Том 154, кн. 1

Естественные науки

2012

УДК 541.49+546.723+543.421.424

ОБРАЗОВАНИЕ РАЗНОЛИГАНДНЫХ КОМПЛЕКСОВ ЖЕЛЕЗА(III) С ТИРОНОМ И АМИНОКАРБОКСИЛАТАМИ В ВОДНОЙ СРЕДЕ

Р.Р. Амиров, А.Б. Зиятдинова, А.Э. Хабибрахманова, Ю.И. Зявкина

Аннотация

Методами электронной спектроскопии и ядерной магнитной релаксации исследовано образование разнолигандных комплексов железа(III) с 4,5-диоксибензол-1,3-дисульфокислотой (тироном, Tiron, H_2L^{2-}) и нитрилотриуксусной кислотой (H_3Y) или глицином (HZ) в широком диапазоне pH и концентраций реагентов. Для разнолигандных комплексов состава [FeLY]⁴⁻ и [FeL₂Z]⁶⁻ определены спектральные параметры ($\lambda_{\text{макс}}, \varepsilon_{\lambda}$), коэффициенты релаксационной эффективности и константы устойчивости, рассчитаны константы присоединения лигандов при образовании разнолигандных комплексов.

Ключевые слова: железо(III), тирон, нитрилотриуксусная кислота, глицин, комплексообразование, разнолигандные комплексы, спектрофотометрия, ЯМР-релаксация.

Введение

Образование разнолигандных комплексов с участием ионов металлов и различных органических лигандов вызывает не только научный интерес, но имеет также практическую значимость в создании новых технологий при мониторинге загрязнений окружающей среды, разработке средств медицинской диагностики и лечения и т. д.

Ранее было исследовано комплексообразование железа(III) с 4,5-диоксибензол-1,3-дисульфокислотой (тироном, Tiron, H₂L²⁻)

в широком диапазоне pH водных растворов и концентраций реагентов [2, 3].

Эти данные, а также значения спектральных параметров и коэффициентов релаксационной эффективности приведены в табл. 1.

Установлено также, что значительный разброс в константах устойчивости его трех основных комплексов, приводимых в литературе, может быть объяснен неучетом образования гетероядерных комплексов с участием катионов щелочных или щелочноземельных металлов.

Табл. 1

Комплекс	$\lambda_{\text{make}},$ HM	$\epsilon_{\lambda},M^{-1}{\cdot}cm^{-1}$	$KP\Theta_2, M^{-1} \cdot c^{-1}$	lg K _n	$\lg eta_{ m ctyn}$	lg $eta_{ m oбщ}$
[FeL] ⁻	660	1900	3500	0.5 ± 0.1	20.8	20.8
$[FeL_2]^{5-}$	550	4700	5900	-6.2 ± 0.1	13.6	34.4
[FeL ₃] ^{9–}	480	6200	3100	-19.1 ± 0.2	8.2	42.6

Спектральные параметры, коэффициенты релаксационной эффективности, константы образования и устойчивости комплексов железа(III) с тироном

Основной интерес к комплексам железа(III) с молекулами, содержащими диоксибензойные фрагменты, связан с возможностью использования их в качестве моделей сидерофоров – биологически важных переносчиков ионов железа(III), таких как, например, энтеробактин, обеспечивающий железом клетки некоторых видов бактерий. Дополнительный интерес к таким соединениям вызван тем, что лиганды, содержащие диоксибензольные фрагменты, рассматриваются в качестве потенциальных контрастных агентов для магнитно-резонансной томографии (MPT) [4]. При этом в живом организме металлокомплекс окажется в окружении разнообразных соединений, включая аминокислоты и белки, способных к координации с катионами железа.

В моно- и бис-тиронатном комплексах железа имеются соответственно четыре и два координационных положения, которые могут занимать донорные атомы дополнительных лигандов. В соответствии с этим задачей настоящей работы было выявление возможности образования разнолигандных комплексов железа(III) с тироном и глицином как простейшей аминокислотой или нитрилотриуксусной кислотой как полидентатным лигандом. В определенной степени они моделируют взаимодействие тиронатных комплексов железа с фрагментом белковой молекулы.

