максимально удобный для пользователя. Шаблон можно выбрать из списка, который расположен в левом верхнем окне Petrel (**puc.14.1**).

ndow 1 [Any]	× 20 2D window	/ 3 [Any] 🗙	30 3D wind	low 9 [Any] 🗙	20 2D window	4 [Any] 🗙	3D 3D wir	ndow 11 [Any]	× ঈ Well secti	on window 4 [SSTVD] 🗙 🗗	Well section v	vindow 5 [SSTVD] X			
	P1 [SSTVD]		+349 m+		P2 [SSTVD]		+284 m+	·	P3 [SSTVD]		← 525 m →		P4 [SSTVD]			↓ 1185 m	· — •
SSTVD	Facies	Facies [U]		SSTVD	Facies	Facies [U]		SSTVD	Facies	Facies [U]		SSTVD	Facies	Facie	is [U]		
1:10560				1:10560	_			1:10560	_			1:10560	_				-
926 1	3 I	1111	1 1	826.1	3		i -	826.1	1 1	TIT	1	826.1	3		ΤT	ĺ	i i
020.1				020.1				020.1				020.1	-				
	3 1				-				1 I				-				
900 -				900 -	-			900 ·				900 -	-				
	3 I				-				1 I				-				
				:	-								-				
1000				4000	-			4000	1 1			4000	-				
1000 -	4 1			1000 -			1	1000 ·			-	1000 -				1	
	1				-				1 E				-				
	-			:	-				1 1				-				
					-				- I				-				
1100 -	-			1100 -	-			1100 -				1100 -	-				
									1 E				-				
	Sand				-								-				
1000	Sanu			4000	-			4000				4000	-				
1200 -	-			1200 -	-			1200	4 I			1200 -	-				
					-								-				
					-				-				-				
1000				4000				4000				4000					
1300 -				1300 -	-			1300 -				1300 -	-				
	-			:	-				1 1				-				
1 400				4 400	-			4 4 0 0				4 4 0 0	-				
1400 -				1400 -	-		2	1400 -				1400 -					100 M
					Sand	Sand	-										
		Shale			1								Shale		-		STATES OF TAXABLE PARTY.
1500				1500				1500				1500					
1500 -				1500 -				1500				1500 -					
	: I			:	-								-				
	3				-				1 I				-				
(1000)	4			(4000)	=			(4000)	4 I			(4000)	=				
(1600) -	3			(1000) -	-			(1600)	1 I			(1600) -	-				
	4				-				- 1				-				
(1601.1)	3 I			(1601.1)	-			(1601.1)	1 1			(1601.1)	-				
(1091.1)	1 <u>_</u> E			(1091.1)	1			(1091.1)	- I		1	(1091.1)	3				

Рис.14.5.

Сохраните проект.

15. ПОСТРОЕНИЕ МОДЕЛИ ПОРИСТОСТИ. ПРОЦЕСС PETROPHYSICAL MODELING

Для работы в данном упражнении <u>рекомендуется</u> открыть проект D>Student_Education>Petrel>Project_EXC> Property modeling > Property modeling.pet.

Алгоритм построения модели пористости будет во многом повторять алгоритм построения фациальной модели.

В первую очередь, необходимо спроецировать каротажные кривые **КР** (напомним, что именно они характеризуют пористость) сетку. В данном упражнении, как и в предыдущем, будет использоваться модель **Corner point gridding** и сетку **Pillar Gridding**. Нажмите на данную сетку, выделив ее жирным шрифтом. Модель пористости будет сохранена в данную модель.

Откройте процесс Scale up well logs из вкладки Property modeling на панели Processes (puc.15.1). Выберите Create new, тем самым создавая новое поле в модели Corner point gridding. В поле Input выберите Well logs, таким образом, модель пористости будет построена на основе каротажных данных; в поле Select выберите KP (каротажные кривые пористости KP). Нажмите OK.

😫 Scale up well logs with 'Corner point gridding/Pillar griddin
Make property
O Create new
🥕 🔘 Edit existing:
Overwrite
Use local grid filter 🕜 💿 Replace and add new 🤗
Input
Well logs
S Welltop attributes
Select KP V
🚡 Settings 🗮 Zones 🔚 Weighted 🍛 Seed
Use bias Wells: None Al
Use saved search
Scale up settings
Average method: Arithmetic
Treat log: As points - ?
Method: Neighbor cel 🗸 🕜 P
Use facies weighting
Min. number of points in cell: 3
4
✓ Apply ✓ OK ズ Cancel

Рис.15.1.

«Отображенные» на скважины каротажные кривые KP(U) отобразились на вкладке **Properties** модели Corner Point gridding (рис.15.2).

