Том 152, кн. 4

Естественные науки

2010

УДК 544.176:539.143.43

ПРОСТРАНСТВЕННОЕ СТРОЕНИЕ ДИПЕПТИДА γGlu–Trp, ОПРЕДЕЛЕННОЕ ПУТЕМ АНАЛИЗА ВЕЛИЧИН ОСТАТОЧНОГО ДИПОЛЬ-ДИПОЛЬНОГО ВЗАИМОДЕЙСТВИЯ

С.В. Ефимов, А.Р. Юльметов, А.В. Клочков, Г.А. Азиатская, Ф.Р. Мухамадиев, Р.Ф. Байкеев, В.В. Клочков

Аннотация

В исследовании трехмерной структуры дипептида γ Glu–Trp использован подход, основанный на анализе величины остаточного диполь-дипольного взаимодействия между ядрами ¹Н и ¹³С в молекулах, частично ориентированных в лиотропной жидкокристаллической среде. Определено пространственное строение дипептида.

Ключевые слова: спектроскопия ЯМР ¹Н и ¹³С, остаточное диполь-дипольное взаимодействие, пространственная структура, молекулярная динамика, дипептид.

Введение

Одной из важнейших задач химической и биологической физики является установление пространственного строения органических и биоорганических соединений. Хорошо известно, что биологическая активность протеинов связана с их пространственным строением. Изучение конформаций олигопептидов также важно, так как многие из олигопептидов обладают фармакологическими свойствами, а некоторые короткие пептидные последовательности, синтезируемые клеткой, являются частью иммунной системы живого организма.

Исследование химической и пространственной структуры органических молекул в растворе проводится методами одно- и двумерной ЯМРспектроскопии (COSY-, HSQC-, NOESY-модификации) [1–5]. Спектроскопия ядерного эффекта Оверхаузера (2D NOESY) позволяет непосредственно определять расстояния между магнитными ядрами в молекулах в растворе (до 5 Å) и тем самым устанавливать пространственную структуру растворенных соединений [1, 2].

В настоящей работе использован подход, основанный на анализе величин остаточного диполь-дипольного взаимодействия между магнитными ядрами ¹³С и ¹H, разделенных одной химической связью, для определения пространственного строения дипептида γ Glu–Trp. С недавних пор этот подход активно используется при исследовании методом ЯМР биохимических объектов, подпадающих под условие медленного движения ($\omega_0 \tau_c \gg 1$, где τ_c – время корреляции, ω_0 – угловая скорость прецессии магнитных ядер) [6, 7]. Его же применение для изучения небольших молекул в растворе менее распространено (см. работы [8–12]), но не менее значимо, поскольку метод 2D NOESY в этой роли

не всегда эффективен [1, 2]. Причиной тому являются малые значения времен корреляции таких молекул в растворе. Последнее приводит к слабоинтенсивным кросс-пикам в спектрах ЯМР NOESY и затрудняет получение количественной информации о межпротонных расстояниях.

Экспериментальная часть

Регистрацию ЯМР ¹Н (500 МГц) и ¹³С (126 МГц) спектров проводили на ЯМР спектрометре высокого разрешения AVANCE II 500 фирмы Bruker. Спектрометр работает в режиме внутренней стабилизации поля по линии резонанса дейтерия (²H). При записи протонных спектров в изотропном растворителе (тяжелой воде) использовали 90°-импульсы и насыщение сигнала воды либо 30°-импульсы без насыщения сигнала растворителя. Задержки между импульсами составляли 2 с, число накоплений – от 4 до 100, ширина спектра – 11 м.д., число точек – 26832. При записи спектров ЯМР ¹³С использовали 30°-импульсы и развязку от протонов (WALTZ–16). Задержки между импульсами равнялись 2 с, число накоплений – 19485, ширина спектра – 236.6 м.д., число точек – 65536. При обработке спектра применяли цифровую экспоненциальную фильтрацию с константой 3 Гц. Одномерные спектры регистрировали при стабилизированной температуре 15 °С.