1. Реактивы и оборудование

Использовали хлорид железа(III) марки «ч.д.а.», динатриевую соль 4,5-диоксибензол-1,3-дисульфокислоты (Na₂H₂L) (Acros Organics) (чистота 97%), аминоуксусную кислоту (Gly, глицин) марки «ч.д.а.», нитрилотриуксусную кислоту (NTA) марки «ч.д.а.», гидроксид натрия, хлороводородную и азотную кислоты (все – марки не ниже «ч.д.а.»).

Растворы готовили из более концентрированных разбавлением дистиллированной водой или по навеске в мерных колбах. Измерения pH растворов вели при 298 К на pH-метре ThermoOrion 420A+ (Thermo Electron). Прибор калибровали по трем буферным растворам (pH 4.01, 7.00 и 9.00).

Спектры поглощения в стационарном режиме снимали на приборах Lambda EZ210 (Perkin-Elmer) в диапазоне длин волн 350–900 нм с использованием кварцевых кювет толщиной 1 см (раствор сравнения – вода).

Времена протонной релаксации измеряли на приборе ЯМР-релаксометре Minispec MQ20 (Bruker) с рабочей частотой 19.75 МГц, позволяющем измерять времена спин-спиновой релаксации T_2 с использованием последовательности Карра – Парселла с погрешностью не более 3%. Температуру поддерживали

помощью криотермостата Haake DC10 (Thermo Electron). Все измерения проводили при 298 К.

Парамагнитный вклад $(1/T_{2p}, c^{-1})$ в скорость спин- спиновой релаксации определяли по формуле

$$\frac{1}{T_{2p}} = \frac{1}{T_2} - \frac{1}{T_{2d}},$$

где $1/T_{2d} = 0.4 \text{ c}^{-1}$ – так называемый «диамагнитный» вклад (скорость релаксации в отсутствие парамагнитных добавок). Релаксационную спин-спиновую эффективность (R_2 , $M^{-1} \cdot c^{-1}$) рассчитывали по формуле:

$$R_2 = \frac{1}{C_M T_{2p}},$$

где C_{M} – концентрация ионов парамагнитного зонда, Fe(III).

Величины констант равновесия комплексообразования получали путем построения математических моделей изучаемых систем, включающих схемы равновесий (со стехиометрическими коэффициентами при реагентах), значения констант равновесия образования комплексов и их коэффициентов экстинкции, є, или релаксационной эффективности (КРЭ) [5]. Оптимизацию численных параметров проводили по компьютерной программе CPESSP [6] с оценкой достоверности по критерию Фишера.

2. Результаты и обсуждение

2.1. Комплексообразование железа(III) с тироном. Изменение спектров растворов тиронатных комплексов железа(III) в избытке лиганда позволило определить их спектральные и термодинамические параметры, приведенные выше в табл. 1. Между тем анализ спектров поглощения растворов системы железо – тирон при разных соотношениях компонентов показал, что высший высокопрочный трис-комплекс не образуется количественно при трехкратном избытке лиганда над металлом даже в щелочной среде, что проявляется, например, в совпадении кривых а и b на рис. 1, *а*. Полный выход комплекса имеет место либо при добавлении солей щелочных или щелочноземельных металлов, либо при большем избытке лиганда. Проведенные магнитно-релаксационные измерения (рис. 1, δ) также показали, что при трехкратном избытке лиганда над металлом в области рH > 8 не обеспечивается заметное образование трискомплекса.

Полученные результаты подтверждают отмеченный в [7] факт более низкой устойчивости трис-комплекса в отсутствие фонового электролита.

Кроме того, в условиях недостатка тирона для образования бис- или трислигандного комплекса такие соединения все-таки образуются с участием всего количества имеющегося в растворе лиганда, на что указывают характеристичные величины спектральных параметров ($\lambda_{\text{макс}}, \varepsilon_{\lambda}$).

