Том 154, кн. 4

Естественные науки

2012

УДК 543.253:541.128.13

ВОЛЬТАМПЕРОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЦИСТЕИНА НА ЭЛЕКТРОДЕ, МОДИФИЦИРОВАННОМ САМООРГАНИЗУЮЩИМСЯ МОНОСЛОЕМ 4-МЕРКАПТОПИРИДИНА С ФТАЛОЦИАНИНОМ ЖЕЛЕЗА(II)

Л.Г. Шайдарова, А.В. Гедмина, М.Л. Артамонова, И.А. Челнокова, Г.К. Будников

Аннотация

Модифицированный электрод на основе фталоцианина железа(II), иммобилизованного на самоорганизующемся монослое 4-меркаптопиридина на золотой поверхности, проявляет каталитическую активность при электроокислении цистеина. По сравнению с электродом, не содержащим металлокомплекс, наблюдается уменьшение перенапряжения и многократное увеличение тока окисления аминокислоты. Найдены рабочие условия модифицирования электрода и получения максимального каталитического тока. Разработан способ вольтамперометрического определения и амперометрического детектирования цистеина на этом композитном электроде в стационарных условиях и в условиях проточно-инжекционного анализа. Линейная зависимость величины тока от концентрации цистеина наблюдается до $5 \cdot 10^{-6}$ M в стационарных условиях и до $1 \cdot 10^{-6}$ моль/л в проточных условиях.

Ключевые слова: химически модифицированные электроды, самоорганизующийся монослой 4-меркаптопиридина, фталоцианин железа(II), электрокатализ, вольтамперометрическое определение цистеина.

Введение

Металлофталоцианины (MPc) принадлежат к классу макроциклических комплексов переходных металлов и широко используются при изготовлении химически модифицированных электродов (XMЭ) и разработке электрохимических сенсоров [1–4], фотоэлементов [5, 6], а также находят применение в молекулярной электронике [7].

ХМЭ на основе MPc привлекают внимание исследователей, поскольку эти макроциклические комплексы металлов катализируют большой круг многостадийных электрохимических реакций [1–4, 8].

В последнее время при создании электрохимических сенсоров, функционирующих на основе принципов электрокатализа, используют следующие способы иммобилизации MPc: адсорбция, включение в угольную пасту [8], получение полимерной металлокомплексной пленки из водорастворимых и водонерастворимых MPc [9, 10], включение металлокомлекса в электронпроводящую полимерную пленку из полианилина в качестве допирующего агента [11], а также формирование самоорганизующихся монослоев металлофталоцианиновых комплексов [12, 13]. В литературе описаны два основных способа получения самоорганизующихся монослоев MPc. В первом случае связывание MPc с золотой поверхностью происходит через тиольные группы металлокомплекса с образованием стабильных пленок самоорганизующихся слоев [12–15]. Такой монослой высокоориентированных молекул формируется спонтанно при погружении электрода в раствор, содержащий тиол-замещенный макроцикл металлофталоцианина. К недостаткам данного способа модификации можно отнести то, что процедура синтеза тиол-производных металлофталоцианинов достаточно трудоемкая, требующая применения токсичных химических реагентов. Второй способ заключается в аксиальном взаимодействии макромолекулы MPc с самоорганизующимся монослоем 4-меркаптопиридина на золотой поверхности [16–19]. Этот способ формирования самоорганизующихся монослоев отличает простота исполнения, хорошая воспроизводимость, позволяющая получать высокоориентированные ультратонкие пленки на поверхности металлического электрода (серебряного, золотого, платинового) [20, 21].

Удобным субстратом для изучения механизма электрокатализа на электродах, модифицированных MPc, является цистеин, так как при его электрохимическом превращении отсутствуют побочные реакции и активные свободные радикалы, которые могли бы вызвать необратимые изменения в органической части металлокомплекса-модификатора [22].