Для определения констант косвенного спин-спинового взаимодействия и остаточного диполь-дипольного взаимодействия были записаны спектры ¹³С (по одноимпульсной схеме и INEPT+) без развязки от протонов в изотропной и анизотропной среде. Число накоплений составляло от 45939 до 100000, ширина спектра – 200.8–236.6 м.д., 65536 точек.

Для соотнесений сигналов ЯМР ¹Н и ¹³С были записаны двумерные спектры COSY, TOCSY [13] (импульсная последовательность MLEV–17, с подавлением сигнала воды по схеме WATERGATE) и гетероядерный (¹H, ¹³C)-HMQC. Параметры эксперимента COSY: 8 накоплений на каждое приращение t_1 , размер спектра – 2048 × 256 точек. Ширина спектрального окна – 12.4 × 10.2 м.д. Параметры эксперимента TOCSY: 256 инкрементов по 20 прохождений на каждый, размер спектра – 4096 × 256 точек, 10.2×10.2 м.д. Спектр HMQC имел размер 1024 × 512, на каждый инкремент приходилось по 8 сканов. Ширина спектрального окна равна 12 м.д. по оси химических сдвигов ¹Н, и 230 м.д. – по оси химических сдвигов ¹³С. Образец поддерживался при температуре 15 °C. Для выбора путей переноса когерентности в экспериментах TOCSY и HMQC использовали импульсы градиента поля, в COSY – фазовый цикл.

Был также записан спектр NOESY с подавлением сигнала воды (8 сканов на инкремент, 4096×256 точек, ширина окна – 10.2 м.д.). Время смешивания составляло $\tau_{mix} = 0.5$ с.

В качестве ориентирующей среды использовали смесь *n*-додецил-пентаэтиленгликоля ($C_{12}E_5$) и *n*-гексанола в воде. Для приготовления образца было взято 23 мкл $C_{12}E_5$ на 650 мкл D₂O (весовое соотношение $C_{12}E_5$ /вода равно 3.08%); мольное соотношение гексанол/ $C_{12}E_5$ равно 0.96. Данная жидкокристаллическая среда была описана в работах [14, 15]. Образование ламеллярной фазы контролировали визуально, а также наблюдением квадрупольного расщепления сигнала ЯМР дейтерия, входящего в состав растворителя [7].

Результаты и их обсуждение

Если молекулярная система растворена в лиотропной жидкокристаллической системе [6], то из-за соударений о магнитно-ориентированные молекулярные образования поступательное и вращательное движение молекул перестает быть изотропным. Эта анизотропия в движении молекул приводит к появлению слабого диполь-дипольного взаимодействия между магнитными ядрами, которое проявляется в спектрах ЯМР как остаточное диполь-дипольное взаимодействие; при этом уширение сигналов ЯМР не наблюдается [6, 7].

Регистрируемая величина диполь-дипольного взаимодействия может быть выражена следующим образом [7]:

$$D_{IJ}(\theta,\varphi) = D_a^{IJ}\left(\left(3\cos^2\theta - 1\right) + \frac{3}{2}R\sin^2\theta\cos^2\varphi\right),\tag{1}$$

где

$$D_a^{IJ} = -\frac{\mu_0 h}{16\pi^3} S \gamma_I \gamma_J A_a \left\langle r_{IJ}^{-3} \right\rangle.$$
⁽²⁾

Тензор **A** характеризует преимущественное пространственное расположение молекул относительно внешнего магнитного поля. $R = (A_{xx} - A_{yy})/A_{zz}$ – ромбическая компонента, $A_a = A_{zz} - (A_{xx} + A_{yy})/2$ – аксиальная компонента тензора **A**. A_{xx} , A_{yy} , A_{zz} – проекции молекулярного тензора на оси ортогональной системы координат, связанной с молекулой. S – параметр порядка, описывающий внутреннюю динамическую подвижность межъядерного вектора; θ и φ – его полярные координаты; r_{IJ} – расстояние между ядрами I и J; γ_I и γ_J – гиромагнитные отношения ядер I и J.