Рис. 1. Зависимость поглощения є при длине волны 480 нм (*a*) и релаксационной эффективности R_2 (δ) от pH в системе Fe(III) – тирон. $C_{\text{Fe}} = 0.15$ мM, $C_{\text{Tiron}} = 0.31$ (a), 0.46 (b), 1.5 (c), 5 (d) мМ

При этом избыточное количество железа(III) не выделяется из таких растворов (среда нейтральная или слабощелочная) в виде гидроксида, а остается в растворе. Так, например, при соотношении железо : тирон 1 : 2 наблюдаемый на рис. 2, *а* гипсохромный сдвиг максимума от 550 нм при pH > 8 свидетельствует о том, что часть ионов железа приобретает окружение, как в комплексе [FeL₃]^{9–} (чтобы не загромождать рисунок, опущена часть спектров для растворов до pH 8, отвечающих переходу комплекса [FeL][–] с $\lambda_{\text{макс}}$ 660 нм в [FeL₂]^{5–} с $\lambda_{\text{макс}}$ 550 нм).

При этом в соответствии с количеством лиганда (0.31 мМ) и железа (0.15 мМ) в растворе максимальная концентрация трис-комплекса не может превысить 0.103 мМ, то есть двух третей от общего содержания Fe(III). Это согласуется с тем, что наблюдаемые значения оптической плотности при λ 480 нм в растворах с pH > 8 не превышают 60% от предельной величины *A* для избытка лиганда (рис. 1, *a*, кривые b и с).

Рис. 2. Спектры растворов в системе Fe(III) – Tiron. $C_{\text{Fe}} = 0.15$ мM, $C_{\text{Tir}} = 0.31$ (*a*), 0.16 (*б*) мM

Аналогичные эффекты наблюдаются и при соотношении концентраций Fe : L, равном 1 : 1 (рис. 2, δ). Здесь также, чтобы не загромождать рисунок, опущена часть спектров для растворов до pH 4, отвечающих образованию комплекса [FeL]⁻ с $\lambda_{\text{макс}}$ 660 нм из ионов Fe³⁺ и лиганда. Последующий сдвиг положения максимума до 550 нм соответствует образованию бис-комплекса. При этом растворы остаются прозрачными, и гидроксид железа не выпадает. И в данном случае из-за недостаточного содержания лиганда (0.16 мМ) при концентрации железа(III) 0.15 мМ в растворе максимальная концентрация бис-комплекса составляет половину от общего содержания Fe(III), что отвечает наблюдаемым значениям оптической плотности растворов с pH > 8 (рис. 1, *a*). Такое неожиданное поведение системы, когда при эквимольном соотношении реагентов образуются высшие комплексы, имеет общие черты с диспропорционированием, известным, например, для солей галогенидов и псевдогалогенидов:

$$2 \operatorname{ZnCl}_2 \rightleftharpoons \operatorname{Zn}[\operatorname{ZnCl}_4],$$

$$2 \operatorname{Co}(\operatorname{NCS})_2 \rightleftharpoons \operatorname{Co}[\operatorname{Co}(\operatorname{NCS})_4].$$

Таким образом, наблюдаемую картину можно объяснить образованием бис- и трис-тиронатных комплексов железа(III), причем избыточная часть ионов железа (в частично гидролизованной форме) переходит во внешнюю сферу с образованием своего рода гомополиядерных комплексов. Математическая обработка полученных данных была проведена в предположении образования комплексов $\{Fe(OH)_n\}[FeL_2]$ и $\{Fe(OH)_m\}[FeL_3]$ по уравнениям:

Моделированием кривых поглощения при 480 нм были рассчитаны константы образования указанных комплексов для n = m = 2, равные $\lg K = -6.4 \pm 0.2$ и -18.3 ± 0.3 . Полученные данные можно интерпретировать как стабилизацию биси трис-тиронатов железа катионными гидроксокомплексами: {Fe(OH)₂}[FeL₂]⁴⁻, {Fe(OH)₂}[FeL₃]⁸⁻.

Таким образом, установлено, что негидролизованные формы тиронатов железа образуются в растворах, содержащих недостаток лиганда до рН 8 (соотношение концентраций Fe : L равно 1 : 2) или 6 (соотношение концентраций

Fe : L равно 1 : 1). Эта информация необходима при анализе результатов экспериментального исследования разнолигандных комплексов с участием тирона. Высокая прочность трис-тиронатного комплекса будет препятствовать координации других лигандов с ионов железа. Поэтому для облегчения вхождения дополнительного лиганда в экспериментах при изучении разнолигандных соединений имеет смысл использовать одно- или двукратный избыток тирона по отношению к железу(III).