Цистеин — это серосодержащая аминокислота (2-амино-3-меркапто-пропионовая кислота) со следующей структурной формулой:

В настоящей работе исследованы каталитические свойства монослойного комплекса металлофталоцианина железа(II), иммоблизованного на самоорганизующемся монослое 4-меркаптопиридина, нанесенного на золотую поверхность, при электроокислении цистеина в стационарных и проточных условиях.

1. Экспериментальная часть

Циклические вольтамперограммы регистрировали с помощью вольтамперометрического анализатора Экотест-ВА (ООО «ЭКОНИК-ЭКСПЕРТ», Россия) с трехэлектродной ячейкой. В качестве индикаторного электрода применяли электрод из стеклоуглерода (СУ) с рабочей поверхностью 0.03 см², покрытый электроосажденным золотом (Au-CV), ХМЭ на основе Au-CV с самоорганизующимся монослоем 4-меркаптопиридина (МРуг-Au-CV) и ХМЭ на основе Au-CV с монослоем 4-меркаптопиридина и иммобилизованным монослоем фталоцианина железа(II) (FePc-MPyr-Au-CV). Электродом сравнения служил насыщенный хлоридсеребряный электрод, вспомогательным – платиновая проволока. Регистрацию циклических вольтамперограмм проводили при v 20 мВ/с. Для установления природы предельного тока и некоторых кинетических параметров окисления изучали зависимость величины регистрируемого тока от скорости наложения потенциала (v) в диапазоне от 10 до 100 мВ/с. Золото осаждали на поверхность стеклоуглерода из водного раствора HAuCl₄ за счет электростатического взаимодействия. Затем электрод Au-CV промывали дистиллированной водой и помещали на 2 мин в раствор, содержащий 30%ный H₂O₂ и концентрированную кислоту H₂SO₄ (1 : 3 (V/V)), после чего еще раз тщательно промывали дистиллированной водой. Подготовленную поверхность электрода Au-CV ополаскивали этиловым спиртом и погружали в спиртовый раствор, содержащий $1\cdot10^{-3}$ M MPyr, на 1 ч при комнатной температуре. Затем полученный электрод MPyr-Au-CV выдерживали в течение 4 ч при комнатной температуре в растворе тетрагидрофурана (ТГФ), содержащем $1\cdot10^{-3}$ M фталоцианина железа (FePc) (марки «ч.» фирмы Aldrich) со следующей структурной формулой:

По истечению этого времени электрод FePc-MPyr-Au-CУ ополаскивали раствором ТГФ и высушивали. Формирование монослоев металлофталоцианиновых комплексов происходит за счет аксиального взаимодействия металлокомплекса с молекулами 4-меркаптопиридина, самоориентированного на золотой поверхности. Схематически полученный электрод FePc-MPyr-Au-CУ можно изобразить следующим образом:

Последней стадией получения правильно-ориентированного самоорганизующегося монослоя FePc на поверхности электрода MPyr-Au-CV является потенциодинамический электролиз, в результате которого удаляются адсорбированные на поверхности XMЭ или дезориентированные неупорядочные метастабильные молекулы MPc [23, 24]. Для этого XMЭ переносили в электрохимичекую ячейку и проводили циклирование потенциала в области от –0.2 В до +0.7 В в буферном растворе с pH 4.01 до получения воспроизводимой вольтамперограммы. Поверхностную концентрацию медиатора (Γ) на поверхности СУ определяли по площади пика при E +0.20 В на катодной ветви циклической вольтамперограммы, полученной на электроде FePc-MPyr-Au-CУ.

Стандартный раствор цистеина с концентрацией 5·10⁻³ М готовили растворением его точной навески. Серии растворов меньших концентраций получали разбавлением исходных растворов непосредственно перед измерениями. Для обеспечения электрической проводимости в качестве фонового электролита использовали буферный раствор с pH 4.01. Значение pH контролировали на pHметре типа pH-150.