Для частичного ориентирования биологических молекул в магнитном поле созданы разнообразные жидкокристаллические среды. В качестве примера можно привести фосфолипидные бицеллы [6], палочковидные вирусы [16] или фрагменты мембран [17]. Нематические фазы могут быть созданы на основе смесей бромида *n*-цетил-*n*,*n*,*n*-триметиламмониума, хлорида или бромида цетилпиридиния и *n*-гексанола [14, 18]; *n*-алкил-полиэтиленгликолей и нормальных спиртов в воде [14, 15].

Описанный выше подход был использован при определении структуры дипептида γGlu–Trp (1) в растворе, который является основной составляющей лекарственного средства, улучшающего работу иммунной системы [19].

Ранее [20] подобный подход был использован при определении структуры дипептида Glu–Trp (2) в растворе, который отличается от дипептида (1) не только местоположением химической связи, их соединяющих, но и физикохимическими свойствами.

Для определения межпротонных расстояний, напрямую характеризующих пространственную геометрию дипептида (1) в растворе, использовалась двумерная ЯМР NOESY-спектроскопия. К сожалению, нам не удалось обнаружить кросс-пики в спектрах NOESY между протонами, относящимися к разным аминокислотным остаткам. Это, на наш взгляд, вызвано удаленностью друг от друга протонов при α - и β -углеродных атомах, принадлежащих различным аминокислотным остаткам, а также обсуждаемой выше неэффективностью метода двумерной ЯМР NOESY-спектроскопии к исследованию строения относительно малых молекул.

Для выяснения пространственного строения дипептида γ Glu–Trp использовался описанный выше подход, основанный на анализе величин диполь-дипольного взаимодействия между магнитными ядрами. Для этого были рассмотрены взаимодействия между ядрами ¹³C и ¹H, разделенными одной химической связью, в молекуле, растворенной в изотропном растворителе и лиотропной среде (смесь *n*-алкил-полиэтиленгликоля $C_{12}E_5$ / *n*-гексанола и воды). В табл. 1 приведены данные о химических сдвигах атомов углерода (δ_C) и прямых констант спин-спинового взаимодействия ($^{1}J_{CH}$) для дипептида, полученных методом ЯМР ¹³C спектроскопии в отсутствие радиочастотной развязки от протонов. Величины остаточного диполь-дипольного взаимодействия ($^{1}D_{CH}$), определенные из разницы

Табл. 1

Химические сдвиги ЯМР ¹³С атомов углерода (δ_C , м.д., относительно ТМС) и значения прямых констант спин-спинового взаимодействия (${}^{1}J_{CH} + {}^{1}D_{CH}$, Γ ц) для дипептида γ Glu–Trp, растворенного в изотропном растворителе и лиотропной ЖК-среде

	Химические сдвиги	$^{1}J_{CH}$,	${}^{1}J_{CH} + {}^{1}D_{CH}$,
люм упперода	¹³ С, м.д.	Гц	Гц
αCH Glu	54.0	148	153
βCH ₂ Glu	26.2	137	99
$\gamma CH_2 Glu$	31.7	126	105
		132	111
αCH Trp	55.8	139	101
$\beta CH_2 Trp$	27.4	129	85

Рис. 1. Участки спектров ЯМР ¹³С (без развязки от протонов) дипептида (1), записанные в разных условиях. Сигнал на 57.3 м.д. – примесь, триплет с химическим сдвигом 60.4 м.д. в нижнем спектре – сигнал от ядер ¹³С компонентов лиотропной ЖК-среды

наблюдаемой константы спин-спинового взаимодействия (${}^{1}J_{CH} + {}^{1}D_{CH}$) для магнитных ядер молекул, растворенных в лиотропной жидкокристаллической (ЖК) среде и изотропном растворителе [7], оказались следующими: 5.0 Гц для α CH Glu, -38.0 Гц для одного из протонов группы β CH₂ Glu, -21.0 Гц для γ CH₂ Glu; -38.0 Гц для α CH Trp, -44.0 Гц для β CH₂ Trp. На рис. 1 представлены участки спектров, отвечающие резонансам атомов углерода в α -позициях, записанных с подавлением спин-спинового взаимодействия с протонами, а также без подавления (в воде и ЖК-среде).