2.2. Комплексообразование железа(III) с нитрилотриуксусной кислотой. Нитрилотриуксусная кислота образует с железом(III) прочные комплексы уже в кислой среде, поэтому может эффективно конкурировать с тироном. Предварительно было проведено ЯМР-исследование системы Fe(III) – NTA и определены коэффициенты релаксационной эффективности образующихся комплексов.

Добавление нитрилотриуксусной кислоты к раствору железа(III) приводит к спаду релаксационной эффективности от значения КРЭ₂ акваиона (15000 $M^{-1} \cdot c^{-1}$) до 5500 $M^{-1} \cdot c^{-1}$ при pH < 3 (рис. 3, кривая а), связанному с образованием комплексоната железа(III):

 $\operatorname{Fe}^{3+} + \operatorname{H}_{3}Y \rightleftharpoons \operatorname{Fe}Y^{0} + 3\operatorname{H}^{+}, \quad \lg K = 1.48 \pm 0.05.$

С учетом величин констант диссоциации NTA ($\lg K_{\text{полн}} = -14.11$) константа устойчивости первого комплекса $\lg \beta$ составила 15.59, что совпадает с литературным значением константы $\lg \beta = 15.6$ [8].

Дальнейший спад до 4000 $M^{-1} \cdot c^{-1}$ при pH > 3 вызван образованием гидроксо-комплекса:

$$\operatorname{Fe}^{3+} + \operatorname{H}_{3}Y \rightleftharpoons \operatorname{Fe}(\operatorname{OH})Y^{-} + 4\operatorname{H}^{+}, \qquad \operatorname{lg} K = -2.42 \pm 0.08$$

существование которого согласуется с литературными данными [9].

2.3. Разнолигандные комплексы железа(III) с нитрилотриуксусной кислотой и тироном. В кислой области pH (2–3.5) релаксационные кривые в системах Fe – NTA и Fe – NTA – Tiron совпадают (рис. 1, б) и отличаются от кривой для системы Fe – Tiron (рис. 4).

Из этого был сделан вывод, что в данных условиях в тройной системе практически все железо(III) существует в виде нитрилотриацетатного комплекса $[FeY]^0$. Подтверждением этому является также отсутствие окраски растворов с pH < 3.5 в тройной системе Fe – NTA – Tiron. При pH > 4 наблюдается расхождение кривых, при этом растворы приобретают окраску, характерную для тиронатов железа(III).

Характер изменения релаксационных кривых на рис. 3 и 4, а также спектральных данных из рис. 5 позволил предположить образование в области pH 4–6 разнолигандного комплекса железа(III). Увеличение концентрации аминокарбоксилата повышает выход этого комплекса (рис. 5), тогда как даже небольшой избыток тирона при pH > 5 приводит к образованию бис- или трислигандных однородных комплексов (рис. 3 и 5). На этом основании в математическую модель был введен разнолигандный комплекс, образование которого было записано в виде следующей формальной схемы:

 $\operatorname{Fe}^{3+} + \operatorname{H}_2 \operatorname{L}^{2-} + \operatorname{H}_3 \operatorname{Y} \rightleftharpoons \operatorname{[FeLY]}^{4-} + 5\operatorname{H}^+.$

Рис. 3. Зависимость релаксивности от pH в системах Fe(III) – NTA (a) и Fe(III) – Tiron – NTA (b–d). $C_{\text{Fe}} = 0.15$ мM, $C_{\text{NTA}} = 0.5$ мM, $C_{\text{Tir}} = 0$ (a), 0.31 (b), 1 (c), 5 (d) мM

Рис. 4. Зависимость релаксивности от pH в системе Fe(III) – Tiron – NTA. $C_{\text{Fe}} = 0.15$ мM, $C_{\text{Tir}} = 5$ мM, $C_{\text{NTA}} = 0$ (a), 0.5 (b), 1.5 (c) мM

Обработкой магнитно-релаксационных данных получено значение $\lg K = -3.99 \pm 0.12$ (КРЭ₂ 1926 $M^{-1} \cdot c^{-1}$). Достаточно близкие значения константы образования ($\lg K = -3.82 \pm 0.10$, $\varepsilon_{550} 2126 M^{-1} \cdot cm^{-1}$ и $\lg K = -3.88 \pm 0.04$, $\varepsilon_{550} 2353 M^{-1} \cdot cm^{-1}$) были рассчитаны по спектрофотометрическим данным. Максимум поглощения разнолигандного комплекса приходится на длину волны 570 нм при коэффициенте экстинкции 2550 $M^{-1} \cdot cm^{-1}$. Среднее значение константы можно принять равным $\lg K = -3.9 \pm 0.1$. С учетом величин констант диссоциации NTA и тирона была рассчитана константа устойчивости разнолигандного комплекса ($\lg \beta = 30.5$).