Измерения в условиях проточно-инжекционного анализа (ПИА) проводили на установке, включающей перистальтический насос, инжектор, проточную электрохимическую ячейку и регистрирующее устройство [25]. Подачу и слив растворов осуществляли по проточным коммуникациям, изготовленным из силиконовых трубок с внутренним диаметром 2.0 мм. Инжекцию осуществляли микрошприцем через уплотнительную мембрану.

2. Результаты и их обсуждение

Вольтамперограмма, полученная на электроде Au-CУ на фоне буферного раствора с pH 4.01, представлена на рис. 1, *a*. На анодной ветви этой циклической вольтамперограммы, наблюдается небольшой максимум тока при $E_{\rm n}$ 0.55 B, который связан с окислением наноразмерных оксо-частиц золота [26] (рис. 1, *a*). На вольтамперной кривой, полученной на электроде MPyr-Au-CV на фоне буферного раствора с pH 4.01, четко выраженные катодные или анодные пики отсутствуют (рис. 1, *б*), что связано с формированием самоадсорбирующегося на золотой поверхности монослоя MPyr и, как следствие, с экранированием электрохимически активных центров на поверхности частиц золота. На циклической вольтамперограмме, полученной на электроде FePc-MPyr-Au-CV на фоне буферного раствора с pH 4.01, регистрируется одна четко выраженная пара катодно-анодных пиков. На анодной ветви этой вольтамперограммы наблюдаемый пик при *E* 0.50 B (рис. 1, *в*), который относится к окислению металлокомплекса Fe^(II)Pc по схеме [27]:

$$Fe(II)Pc Fe(III)Pc^{+} + e. (1)$$

На катодной ветви этой циклической вольтамперограммы при E 0.28 В наблюдается обратный катодный пик, соответствующий восстановлению Fe^(III)Pc⁺ до Fe^(II)Pc. Полученный XMЭ отличается высокой химической и электрохимической устойчивостью, о чем свидетельствует хорошая воспроизводимость циклических вольтамперограмм, полученных на фоне буферного раствора pH 4.01 в течение месяца.

Расчет поверхностной концентрации осажденного медиатора. Поверхностную концентрацию медиатора на поверхности ХМЭ оценивали как отношение количества молей редокс-центров монослоя FePc-MPyr-Au-CV к геометрической площади поверхности электрода. Расчет величины Γ проводили по формуле $\Gamma = Q/nFA$, где Q – заряд (Кл), n – число электронов, F – число Фарадея (96500 Кл/моль), A – площадь поверхности рабочего электрода. В свою

Рис. 1. Циклические вольтамперограммы, полученные на электродах Au-CУ (*a*), MPyr-Au-CУ (*b*) и FePc-MPyr-Au-CУ (*b*) на фоне буферного раствора с pH 4.01 при *v* 20 мB/c

]Рис. 2. Циклические вольтамперограммы, полученные при окислении $5 \cdot 10^{-3}$ моль/л цистеина на СУ (*a*) и на электродах Аu-СУ (*б*) и FePc-MPyr-Au-CV (*в*) в отсутствие (1) и в присутствии цистеина (2) ($c \cdot 10^{-3}$ моль/л) на фоне буферного раствора с pH 4.01 при $v \cdot 20$ мB/с, (*г*) зависимость тока пика окисления цистеина от его концентрации

очередь, величину Q рассчитывали по формуле Q = S/v, где S – площадь под катодным пиком при E +0.28 B, а v – скорость развертки потенциала.

Так, площадь под катодным пиком при E +0.28 В на циклической вольтамперограмме, полученной на электроде FePc-MPyr-Au-CV, равна 4.98·10¹ мкА·мВ или (4.98·10⁻⁸ A·B). Рассчитанное значение Γ равно 5.2·10⁻¹¹ моль/см², что говорит об образовании монослойного покрытия FePc с плоской ориентацией металокомплекса [17].