Рис. 2. Соотношение экспериментальных и рассчитанных констант остаточного дипольдипольного взаимодействия для дипептида (1), смоделированного по априорным данным

Рис. 3. Соответствие экспериментальных и рассчитанных констант остаточного дипольдипольного взаимодействия для дипептида (1), смоделированного с учетом величин ${}^{1}D_{CH}$

Программа для молекулярного моделирования DYNAMO, входящая в пакет NMRPipe [21], использует экспериментально полученные ограничения на структуру молекулы для составления псевдопотенциала вида

$$E_{\text{tot}} = E_{\text{bond}} + E_{\text{angle}} + E_{\text{impr}} + E_{\text{vdw}} + E_{\text{noe}} + E_{\text{jcoup}} + E_{\text{torsion}} + E_{\text{dipo}} + E_{\text{pcs}} + E_{\text{rgyr}}, \quad (3)$$

куда входят также априорные данные о длинах валентных связей, типичных углах между связями и т. д. Моделирование ведется методом симулированного отжига (simulated annealing): сначала системе атомов приписывается большая энергия (большая температура), затем она постепенно уменьшается; атомы в конечном итоге занимают положение, обеспечивающее минимум целевой функции (3).

Рис. 4. Пространственное строение дипептида (1), полученное в результате моделирования с привлечением констант остаточного диполь-дипольного взаимодействия

С использованием программы DYNAMO были проведены расчеты трехмерной структуры строения дипептида (1). Случайным образом сгенерированная структура подвергалась оптимизации только по априорным данным, а затем полученная таким образом структура еще раз подвергалась симулированному отжигу, но уже с применением констант остаточного диполь-дипольного взаимодействия (RDC; слагаемое E_{dipo} в (3)). Далее с помощью программы MODULE [22] проверялось, насколько полученная конформация соответствует экспериментальным значениям RDC.

Соответствие структуры, рассчитанной только по априорным данным, экспериментальным константам не идеально (рис. 2). После включения в расчет величин ¹D_{CH} корреляция экспериментальных и рассчитанных в MODULE констант улучшилась (все точки ложатся на одну прямую – рис. 3).

Изображение молекулы (рис. 4) подготовлено с помощью программы UCSF Chimera (Калифорнийский университет, проект NIH P41 RR-01081 [23]). Координаты атомов в смоделированной структуре можно получить у авторов публикации.

Summary

S.V. Efimov, A.R. Yulmetov, A.V. Klochkov, G.A. Aziatskaya, F.R. Mukhamadiev, R.F. Baikeev, V.V. Klochkov. Spatial Structure of Dipeptide γGlu–Trp as Determined by Residual Dipolar Couplings Analysis.

An approach based on analysis of the residual ¹H and ¹³C dipolar couplings in molecules partially aligned in a lyotropic liquid crystalline medium was used to study three-dimensional structure of dipeptide γ Glu–Trp. Spatial structure of the dipeptide was determined.

Key words: ¹H and ¹³C NMR spectroscopy, residual dipolar coupling, spatial structure, molecular dynamics, dipeptide.

Литература

- 1. *Ernst R.R., Bodenhausen B., Wokaun A.* Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Oxford Univ. Press, 1987. 610 p.
- Van der Ven, Frank J.M. Multidimensional NMR in liquids: basic principles and experimental methods. N. Y.; Toronto: Wiley-VCH, 1995. 399 p.