Рис.15.2.

В 3D окне отобразите все скважины и **КР**(U) из модели **Corner point gridding (рис.15.3).** Как можно заметить, каротажные кривые, как и в случае с фациальными характеристиками, «легли» на сетку вдоль каждой из скважин.

Отредактируйте цветовую схему изображения. Для этого нажмите правой клавишей мыши на **KP(U)** и выберите **Edit global color table.** В открывшемся диалоговом окне (**puc.15.4**) можно откалибровать цветовую схему по максимальному и минимальному значению пористости, нажав на стрелочки около **Min** и **Max**. Нажмите ОК. Чтобы сама цветовая палитра была отображена в 3D окне, нажмите на иконку

Рис.15.3.

Рис.15.4.

Далее откройте процесс Petrophysical modeling, который расположен на вкладке Property modeling панели Processes (рис.15.5).

Откроется новое диалоговое окно (рис.15.6). Выберите Create new и оставьте значение по

умолчанию **Porosity**. В поле Zones выберите Zone 1 и нажмите на иконку

Make model Hints	
Create new	
🤌 💿 Edit existing:	🕍 KP [U] 👻
🗾 🋍 🔛	Status: Is upscaled
Common Zone settings	Global seed: 32074
Zones: 🔀 Zone 2	
Facies: Facie -	0: Sh - H + H = = = -
Method	d for Gaussian random function simulation
zone/fa	acies: L

Рис.15.6.

Нажмите на иконку Facies (рис.15.7) и проконтролируйте, правильно ли откалибрована фациальная модель по принципу «проницаемый-непроницаемый коллектор» - 0: Shale, 1:

Sand. В поле Method zone/facies выберите Gaussian random function simulation. На вкладках Variogram, Distribution, Trends задаются различные параметры вероятностных схем интерполяции значений каротажных кривых. Подробно в данном упражнении их касаться не будем.

Повторите данные операции для второй зоны, выбирая в поле **Zones** - **Zone 2.** После выполненной процедуры, нажмите **OK**.

Petrophysical modeling with 'Corner point gridding/Pillar gridd	×					
Make model Hints						
Create new						
🥖 💿 Edit existing: 🕍 KP [U]	~					
Status: Is upscaled						
Common Zone settings Global seed: 32074	?					
Zones: 🔀 Zone 1 🗸 🖌 🖌 🗈 🖺 🖹 🗊	1					
Facies: Image: Facie Image: O: Sh Image: A Image: A	10					
□ I Method for zone/facies: I Gaussian random function simulation	•					
Market Trends						
🔀 Variogram 🔨 Distribution 🛃 Co-kriging						
Total sill: Nugget: Variogram type: Spherical	?					
Major dir: Minor dir: Vertical: Anisotropy range: 2047 16.5	?					
Azimuth: 0 Dip: 0 -90 45 0 45 90						
Local varying azimuth	?					
Simbox local azimuth correction	?					

Рис.15.7.

Итак, модель пористости отобразилась на вкладке **Properties** модели **Corner point gridding.** Отобразите модель пористости и все скважины в 3D окне (**рис.15.8**).

Для того, что на модели были показаны линии сетки («Grid lines»), как на рис.15.8, нажмите правой клавишей мыши на **Properties** (внутри модели **Corner point gridding**), перейдите на

вкладку **Style (рис.15.9)** и поставьте галочку в окошках около **Grid** и **Solids.** Ширину и цвет линий можете изменить по своему усмотрению. Нажмите **OK**.

Затем нажмите правой клавишей по KP(U), выберите Show settings и изучите остальные свойства модели, перейдя на вкладки Statistics и. Hisrogram.

Рис.15.8.