Электроокисление цистеина на электроде FePc-MPyr-Au-CУ. Цистеин, как и многие органические соединения, окисляется на углеродных электродах с перенапряжением (рис. 2, *a*), например на СУ на фоне буферного раствора с pH 4.01 с образованием необратимой волны при $E_{1/2} \sim 0.85$ В (табл. 1). Волна плохо воспроизводится вследствие адсорбции продуктов окисления субстрата на графитовой поверхности, что делает неудобным использование этого электрода для определения цистеина методом прямой вольтамперометрии.

Вольтамперные характеристики,	полученные	при электроокислении	цистеина на ХМЭ
$(c \ 5 \cdot 10^{-3} \text{ M})$	-		

Электрод	$E_{\rm mod}$	$I_{\rm mod}$	Екат	Ікат	$I_{\rm kat}/I_{\rm mod}$		
$I_s = 4.0$ мкА, $E_s = 0.85$ В							
Аи-СУ	0.55	1.0	0.55	_	—		
	0.90	5.6	0.90	32	5.7		
FePc-MPyr-Au-CV	0.50	0.2	0.50	37	185		

*I*_s и *E*_s – ток и потенциал полуволны окисления цистеина на СУ.

Сопоставлено электрохимическое поведение цистеина на немодифицированном (рис. 2, *a*) и модифицированных электродах Au-CУ и FePc-MPyr-Au-CУ (рис. 2, *б*, *в*, табл. 1). На рис. 2, *б* представлены циклические вольтамперограммы, полученные на электроде Au-CУ в отсутствие (кривая 1) и в присутствии цистеина (кривая 2).

При электроокислении цистеина на электроде Au-CУ наблюдается пик при E_{π} 0.90 В, многократно превышающий значение тока окисления модификатора на электроде Au-CУ и окисления цистеина на немодицифицированом CУ (табл. 1). Увеличение тока при E_{π} 0.90 В в присутствии цистеина связано с его электрокаталитическим окислением. В качестве каталитически активных частиц, вероятно, выступают оксо-частицы золота(III).

Форма циклической вольтамперограммы окисления цистеина на электроде FePc-MPyr-Au-CУ отличается от формы вольтамперной кривой, полученной на электроде Au-CV (рис. 2, *в*). При окислении цистеина на этом XMЭ на анодной ветви циклической вольтамперограммы (рис. 2, *в*, кривая 2) наблюдается значительное увеличение тока в пике при E +0.50 В. Многократный прирост тока, линейная зависимость величины тока пика от концентрации субстрата (рис. 2, *г*) позволяют отнести электрохимический процесс окисления к каталитическому. Каталитический эффект выражается в значительном приросте тока (отношении величины каталитического тока ($I_{\text{кат}}$) и тока окисления модификатора ($I_{\text{мод}}$)) – $I_{\text{кат}}/I_{\text{мод}}$, равном 185.0, и уменьшении потенциала каталитического окисления цистеина на этом XMЭ ($E_{\text{кат}}$) по сравнению с потенциалом его окисления на СУ (E_{s}), при этом $\Delta E = (E_{\text{кат}} - E_{\text{s}}) = 350$ мВ (табл. 2).

Изучено влияние скорости наложения потенциала на величину каталитического тока и потенциала окисления цистеина на фоне буферного раствора с pH 4.01. Ток в пике линейно увеличивается с увеличением значения \sqrt{v} (рис. 3, *a*), что свидетельствует о диффузионной природе тока. Полученная форма зависимости I/\sqrt{v} от *v* (рис. 3, *б*) характерна для EC-процессов [28]. Как видно из рис. 3, *в*, с повышением значения *v* потенциал электроокисления цистена смещается в анодную область, что указывает на кинетическое лимитирование реакции субстрата с редокс-центрами электрокаталитически активных частиц. Можно предположить, что суммарный процесс окисления имеет смешанную природу и контролируется двумя процессами: массопереносом и кинетикой переноса заряда.