Рис. 5. Зависимость коэффициента экстинкции в системе Fe(III) – Tiron – NTA от концентрации тирона при различных pH. $C_{\text{Fe}} = 0.15 \text{ MM}$, $C_{\text{NTA}} = 0.2 \text{ MM}$

Как известно [1], для характеристики образования разнолигандных комплексов можно использовать различные константы, например, такие как:

- общая константа устойчивости

$$K_{\text{MRR'}} = \frac{[\text{MRR'}]}{[\text{M}][\text{R}][\text{R'}]}$$
для реакции M + R + R' \ mRR';

- константа сопропорционирования

$$K_{S} = \frac{[MRR']}{[MR_{2}]^{1/2} [MR'_{2}]^{1/2}}$$
для реакции ¹/₂ MR₂ + ¹/₂ MR'₂ \leftrightarrows MRR';

- константа присоединения

$$K^{\text{add}} = \frac{[\text{MRR'}]}{[\text{MR}][\text{R'}]}$$
 для реакции MR + R' \leftrightarrows MRR'.

Константу сопропорционирования в рассматриваемом случае использовать невозможно, поскольку сведения по устойчивости бис-нитрилотриацетата железа(III) отсутствуют. Поэтому использовали константу присоединения, которая характеризует возможность взаимодействия дополнительного лиганда с закомплексованным катионом по сравнению со свободным катионом

$$K_{\rm MR'} = \frac{[\rm MR']}{[\rm M][\rm R']}$$
 для реакции M + R' \leftrightarrows MR'

и рассчитывается по соотношению

$$\lg K_{\rm R}^{\rm add} = \lg K_{\rm MRR'} - \lg K_{\rm MR'}.$$

Для расчета значения константы присоединения тирона к нитрилотриацетатному комплексу железа(III) по уравнению:

$$[FeY]^0 + L^{4-} \rightleftharpoons [FeLY]^{4-}$$

использовали полученную величину константы устойчивости разнолигандного комплекса ($\lg \beta = 30.5$), а также константу устойчивости нитрилотриацетата

41

железа (lg β = 15.6). Рассчитанная величина константы присоединения lg K^{add} = 14.9 тирона к нитрилотриацетатному комплексу железа(III) на 5.9 логарифмических единиц меньше, чем константа устойчивости монотиронатного комплекса (lg β = 20.8, табл. 1), что указывает на наличие некоторых затруднений при вхождении бидентатного ароматического лиганда в координационную сферу железа(III), в котором комплексон занимает максимум четыре места из шести.

Таким образом, разнолигандный комплекс железа(III) с тироном и NTA образуется в слабокислой – нейтральной областях pH при возможно более низком содержании тирона. Любой избыток ароматического лиганда приводит к образованию бис- и трис-тиронатных комплексов железа даже в присутствии больших количеств нитрилотриацетат-ионов.

Представляло интерес применить полученные результаты к оценке возможности образования разнолигандных комплексов тирона с бидентатным аминокарбоксилатом, в качестве которого была выбрана простейшая аминокислота – глицин.

2.4. Взаимодействие глицина с тиронатными комплексами железа(III). Глицин образует с железом(III) недостаточно прочные комплексы $(\lg \beta \sim 10)$ [8]. Поэтому в экспериментах применяли высокие концентрации аминокислоты. Добавление глицина к растворам бис-тироната железа приводит к изменению вида спектров поглощения по сравнению с исходными только в области рН 7–9 (рис. 6), тогда как на переход моно- в бис-тиронатный комплекс никакого влияния не оказывает.