Style Info Statistics Show Color: Auto Width: — 1 Line type: — Solid id Show Color: As property Id Show Color: As property Material: Wlood Transparency: None Jual effects Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to base K:		Structural	People	e	Composi	1	Filter	
Show Color: Auto Width: 1 Line type: Solid id Show Color: As property Material: Wood Transparency: None ual effects Auto toggle LGR visibility As is (true view) Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) Perculate touching cells Jump to top Jump to base K: Image: Color top	Operations	C 0p	Statistics	1	Info	0	Style	
Show Color: Auto Width: — 1 Line type: — Solid Id Show Color: As property Material: Wood Transparency: None ual effects								
Show Color: Auto Width: — 1 Line type: — Solid id Show Color: As property Material: Wood Transparency: None ual effects								1-
Width: 1 Line type: Solid idSolid idSolid idSolid Show Color: As property Material: Wood Transparency: None ual effects As is (true view) Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top \checkmark Jump to base K: 0 \bigstar	2		10	Auto	Color:		NOW	3
Line type: Solid			1	=	Width:			
Id Show Color: As property Material: Wood Transparency: None ual effects Auto toggle LGR visibility As is (true view) Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to base K: 0			- Solid	-	Line type:		-	2.5
Material: Wood Transparency: None ual effects As is (true view) As is (true view) Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top ✓			property	Asp	Color:		wo	id s
Transparency: None ual effects As is (true view) Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to top Jump to base K: 0 **			ood	Woo	Material:			
ual effects As is true view) Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to top Jump to base K:			one	Non	Transparen			
As is (true view) Auto toggle LGR visibility Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to base K: 0 *				 Non-the-section 	9509540%)		effects —	ual
Regular in XY Pre-calculate touching cells Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to base K: 0 *		ty .	o toggle LGR vi	Auto 1		ew)	is (true vie	+
Regular in XYZ (SIMBOX view) perty layer to show in mapping Jump to top Jump to top Jump to base K: 0		cells	calculate touch	Pre-c		Y	egular in XY	F
perty layer to show in mapping 🔐 Jump to top 🛛 👻 Jump to base K: 0 👘					OX view)	YZ (SIME	egular in XY	F
Jump to top Jump to base K: 0								
Jump to top Jump to base K: 0			<i>1</i> 2		happing []	show in m	ty layer to si	pe
		* 🛛	0	K	Jump to bas	•	imp to top	9

Рис.15.9.

Рекомендуется построить фациальную модель и модель пористости для моделей «Model 1» и «Structural gridding».

После того, как построена модель одного из свойств геологических недр, актуальной задачей является узнать численное значение свойства каждой ячейки. Для этого перейдите на вкладку **View** и выберите **Time player toolbar**.

Рис.15.10.

В нижней правой части окна Petrel появится ряд цифр (puc.15.11). Перейдите в режим

Select/Pick mode, нажав на Нажмите левой клавишей мыши на одну из ячеек модели и, пользуясь цифрами, узнайте ее координату (абсолютную в метрах), значение свойства, глубину и порядковый номер ячейки.

Selected property: KP Cell: (43 34 1) Value: 0.14 Type: Continuous Volume: 67317.5 m3 x: 41343.80 m y: 17823.82 m Depth: -1407.86 m Рис.15.11.

Откройте окно отображения Well section window и отобразите в нем скважины и KP(U) из модели Corner point gridding. Как и в упражнении 14, отобразите разрез, создавая новый шаблон отображения. В данном упражнении используется шаблон Well section template 3. Чтобы узнать, какой из вариантов используется в Вашем проекте, посмотрите в левый верхний угол окна Petrel (см. puc.14.1). Перейдите на панель Templates, нажмите правой клавишей на Well section template 3 и выберите Show settings. Проделайте ту же процедуру, что и в упражнении 14, только в поле Templates выберите General (puc.15.12). Нажмите OK. Итак, разрез построен (puc.15.13).

Сохраните проект.

T Settings for 'Well section template 3'								
1 Info Well section template								
Template objects	Objects settings							
Index track Image: Style Image: Style Image: Style								
4								
	✓ Apply ✓ OK ズ Cancel							

Рис.15.12.
20 2D wind	ow 1 [Any]	× 2	2D windo	w 3 [Any]	× 30 3	D window 9 [Any]	× 202	D windo	w 4 [Any]	× 30 3D window	v 11 [Any]	🗙 🕅 Well	section win	idow 4 [S	STVD]	x 🛐 🛛	/ell secti	on window	5 [SSTVD	1 :
	P1 [SST\	/D]		🕈 349 m 🕂		P2 [SSTVD]		426cm -		P3 [SSTVD]		+525 m +		P4 [S	STVD]		_←	— 1185 r	m ——	-
SSTVD	- P	KP [U]			SSTVD	KP [U]		SSTVD	KP [U]			SSTVD	-	KP [U]	-			
1:10597	0.09		0.26		1:10597	0.08	0.24	1	1:10597	0.04	0.34		1:10597	-0.01	Conor	0	.08			-
640.2 -		enera			640.2 -	Gener			640.2	Genera			640.2		Gener					
040.2					040.2				040.2				040.2							
/00 -					/00 -				700 -				700 -							
					=															
800 -					800 -				800 -				800 -							
					3															
000									000				000							
900 -					900 -				900 -				900 -							
					-															
1000					1000				1000				1000							
				1	1000 -				1000 -				1000 -				_			
					3															
1100					1100				1100				1100							
					1100				1100				1100							
					-															
1200					1200				1200				1200							
1200					1200				1200				1200							
					-															
1300 -					1300 -				1300				1300							
					-															
1400 -					1400 -				1400 -				1400 -					_		
			_	- <u>-</u>																
1500		-			1500 -		F L		1500 -				1500 -				_		-	
=					-									1						
									-											

16. ПОСТРОЕНИЕ МОДЕЛИ АБСОЛЮТНОЙ ПРОНИЦАЕМОСТИ

Следующим этапом при реконструкции цифровой модели месторождения является построение поля абсолютной проницаемости.