117

Табл. 1

Рис. 3. Зависимость тока пика от квадратного корня из скорости наложения потенциала (a), зависимость отношения тока пика к квадратному корню из скорости наложения потенциала от скорости наложения потенциала (δ) , зависимость потенциала пика от логарифма скорости наложения потенциала (b) при окислении цистеина на электроде FePc-MPyr-Au-CУ

Найдены кинетические параметры электродного процесса окисления цистеина на электроде FePc-MPyr-Au-CV: наклон Тафеля (*b*) и коэффициент электронного переноса (α). Значения *b* и α для необратимых процессов с диффузионным контролем находили по формуле, предложенной Лавероном [28]: $E_n = b/2$ (log *v*) + const, где *v* – скорость развертки потенциала. Полученное из графической зависимости E_n от log *v* (рис. 3, *в*) значение *b* равно 134 мВ. Величину коэффициента переноса электрона находят из той же зависимости (рис. 3, *в*) по формуле (для анодных процессов): $b = 2.3 RT/(1 - \alpha)$ nF, где *R* – универсальная газовая постоянная (8.31 Дж/моль·К), *T* – температура (293 K), *n* – число электронов, *F* – число Фарадея (96500 Кл/моль). Значение α , найденное по этой формуле, равно 0.50. Найденное значение α использовали для нахождения константы скорости электронного переноса (k_s) по формуле, предложенной Савеном [28]: log $k_s = \alpha \log (1 - \alpha) + (1 - \alpha) \log \alpha - \log RT/nFv - \alpha (1 - \alpha) nF\Delta E_n/2.3 RT,$ где ΔE_n – разность катодного и анодного пиков, *v* – скорость развертки потенциала (20 мВ/с). Значение k_s для данного процесса равно 0.51·10² с⁻¹.

На основании полученных результатов можно предположить следующую схему окисления цистеина на ХМЭ с монослоем FePc:

→
$$Fe(II)Pc \rightarrow Fe(III)Pc^+ + e$$
, (2)

$$2Fe(III)Pc^{+} + HSCH_{2}CH(NH_{2})COOH \rightarrow \rightarrow 2Fe(II)Pc + (SCH_{2}CH(NH_{2})COOH)_{2} + 2H^{+}.$$
(3)

Каталитическая активность MPc проявляется в кислых электролитах. Наибольшего значения каталитический эффект достигает при pH 4.0 (рис. 4). Уменьшение каталитического эффекта с дальнейшим ростом значения pH связано с разрушением пленки из-за десорбции слоя 4-меркаптопиридина с золотой поверхности в соответствии с уравнением [23]:

$$Au-SR + e + M^{+} \rightarrow Au^{0} + RS^{-}M^{+}, \qquad (4)$$

где M⁺ – ион щелочного металла фонового электролита.

На основании полученных результатов разработан способ вольтамперометрического определения цистеина на электроде FePc-MPyr-Au-CУ.

Рис. 4. Зависимость каталитического эффекта (*a*) и потенциала пика (б) при окислении цистеина на электроде FePc-MPyr-Au-CV от pH фонового электролита

Табл. 2

Метрологические характеристики определения цистеина на ХМЭ в стационарных и проточных^{*} условиях

Valopus popuerpaulu	Содержание цист	c	
условия регистрации	Введено	Найдено, $(x \pm \Delta x)$	\mathfrak{S}_r
	5.00	5.1 ± 0.2	0.04
Стационарные условия	10.00	10.2 ± 0.3	0.03
	100	99 ± 3	0.03
	8.0	7.7 ± 0.2	0.02
Проточные условия	80.0	79 ± 1	0.01
	160.0	159 ± 1	0.01

Методика определения цистеина на электроде FePc-MPyr-Au-CУ. В мерную колбу на 10 мл вносят фиксированный объем стандартного раствора цистеина, добавляют 5 мл буферного раствора с pH 4.01 и доводят до метки дистиллированной водой. Раствор переносят в ячейку, погружают в него XMЭ, вспомогательный и хлоридсеребряный электроды и регистрируют циклическую вольтамперограмму в интервале от 0.0 до 0.8 В. Величину анодного тока измеряют при E_n 0.50 В. Величина тока пика пропорциональна содержанию цистеина в интервале концентраций от 5·10⁻³ до 5·10⁻⁶ М. Эта зависимость описывается следующим уравнением:

$$I_n = (0.20 \pm 0.04) + (7.4 \pm 0.2) \cdot 10^3 c; \qquad (I_n, \text{ MKA}; c, \text{ M}); \quad r = 1.0000. \tag{5}$$

Правильность методики оценена методом «введено – найдено» (табл. 2). Относительное стандартное отклонение (S_r) не превышает 0.05 во всем диапазоне концентраций.