Наблюдаемое смещение спектральных кривых на рис. 6 на 20 нм в коротковолновую область при сохранении величин оптической плотности вызвано образованием смешанного комплекса железа(III) с тироном и глицином (H_2Z^+) при присоединении одной молекулы аминокислоты к бис-тиронату железа. В математической модели этот процесс описывается уравнением:

$$\operatorname{Fe}^{3+} + 2\operatorname{H}_2\operatorname{L}^{2-} + \operatorname{H}_2\operatorname{Z}^+ \rightleftharpoons [\operatorname{FeL}_2\operatorname{Z}]^{6-} + 6\operatorname{H}^+, \quad \lg K = -15.5 \pm 0.1.$$
 (1)

Математическую обработку проводили с использованием данных по зависимости от pH коэффициента экстинкции при 500 нм в тройной системе. С учетом величин констант диссоциации тирона и глицина для разнолигандного комплекса константа устойчивости $\lg \beta$ составила 37.5. Принимая во внимание константу устойчивости бис-тиронатного комплекса ($\lg \beta = 34.4$, табл. 1), можно рассчитать константу присоединения глицина к этому соединению:

$$[\operatorname{FeL}_2]^{5-} + Z^- \rightleftharpoons [\operatorname{FeL}_2 Z]^{6-}, \qquad \lg K^{add} = 3.1.$$

Как видно из рис. 6, разнолигандный комплекс имеет спектр поглощения с максимумом при 530 нм (у бис-тироната – 550 нм), при этом вхождение глицина в первую сферу железа в комплексе $[FeL_2]^{5-}$ практически не изменяет интенсивности полосы (ε_{530} 4700 M⁻¹·см⁻¹). Использование более высоких концентраций глицина (до 50 мМ) не влияет на спектральные параметры разнолигандного комплекса, что свидетельствует о сохранении его состава и при больших избытках аминокислоты.

Рис. 6. Спектры растворов в системе Fe(III) – Tiron – Gly. $C_{\text{Fe}} = 0.15$ мM, $C_{\text{Tir}} = 0.31$ мM, $C_{\text{Gly}} = 10$ мM

Рис. 7. Зависимость релаксивности от pH в системе Fe(III) – Tiron – Gly. $C_{\text{Fe}} = 0.15 \text{ MM}$, $C_{\text{Tir}} = 0.31 \text{ MM}$, $C_{\text{Gly}} = 10 \text{ MM}$

Сравнение зависимости релаксационной эффективности растворов в тройной системе железо(III) – тирон – глицин (рис. 7) и бинарной системе железо(III) – тирон (кривая а, рис. 1, δ) показывает, что различие в ходе кривых и здесь проявляется только в диапазоне pH 7–9.

Расчеты, проведенные с использованием данных из рис. 7, позволили получить величину $\lg K = -15.4 \pm 0.1$ для константы равновесия (1), что полностью согласуется с результатами расчетов по данным спектрофотометрии.

Таким образом, нами установлено, что бидентатный лиганд глицин, образующий слабый собственный комплекс с железом(III), способен сформировать разнолигандный комплекс на основе бис-тироната железа. Замена одного лиганда в трис-тиронате на глицин приводит к более низкому значению КРЭ₂ смешанного комплекса $[FeL_2Z]^{6-}$ (2240 $M^{-1} \cdot c^{-1}$) по сравнению с $[FeL_3]^{9-}$ (3100 $M^{-1} \cdot c^{-1}$). При этом вхождение глицина в первую сферу железа в комплексе $[FeL_2]^{5-}$ практически не изменяет интенсивности полосы (ε_{530} 4700 $M^{-1} \cdot cm^{-1}$), но смещает максимум спектра поглощения для смешанного комплекса до 530 нм по сравнению с бис-тиронатом (550 нм).

Тетрадентатный лиганд NTA образует разнолигандный комплекс [FeLY]⁴⁻ с участием только одной молекулы тирона. В его спектре поглощения также наблюдается гипсохромный сдвиг с 660 до 570 нм с небольшим увеличением коэффициента экстинкции є максимума (2550 $M^{-1} \cdot cm^{-1}$) по сравнению с исходным монотиронатом (1900 $M^{-1} \cdot cm^{-1}$). При этом значение КРЭ₂ 1926 $M^{-1} \cdot c^{-1}$ для тиронатно-нитрилотриацетатного комплекса ниже, чем для трис-тироната (3100 $M^{-1} \cdot c^{-1}$). Не обнаружена способность NTA к глициноподобной координации в составе бис-тироната железа(III).