Для работы в данном упражнении <u>рекомендуется</u> открыть проект D>Student_Education>Petrel>Project_EXC> Permeability modeling > Permeability modeling.pet.

Технология и порядок действий практически полностью повторяет те, что выполнялись при построении модели фаций и пористости.

1) Выделите модель Corner point gridding, сделав ее "жирной", таким образом модель пористости будет строиться с использованием сетки Pillar gridding;

2) "Спроецируйте" каротажные кривые **КРегт** на узлы сетки, которые совпадают со скважинами. Для этого используется процесс **Scale up well logs**. Отличие для данного упражнения заключается лишь в том, что при работе с диалоговым окном **Scale up well logs** в поле **Select** нужно выбрать **КРегт** (см. **рис.15.1**)

3) Откройте процесс **Petrophysical modeling** и повторите процедуры, которые были описаны при построении модели пористости.

4) Откалибруйте цветовую схему отображения по минимальному и максимальному значению проницаемости (см. **рис.15.4**).

5) Используя шаблоны отображения для окна типа Well section, создайте разрез поля проницаемости между скважинами так, как это было сделано в предыдущем упражнении. Модель проницаемости и разрез показаны на рис.16.1 и рис.16.2.

Рис.16.1.

Рис.16.2.

<u>Рекомендуется построить поле проницаемости для моделей «Model 1» и</u> <u>«Structural gridding».</u>

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ (к упражнениям 14, 15 и 16)

1) Какие входные данные используются для создания модели пористости и проницаемости?

2) Что нужно сделать, чтобы модель пористости или проницаемости строилась на основе необходимой Вам сетки?

3) Для чего применяется процесс Scale up well logs? На какой панели и вкладке он расположен?

4) Опишите процедуру создания модели пористости и проницаемости, используя процесс **Petrophysical modeling**?

5) Какую основную функцию выполняет Time player toolbar?

6) Опишите последовательность действий для создания шаблона изображения, которое применяется для окон **Well section window**, на котором показан разрез пористости и проницаемости в межскважинном пространстве?

7) Постройте график равновероятного, нормального и логнормального распределения пористости в геологической модели.

8) Придумайте функциональную зависимость проницаемость от пористости и значения фации.

17. ИСПОЛЬЗОВАНИЕ I, Ј И К ФИЛЬТРОВ В 3D ОКНЕ. ОТОБРАЖЕНИЕ ДАННЫХ В РАЗРЕЗЕ

Для работы в данном упражнении откройте проект **D>Student_Education>Petrel>Project_EXC> Intersection_EXC > Intersection_EXC.pet.** или работайте в проекте, который был сохранен в предыдущем упражнении.

В Petrel существуют фильтры, которые можно использовать при отображении 3D свойств. Отобразите какую-нибудь из свойств построенных моделей в 3D окне (например **KPerm** модели **Corner point gridding**). В правой части окна Petrel расположены инструменты для фильтрования изображения по плоскостям (или срезам). Основные из иконок, отвечающие за

данные операции выглядят следующим образом: первую, создается срез вдоль оси Х. Это значит, что координата Х фиксируется, остается плоскость YZ, являющаяся срезом модели вдоль направления Х. (рис.17.1).

Рис.17.1.

Данный срез можно перемещать "вперед-назад", используя иконки

Включив **Time player toolbar (см.рис.15.10),** можно узнать номер текущего среза, по информационной иконке, расположенной в нижнем правом углу окна Petrel. Например, Along I = 34

Поупражняйтесь самостоятельно при работе со срезами в других направлениях.

Далее отобразим выбранный срез в новом двумерном окне.

Откройте новое 3D окно и постройте в нем поле проницаемости. Отключите все фильтры. Нажмите правой клавишей по вкладке Intersections, которая принадлежит модели Corner Point Gridding и выберите Insert general intersections (puc.17.2).

Рис.17.2.

В нижней части окна появились инструменты для работы с плоскостями (срезами, рис.17.3).

Используйте иконки **Герера**, чтобы "рассекать" модель по всем возможным направлениям, а иконки **БЕВ**, чтобы вырезать, т.е. <u>не</u> отображать все то, что находится впереди или позади среза (**рис.17.4**). Для перемещения среза используйте кнопки плеера.

Рис.17.4.