Установлена возможность использования электрода FePc-MPyr-Au-CV для амперометрического детектирования цистеина в условиях ПИА. Изучена зависимость величины тока от накладываемого потенциала. Максимум этой зависимости (при использовании в качестве потока-носителя буферного раствора с pH 4.01) наблюдается при E 0.60 В (рис. 5, a). Интенсивность аналитического сигнала в условиях ПИА зависит от объема инжектируемой пробы (V), предельная величина ПИА-сигнала наблюдается при V 0.70 мл (рис. 5, δ). Зависимость интенсивности ПИА-сигнала от скорости потока (u) проходит через максимум при u 18 мл·мин⁻¹ (рис. 5, e).

Рис. 5. Зависимость ПИА-сигнала окисления цистеина ($c \ 1 \cdot 10^{-3}$ моль/л) на ХМЭ от накладываемого потенциала (a), объема инжектируемой пробы (δ) и скорости потока (s)

На основе полученных зависимостей были выбраны рабочие условия регистрации ПИА-сигнала на ХМЭ. Величина ПИА-сигнала пропорциональна содержанию цистеина в интервале концентраций от 0.8·10⁻³ до 0.5 мкмоль. Эта зависимость описывается уравнением (6):

 $I_n = (0.50 \pm 0.02) + (8.1 \pm 0.5) \cdot 10^2 \cdot c;$ ($I_{\rm II}$, мкА; c, мкмоль); r = 0.9998. (6)

Использование ПИА приводит к понижению нижней границы определяемых содержаний (c_n) до $1 \cdot 10^{-6}$ моль/л. Кроме того, в условиях проточной системы достигнута лучшая воспроизводимость результатов определения цистеина ($S_r < 0.02$) по сравнению со стационарными условиями (табл. 2).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 12-03-97031-р поволжье а).

Summary

L.G. Shaidarova, A.V. Gedmina, M.L. Artamonova, I.A. Chelnokova, H.C. Budnikov. Voltammetric Determination of Cysteine on an Electrode Modified by a Self-Assembled Monolayer of 4-Mercaptopyridine with Iron(II) Phthalocyanine.

It is established that a modified electrode based on iron(II) phthalocyanine axially coordinated to 4-mercaptopyridine self-assembled monolayer on a gold surface shows electrocatalytic activity during cysteine oxidation. In comparison with an electrode containing no metal complex, a decrease in the overpotential of cysteine oxidation and a multiple increase in its current are observed. The conditions of electrode modification and registration of maximum catalytic current are found. A method for voltammetric determination and amperometric detection of cysteine on this composite electrode in stationary and flow-injection conditions is developed. The linear dependence of current on cysteine concentration is observed up to $5 \cdot 10^{-6}$ M in stationary conditions and up to $1 \cdot 10^{-6}$ mol/l in flowing conditions.

Key words: chemically modified electrodes, self-assembled monolayer of 4-mercaptopyridine, iron(II) phthalocyanine, electrocatalysis, voltammetric determination of cysteine.

Литература

 Agboola B., Ozoemena K.I., Nyokong T. Hydrogen peroxide oxidation of 2-chlorophenol and 2,4,5-trichlorophenol catalyzed by monomeric and aggregated cobalt tetrasulfophthalocyanine // J. Mol. Catal. A-Chem. – 2005. – V. 227, No 1–2. – P. 209–216.