Заключение

В широком диапазоне pH среды и концентраций реагентов изучено образование разнолигандных комплексов железа(III) с тироном (H_2L^{2-}) и нитрилотриуксусной кислотой (H_3Y) или глицином (HZ) методами электронной спектроскопии и ядерной магнитной релаксации. Показано образование разнолигандных комплексов состава [FeLY]⁴⁻ и [FeL₂Z]⁶⁻, для которых определены спектральные параметры ($\lambda_{\text{макс}}, \varepsilon_{\lambda}$), коэффициенты релаксационной эффективности и константы устойчивости. Из величин констант присоединения лигандов при образовании разнолигандных комплексов сделан вывод о наличии некоторых затруднений при вхождении бидентатного ароматического лиганда в координационную сферу железа(III), в которой комплексон занимает максимум четыре места из шести.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 09-03-00437).

Summary

R.R. Amirov, A.B. Ziyatdinova, A.E. Khabibrakhmanova, Yu.I. Zyavkina. Formation of Mixed Ligand Complexes between Iron(III), Tiron and Amino Carboxylates in Aqueous Media.

Formation of mixed ligand complexes between iron(III), 4,5-dihydroxybenzene-1,3disulfoacid (Tiron, H_2L^2) and nitrilotriacetic acid (H_3Y) or glycine (HZ) in a wide range of pH and concentrations of reagents was studied using spectrophotometry and NMR-relaxation method. Two mixed ligand complexes [FeLY]⁴⁻ and [FeL₂Z]⁶⁻ were found. Their spectral parameters (λ_{max} , ϵ_{λ}), coefficients of relaxation efficiency, and stability constants were determined. The constants of ligand addition were calculated.

Key words: iron(III), tiron, nitrilotriacetic acid, glycine, complex formation, mixed ligand complexes, spectrophotometry, NMR relaxation.

Литература

1. *Пилипенко А.Т., Тананайко М.М.* Разнолигандные и разнометалльные комплексы и их применение в аналитической химии. – М.: Химия, 1983. – 54 с.

- Амиров Р.Р., Мирсайзянова С.А., Петрова А.А., Сапрыкова З.А. Спектрофотометрическое исследование комплексообразования железа(III) с тироном в водных растворах солей щелочных и щелочноземельных металлов // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2007. – Т. 149, кн. 4. – С. 39–54.
- Амиров Р.Р., Мирсайзянова С.А., Петрова А.А., Сапрыкова З.А. Магнитно-релаксационные параметры комплексов железа(III) с тироном в воде и растворах солей // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2008. – Т. 150, кн. 1. – С. 9–21.
- Амиров Р.Р. Соединения металлов как магнитно-релаксационные зонды для высокоорганизованных сред. Применение в МР-томографии и химии растворов. – Казань: Новое знание, 2005. – 316 с.
- 5. Попель А.А. Магнитно-релаксационный метод анализа неорганических веществ. М.: Химия, 1978. 224 с.
- 6. Сальников Ю.И., Глебов А.Н., Девятов Ф.В. Полиядерные комплексы в растворах. Казань: Изд-во Казан. ун-та, 1989. 288 с.
- Harvey A.E., Jr., Manning D.L. Spectrophotometric methods of establishing empirical formulas of colored complexes in solution // J. Am. Chem. Soc. – 1950. – V. 72, No 10. – P. 4488–4493.
- 8. *Яцимирский К.Б., Крисс Е.Е., Гвяздовская В.Л.* Константы устойчивости комплексов металлов с биолигандами. Киев: Наукова думка, 1979. 226 с.
- Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов. М.: Химия, 1988. – 544 с.

Поступила в редакцию 24.10.11

Амиров Рустэм Рафаэльевич – доктор химических наук, профессор кафедры неорганической химии Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета.

E-mail: ramirov@ksu.ru

Зиятдинова Анна Булатовна – кандидат химических наук, старший преподаватель кафедры неорганической химии Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета.

E-mail: annette_zb@mail.ru

Хабибрахманова Ангелина Эдуардовна – инженер кафедры неорганической химии Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета.

E-mail: ramirov@ksu.ru

Зявкина Юлия Игоревна – кандидат химических наук, доцент кафедры неорганической химии Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета.

E-mail: Yulia.Zyavkina@ksu.ru