Чтобы визуализировать данные на этом сечении, нажмите на иконку (Toogle vizualization on plane). Активировав данный режим, в данном сечении можно отобразить любое из свойств, построенных ранее - пористости, фаций или проницаемости. Эти модели на внутри вкладки Properties теперь имеют голубой квадратик (puc.17.5). Нажмите на кружочек любого из свойств, чтобы данные отобразились в сечении (puc.17.6).

Рис.17.5.

Рис.17.6.

Для отображения данного в среза в двухмерном окне, нажмите правой клавишей по Genaral intersection на вкладке Intersections и выберите Create intersection window (рис.17.7).

Рис.17.7.

Откроется новое окно визуализации. Для отображения в нем уже выбранного среза, нажмите на один из кружочков около моделей Facies (U), KP(U) или KPerm(U) (puc.17.8).

Рис.17.8.

Чтобы отобразить ячейки модели, нажмите правой клавишей по General intersections на вкладке Intersections, выберите Show settings. В открывшемся диалоговом окне перейдите на панель Style, на вкладку 3D grid settings и нажмите на окошко около Grid lines (puc.17.9). Нажмите OK.

	Settings for	'General interse	ection'	×
🞻 Style 🚺 Info	Constraints			
🗋 🏝 🖿 🗟				
🙀 Plane settings	📩 Input settings 🎆	3D grid settings	A Well projection	
				?
Unimers	Color	Width		Transparency
Honzons:	Black	×	1 v	
Faults:	Black	×	1 v	
Zones:	As zone	▼ Wood	~	None 🗸
 Filter propert 	У			
Grid lines:	Auto	×	1 v	
		🗸 Apply	✓ OK	× Cancel

Рис.17.9.

Чтобы узнать координату, объем, свойство интересующей Вас ячейки, перейдите в режим

Select/Pick mode, нажав на правом нижнем углу окна Petrel выведется вся необходимая информация (при включенном Time player toolbar - puc.15.10).

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1) Что такое І-, Ј-, К- фильтр?
- 2) Опишите процедуру (последовательность действий) для создания сечения?
- 3) Какие инструменты существуют для передвижения среза?
- 4) Каким образом узнать информацию об интересующей Вас ячейке?
- 5) Как создать двухмерное окно, на которое будет спроецировано созданное сечение?

18. ЛОКАЛЬНОЕ ИЗМЕЛЬЧЕНИЕ СЕТКИ. СОЗДАНИЕ ЛОКАЛЬНЫХ СЕТОК. СОЗДАНИЕ ПОЛИГОНОВ

В большинстве случаев при построении геологической модели необходимо, чтобы некоторые участки пространства были описаны более подробно. Это касается, чаще всего, локальных участков расположения скважин, а также отдельных полигонов, которые пользователь может задать самостоятельно. Для более подробного описания свойств тех участков, где это требуется, производится дробление или локальное измельчение сетки.

Для работы в данном упражнении откройте проект **D>Student_Education>Petrel>Project_EXC> GRID modification > GRID modification.pet** или работайте в проекте, который был сохранен после предыдущего упражнения.

Как и в предыдущих упражнениях, работа будет проводиться для модели **Corner point** gridding. Для этого нажмите на нее левой кнопкой мыши, выделив, таким образом, жирным цветом.

Откройте процесс Make local grids, который расположен на вкладке Corner point gridding на панели Processes (рис.18.1).

Рис.18.1.

Откроется новое диалоговое окно (**puc.18.2**). Выберите **Create new**, тем создавая новую сетку с локальным измельчением. Далее перейдите на панель **Input**, кликните левой клавишей мыши по вкладке **Wells**, а затем нажмите на синюю стрелку в нижней части окна (**puc.18.2**), "перетащив", тем самым, все скважины. Таким образом, сетка будет измельчаться в окрестности скважин. Поля **Zone filter** и **Segment filter** заполнятся автоматически, исходя из свойств сетки **Pillar gridding**. В поле **Generation method** выберите **Cartesian Nx**, **Ny**, **Nz**. При помощи данного метода, можно дробить любую из ячеек по заданному направлению. В поле **Nx** и **Ny** введите 3, а в поле **Nz** - 1. Таким образом, шаг сетки ячеек (которые будут затронуты измельчением) уменьшится по X и Y направлению в 3 раза, а по оси Z в данном случае останется неизменным. В поле **Source influence distance** введите 100 - это то количество метров, на которое распространится измельчение сетки от каждой из скважин. Нажмите **OK**.

Новая сетка отобразилась на панели Models в виде папки Local grids. Данная папка содержит, как видно по puc.18.3 две сетки. Первая из них - Global grid - это начальное

состояние сетки до измельчения ее участков. Вторая из них - Local grid set 1 - содержит только измельченные участки отдельно по каждой из скважин.