- Agboola B.O., Mocheko A., Pillay J., Ozoemena K.I. Nanostructured cobalt phthalocyanine single-walled carbon nanotube platform: electron transport and electrocatalytic activity on epinephrine // J. Pophyr. Phthalocya. – 2008. – V. 12, No 12. – P. 1289–1299.
- Oni J., Diab N., Reiter S., Schuhmann W. Metallophthalocyanine-modified glassy carbon electroeffects of film formation conditions on electrocatalytic activity towards the oxidation of nitric oxide // Sensor. Actuat. B-Chem. – 2005. – V. 105, No 2. – P. 208–213.
- Maree S., Nyokong T. Electrocatalytic behavior of substituted cobalt phthalocyanines towards the oxidation of cysteine // J. Electroanal. Chem. – 2000. – V. 492, No 2. – P. 120–127.
- Opitz A., Bernhard E., Wagner Y., Hinderhofer A., Schreiber F., Manara J., Pflaum J., Brütting W. Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices // Org. Electron. – 2009. – V. 10, No 7. – P. 1259–1267.
- Ohmori Y., Itoh E., Miyairi K. Photovoltaic properties of phthalocyanine based p-n diode evaporated onto titanium dioxide // Thin Solid Films. – 2006. – V. 499, No 1–2. – P. 369–373.
- Gupta S.K., Koiry S.P., Chauhan A.K., Padma N., Aswal D.K., Yakhmi J.V. Self-assembled and electrochemically deposited mono/multilayers for molecular electronics applications // Appl. Surf. Sci. – 2009. – V. 30, No 2. – P. 407–413.
- Шайдарова Л.Г., Будников Г.К. Амперометрические сенсоры с каталитическими свойствами в органической вольтамперометрии // Проблемы аналитической химии. Т. 14: Химические сенсоры / Под ред. Ю.Г. Власова – М.: Наука, 2011. – С. 203–284.
- Varela H., Bruno R.L., Torresi R.M. Ionic transport in conducting polymers/nickel tetrasulfonated phthalocyanine modified electrodes // Polymer. – 2003. – V. 44, No 18. – P. 5369–5379.
- Altamar L., Fernández L., Borras C., Mostany J., Carrero H., Scharifker B. Electroreduction of chloroacetic acids (mono-, di- and tri-) at polyNi(II)-tetrasulfonated phthalocyanine gold modified electrode // Sensor. Actuat. B-Chem. – 2010. – V. 146, No 1. – P. 103–110.
- 11. *Milczarek G*. Self-doped polyaniline films prepared by electropolymerization in the presence of sulfonated nickelphthalocyanine // Thin Solid Films. 2009. V. 517, No 21. P. 6100–6104.
- Jeevagan A.J., John S.A. Electrochemical determination of caffeine in the presence of paracetamol using a self-assembled monolayer of non-peripheral amine substituted copper(II) phthalocyanine // Electrochim. Acta. – 2012. – V. 77. – P. 137–142.
- Mashazi Ph.N., Ozoemena K.I., Nyokong T. Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H₂O₂ and fabrication of glucose biosensor // Electrochim. Acta. – 2006. – V. 52, No 1. – P. 177–186.
- Mashazi Ph.N., Ozoemena K.I., Maree D.M., Nyokong T. Self-assembled monolayers (SAMs) of cobalt tetracarboxylic acidchloride phthalocyanine covalently attached onto a preformed mercaptoethanol SAM: A novel method // Electrochim. Acta. – 2006. – V. 51, No 17. – P. 3489–3494.
- Matemadombo F., Nyokong T. Characterization of self-assembled monolayers of iron and cobalt octaalkylthiosubstituted phthalocyanines and their use in nitrite electrocatalytic oxidation // Electrochim. Acta. – 2007. – V. 52, No 24. – P. 6856–6864.
- Ozoemena K.I., Nyokong T. Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine selfassembled monolayer // Talanta. – 2005. – V 67, No 1. – P. 162–168.