<u>Локальное измельчение делается для свойств сетки (Facies, KP, KPerm), а НЕ для</u> поверхностей Z(Top), Z(Mid), Z(Base).

Процедура измельчения делается сразу же для всех полей **Facies, KPerm и KP.** Отобразите получившееся поле проницаемости **KPerm** и все скважины в 2D окне (**puc.18.4**).

Create new		
2		
 Edit existing: 		× 1
Generation method:	Cartesian Nx,Ny,Nz	•
	Host cell divisions:	
Nbx 3	Ny 3 Nz	1
All Zone filter:	All Segment filter	n.:
💐 Zone 1	Segment 1	
💢 Zone 2	Segment 2	
	Segment 3	
Grid separate zon	nes 🗌 Use active filter	[
Grid separate zon	nes Use active filter	
Grid separate zon Extend host cells ak	nes Use active filter	
Grid separate zon Extend host cells ak Source influence dis	es Use active filter ong: 1 J J K stance: 100	
Grid separate zon Extend host cells ak Source influence de Grid to well conne	tes ☐ Use active filter ong: ☐ I ☐ J ♥ K stance: 100 ections ☐ Above surface	
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f	ections Below surface	
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f	I Use active filter ong: I J J K stance: 100 ections Above surface fractures Below surface play host cells Use	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f K Dis Source name	I Use active filter ong: I J V K stance: 100 ections Above surface fractures Below surface play host cells Use Refinement	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Crid to hydraulic f Dis Source name	es Use active filter ong: I J J ♥ K stance: 100 ections Above surface fractures Below surface play host cells Use Refinement 3×3×1 (r = 100)	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Crid to hydraulic f Dis Source name Wells	es Use active filter ong: I J J ♥ K stance: 100 ections Above surface fractures Below surface play host cells Use Refinement 3×3×1 (r = 100) s 3×3×1 (r = 100)	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Wells Wells Producer A P1	es Use active filter ong: 1 J ✔ K stance: 100 ections Above surface fractures Below surface play host cells Use Refinement 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100)	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Us Source name Wells Wells Producer A P1 A P2	nes Use active filter ong: 1 J ✓ stance: 100 ✓ K sections Above surface Above surface play host cells Use Use Refinement 3×3×1 (r = 100) s 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100)	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Us Source name Wells Wells Producen A P2 A P3	Image: Second Secon	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Us Source name Wells Wells Producen A P2 A P3 A P4	Image: Second Secon	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Us Source name Wells Wells Producen A P1 A P2 A P3 A P4 A P5	Image: Second Secon	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Us Source name Wells Wells Producen A P1 A P2 A P3 A P4 A P5 A P6	Image: Second Secon	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f Wells Us Source name Wells Wells Producen A P1 A P2 A P3 A P4 A P5 A P6	nes Use active filter ong: I J ✓ stance: 100 ✓ K sections Above surface Above surface fractures Below surface Use Refinement 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100)	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f M Dis Source name Wells Wells Wells Producen A P1 A P2 A P3 A P4 A P5 A P6 Injectors A I1	Image: Second Secon	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f M Dis Source name Wells Wells P1 A P2 A P3 A P4 A P5 A P6 Injectors A I1 A I3	Image: Second Secon	default
Grid separate zon Extend host cells ak Source influence dis Grid to well conne Grid to hydraulic f M Dis Source name Wells Wells Producen A P1 A P2 A P3 A P4 A P5 A P6 Injectors A I1 A I3 A I2	nes Use active filter ong: I J ✓ stance: 100 ✓ K sections Above surface Above surface fractures Below surface Use Refinement 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100) 3×3×1 (r = 100)	default

Рис.18.2.

Рис.18.3.

Как видно по данному рисунку, шаг сетки в окрестности скважин не более 100 м уменьшился в 3 раза по латеральным направлениям.

Рис.18.4.

Откройте 3D окно и отобразите на нем все скважины, поле **KPerm** и локальную сетку **Local** grid set 1 (рис.18.5). На данном участке представлены все ячейки, подвергшиеся процедуре измельчения.

Поработайте самостоятельно с процедурой **Make local grids,** варьируя метод разбиения, степень измельчения Nx, Ny, Nz, а также радиус воздействия данного процесса.

Рис.18.5.

В Petrel существуют инструменты для выделения отдельных участков произвольной формы или <u>полигонов</u>. Активируйте процесс Make/edit polygons, который расположен на вкладке Utilities на панели Processes (puc.18.6).

Рис.18.6.

В правой части окна Petrel появились новые иконки для рисования полигона. Отобразите в 3D окне поле пористости, нажмите на иконку Start new set of points и по точкам нарисуйте замкнутую овальную линию (puc.18.7). После завершения рисования нажмите на иконку Close selected polygon(s), замкнув линию.

Рис.18.7.

Полигон **Polygon 1** отобразился на панели **Input** (рис.18.8). Его свойства и параметры отображения можно изучить и изменить, кликнув по нему правой клавишей и выбрав **Show** settings.

Рис.18.8.

Далее необходимо поменять свойства сетки внутри построенного полигона. Снова откройте процесс Make local grids (не забыв при этом выделить модель Corner point gridding) и в поле Source name при помощи синей стрелки перетащите Polygon 1 из панели Input (puc.18.9). Выберите Edit existing, сохраняя изменения в уже созданную локальную сетку, метод Cartesian Nx, Ny, Nz, и соответствующие значения величин Nx, Ny и Nz. Обратите внимание, что поле Source influence distance неактивно, т.к. область измельчения ограничена границей полигона. Нажмите OK.

Make local grids with 'Corner point griddi
Make grid set
Create new
🥒 🖲 Edit existing: 🗰 Local grid set 1 🗸 🖓
Generation method: Cartesian Ny Ny Na
Host cell divisions:
Nx 3 Ny 3 Nz 3
All Zone filter: All Segment filter:
Zone 2 Segment 2
Segment 3
Grid separate zones Use active filter
Extend host cells along: 🔄 I 🔄 J 🗸 K
Source influence distance:
Grid to well connections Above surface ?
Display host cells Use default
Source name Refinement
Polygons 1 3x 3x 3
✓ Apply ✓ OK ズ Cancel

Рис.18.9.

Результат измельчения представлен на рис.18.10.

Рис.18.10.

Самостоятельно создайте несколько полигонов и сделайте измельчение сетки в окрестностях, ограниченных ими.

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1) Что такое локальное измельчение сетки?
- 2) Какие основные принципы работы с процедурой Make local grids?
- 3) Опишите процедуру создания полигона

19. СОЗДАНИЕ ФИЛЬТРОВ ПО ОБЪЕМУ ЯЧЕЕК И ИХ СВОЙСТВАМ

В более ранних упражнениях были созданы фильтры, выделяющие срезы в различных направлениях ортогональной системы координат. В Petrel существует различные варианты выборки необходимых значений и параметров, к основному числу из которых можно причислить выборку по объему ячеек (реже по углу между сторонами ячейки) или по значению их свойства (проницаемости, пористости, фации).

Для работы в данном упражнении откройте проект **D>Student_Education>Petrel>Project_EXC> Cell Filters > Cell Filters.pet** или работайте в проекте, который был сохранен после предыдущего упражнения.

Итак, на первом этапе создадим новое свойство модели, характеризующее объем ячеек, познакомившись с процедурой Geometrical modeling, а затем сделаем фильтр по их объемам.

Активируйте модель Corner point gridding, нажав на нее левой кнопкой мыши и сделав ее жирной. Таким образом, все фильтры будут созданы для объектов, созданных в данной модели. Откройте процедуру Geometrical modeling, расположенную на вкладке Property modeling на панели Processes (puc.19.1). Откроется новое диалоговое окно (puc.19.2). Выберите Create new (создание нового свойства), в поле Method выберите Cell volume (создание свойства модели, характеризующее объем ячеек) и название Bulk volume в поле Property template. Нажмите OK.

Рис.19.1.

🗍 Geometrical modeling with 'Corner point 🗮	x
Make property	
Create new	
🥕 🔘 Edit existing: 🔟 KPerm [U]	•
Settings	_
Method: Cell volume	•
Property template: V _B Bulk volume	-
✓ Apply ✓ OK ➤ Cancel	d

Рис.19.2.

Новое свойство **Bulk volume** отобразилось на вкладке **Properties** модели **Corner point gridding** (рис.19.3). Отключите локальные сетки и отобразите данное свойство в 3D окне (рис.19.4).

Рис.19.3.

Далее дважды щелкните левой кнопкой мыши по вкладке **Properties** и в открывшемся диалоговом окне перейдите на вкладку **Filters (рис.19.5)**. Нажмите на галочку около **Use value filter,** все свойства в поле **Value filters** стали активными. Перейдите на свойство **Bulk volume.** В поле **Min** и **Max** указаны минимальное и максимальное значение объема ячеек. При помощи «ползунков» можно генерировать фильтры. Так, переместите верхнее значение объема до 200000 (M^3), а нижнее до 40000 (M^3). Итак, создан фильтр, «вырезающий» объемы ячеек более 200000 (M^3) и менее 40000(M^3). Нажмите **Apply**. Сделанные изменения сразу же отобразились в 3D окне (**рис.19.6**). Как видно по данному рисунку, ячейки с объемами, выходящими за установленные нами ограничения, отфильтрованы. Чтобы отменить выборку (фильтрацию значений), уберите галочку из окошка **Use filter** (**рис.19.5**).