- Ozoemena K.I., Nyokong T. Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes // Electrochim. Acta. – 2006. – V. 51, No 13. – P. 2669–2677.
- Ozoemena K.I., Nyokong T. Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalytic oxidation and detection of thiocyanate // J. Electroanal. Chem. – 2005. – V. 579, No 2. – P. 283–289.
- 19. *Ozoemena K.I.* Self-assembled monolayers of cobalt and iron phthalocyanine complexes on gold electrodes: comparative surface electrochemistry and electrocatalytic interaction with thiols and thiocyanate // Electroanalysis. 2003. V.14, No 22. P.1762–1770.
- Yan G., Wang Y., He X., Wang K., Su J., Chen Z., Qing Z. A highly sensitive electrochemical assay for silver ion detection based on un-labeled C-rich ssDNA probe and controlled assembly of MWCNTs // Talanta. – 2012. – V. 94. – P. 178–183.
- Manolova M., Ivanova V., Kolb D.M., Boyen H.-G., Ziemann P., Büttner M., Romanyuk A., Oelhafen P. Metal deposition onto thiol-covered gold: platinum on a 4-mercaptopyridine SAM // Surface Sci. – 2005. – V. 590, No 2–3. – P. 146–153.
- Тарасевич М.Р., Радюшкина К.А. Катализ и электрокатализ металлопорфиринами. М.: Наука, 1982. – 168 с.
- Finklea H.O. Electrochemistry of organized monolayers of thiols and related molecules on electrodes // Electroanal. Chemistry: A Series of Advances / Eds. A.J. Bard, I. Rubinstein. – N. Y.: Marcel Dekker, 1996. – V. 19. – P. 109–335.
- Finklea H.O. Self-assembled monolayers on electrodes // Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentations / Ed. R.A. Meyers. – Chichester, UK: Wiley, 2000. – V. 11. – P. 10090–10116.
- Шайдарова Л.Г., Зиганшина С.А., Тихонова Л.Н., Будников Г.К. Электрокаталитическое окисление и проточно-инжекционное определение серосодержащих аминокислот на графитовых электродах, модифицированных пленкой из гексацианоферрата рутения // Журн. аналит. химии. – 2003. – Т. 58, № 12. – С. 1277–1284.
- 26. Шайдарова Л.Г., Гедмина А.В., Челнокова И.А., Будников Г.К. Электрокаталитическое окисление и проточно-инжекционное определение цистеина на стеклоуглеродном электроде, модифицированном бинарной системой золото-иридий // Журн. прикл. химии. – 2008. – Т. 81, № 6. – С. 949–954.
- Milaeva E.R., Speier G., Lever A.B.P. The redox chemistry of metallophthalocyanines in solution // Leznoff C.C., Lever A.B.P. (eds.) Phthalocyanines: properties and applications. – N. Y.: Wiley-VCH, 1993. – V. 3. – P. 3–69.
- Laveron E. General expression of the linear potential sweep voltamperogram in the case of diffusionless electrochemical systems // J. Electroanal. Chem. – 1979. – V. 101, No 1. – P. 19–28.

Поступила в редакцию 23.10.12

Шайдарова Лариса Геннадиевна – доктор химических наук, профессор кафедры аналитической химии Казанского (Приволжского) федерального университета. E-mail: Larisa.Shaidarova@ksu.ru

Гедмина Анна Владимировна – кандидат химических наук, научный сотрудник кафедры аналитической химии Казанского (Приволжского) федерального университета. E-mail: *Anna.Gedmina@ksu.ru* Артамонова Марта Леонидовна – аспирант кафедры аналитической химии Казанского (Приволжского) федерального университета.

E-mail: marta-art@mail.ru

Челнокова Ирина Александровна – кандидат химических наук, научный сотрудник кафедры аналитической химии Казанского (Приволжского) федерального университета.

E-mail: Irina.Chelnokova@mail.ru

Будников Герман Константинович – доктор химических наук, профессор кафедры аналитической химии Казанского (Приволжского) федерального университета. E-mail: *Herman.Budnikov@ksu.ru*