Рис.19.4.

Рис.19.5.

Рис.19.6.

В качестве еще одно примера, сделаем выборку по значениям фаций. Перейдите на Facies(U) в поле Value filter, нажмите на окошко около Use filter, затем на кнопку None (в таком положении отфильтрованы все значения фаций) и выделите фацию типа Shale, например

(рис.19.7). Нажмите Apply. Отобразите Facies(U) из модели Corner point gridding в 3D окне (рис.19.8).

🥩 St)	de	0	Info		1	Statis	bics	1	Operations
60 P 00	DI .	199	Com	posite		Peop	Ne	Struc	tural analysis
Use inde Use inde Use valu Use valu Use visit	x fiter le fiter le fiter values o	nya incli 	.00					Use seg Use loc Filter av	went/zone filten of filter or 0-volume cell
ndex filter	Get li	mts from	selecte	d]		
E	Min	123a	t Wid	h Ski	- IC	Max	And/or		
1 (54)	1 +	1	1	÷ 10	- 5	÷			
J (41):	1 +	1	1	÷ 10	-	4	And		
K (20):	1 1	1	1	÷ 5	÷ 2)	And		
							wert filter	5:1	vo name Vo name

Рис.19.7.

Рис.19.8.

Как видно по данному рисунку, тип фации **Sand** отфильтрован.

Для того чтобы отменить фильтр, уберите галочку из окошка Use filter.

Сделайте фильтры для свойств пористости и проницаемости самостоятельно.

Перед завершением данного упражнения выключите все фильтры, сняв галочку из окошка Use value filter.

Сохраните проект.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1) Опишите процедуру создания нового свойства геологической модели, которое характеризует объем ячеек? На какой панели и вкладке данное свойство расположено?

2) Какая последовательность действий применяется для создания фильтра по пористости, проницаемости и объему ячеек?

3) Какая последовательность действий применяется для создания фильтра по свойству фаций?

СПИСОК ЛИТЕРАТУРЫ

Основная литература

1. Булыгин Д.В., Ганиев Р.Р. Геологические основы компьютерного моделирования нефтяных месторождений. – Казань: изд-во Казанского университета, 2011. – 360 с.

2. Ганиев Р.Р. Основы компьютерного моделирования нефтяных месторождений: курс лекций. – Казань: изд-во Казанского университета, 2012. – 135 с.

Тарасевич Ю.Ю. Математическое и компьютерное моделирование.
 К.: Едиториал УРСС, 2004. – 152 с.

4. Закревский К.Е. Геологическое 3D моделирование. - М.:ООО "ИПЦ Маска". - 2009. – 129 с.

Дополнительная литература

1. Добрынин В.М., Вендельштейн Б.Ю., Кожевников Д.А. Петрофизика. – М.:Недра, 1991. – 368 с.

2. Гиматудинов Ш.К. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений. – М.:Недра, 1983. – 455 с.

3. Гиматудинов Ш.К., Ширковский А.И. Физика нефтяного и газового пласта. – М.:Недра, 1971. – 310 с.

4. Гридин В.И. Физико-геологическое моделирование природных явлений / Рос. АН, Ин-т пробл.нефти и газа; Отв. ред. А.Н. Дмитриевский.— М. : Наука, 1994.— 204с.

5. Шилов, Г. Я. Основные проблемы и возможности оценки фаций карбонатных пород по данным геофизических исследований скважин [Электронный ресурс]. – Труды Российского государственного университета нефти и газа им. И.М. Губкина, 2010. – №4 - С.7-16.

6. Булыгин Д.В., Медведев Н.Я., Кипоть В.Л. Моделирование геологического строения и разработки залежей нефти Сургутского свода. – Казань : ДАС, 2001. — 190 с.

7. Булыгин В.Я. Правдоподобное моделирование. Казань: издательство Казанского университета, 1985. 170 с.

Учебное издание

Т.Р. Закиров, И.С. Нуриев, И.А. Хузин

Компьютерные технологии в геологии

Дизайн обложки *М.А. Ахметов*

Подписано в печать 14.09.2013. Бумага офсетная. Печать цифровая. Формат 60х84 1/16. Гарнитура «Times New Roman». Усл. печ. л. Тираж экз. Заказ

Отпечатано с готового оригинал-макета в типографии Издательства Казанского университета

420008, г. Казань, ул. Профессора Нужина, 1/37 тел. (843) 233-73-59, 233-73-28