- Dynamic Nuclear Magnetic Resonance Spectroscopy / Eds. L.M. Jackman, F.A. Cotton. N. Y.; San Francisco: London: Acad. Press, 1975. – 660 p.
- 4. Sandstrom J. Dynamic NMR Spectroscopy. London: Acad. Press, 1982. 226 p.
- Oki M. Application of dynamic NMR spectroscopy to organic chemistry. N. Y.: VCH Publ., Inc. – 1985. – 423 p.
- 6. *Tjandra N., Bax A.* Direct Measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium // Science. 1997. V. 278. P. 1111–1114.
- 7. *Alba E., Tjandra N.* NMR dipolar couplings for the structure determination of biopolymers in solution // Progr. NMR Spectrosc. – 2002. – V. 40. – P. 175–197.
- Thiele C.M., Berger S. Probing the diastereotopicity of methylene protons in strychnine using residual dipolar couplings // Org. Lett. – 2003. – V. 5. – P. 705–708.
- Klochkov V.V., Khairutdinov B.I., Klochkov A.V., Shtyrlin V.G., Shaykhutdinov R.A. Spatial Structure of Triglycine Determined by the Residual Dipolar Couplings Analysis // Appl. Magn. Reson. – 2003. – V. 25. – P. 113–119.
- Klochkov A.V., Khairutdinov B.I., Tagirov M.S., Klochkov V.V. Determination of the spatial structure of glutathione by residual dipolar coupling analysis // Magn. Reson. Chem. – 2005. – V. 43, No 11. – P. 948–951.
- Ohnishi S., Shortle D. Observation of residual dipolar couplings in short peptides // Proteins. – 2003. – V. 50. – P. 546–551.
- Bernado P., Blackledge M. Anisotropic Small Amplitude Peptide Plane Dynamics in Proteins from Residual Dipolar Couplings // J. Am. Chem. Soc. – 2004. – V. 126. – P. 4907–4920.
- Berger S., Braun S. 200 and More NMR Experiments. Weinheim: Wiley-VCH, 2004. 810 p.
- Ruckert M., Otting G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments // J. Am. Chem. Soc. – 2000. – V. 122. – P. 7793–7797.
- Klochkov V.V., Klochkov A.V., Thiele C.M., Berger S. A novel liquid crystalline system for partial alignment of polar organic molecules // J. Magn. Reson. – 2006. – V. 179, No 1. – P. 58–63.
- Clore G.M., Starich M.R., Gronenborn A.M. Measurement of Residual Dipolar Couplings of Macromolecules Aligned in the Nematic Phase of a Colloidal Suspension of Rod-Shaped Viruses // J. Am. Chem. Soc. – 1998. – V. 120. – P. 10571–10572.
- Koenig B.W., Hu J., Ottiger M., Bose S., Hendler R.W., Bax A. NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragment // J. Am. Chem. Soc. – 1999. – V. 121. – P. 1385–1386.
- Prosser R.S., Losonczi J.A., Shiyanovskaya I.V. Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution // J. Am. Chem. Soc. – 1998. – V. 120. – P. 11010–11011.
- Петров А.В., Пигарева Н.В., Котов А.Ю., Колобов А.А., Симбирцев А.С. Изучение влияния Бестима (SCV-07) на дифференцировку Т-лимфоцитов у мышей // Цитокины и воспаление. – 2007. – Т. 6, Вып. 3. – С. 27–31.
- Klochkov V.V., Baikeev R.F., Skirda V.D., Klochkov A.V., Muhamadiev F.R., Baskyr I., Berger S. Spatial structure of peptides determined by residual dipolar couplings analysis // Magn. Reson. Chem. – 2009. – V. 47. – P. 57–62.
- Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. NMRpipe: A multidimensional spectral processing system based on UNIX pipes // J. Biomol. NMR. – 1995. – V. 6, No 3. – P. 277–293.

- Dosset P., Hus J.C., Marion D., Blackledge M. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings // J. Biomol. NMR. – 2001. – V. 20. – P. 223–233.
- Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis // J. Comput. Chem. – 2004. – V. 25, No 13. – P. 1605–1612.

Поступила в редакцию 10.06.10

Ефимов Сергей Владимирович – аспирант кафедры общей физики Казанского (Приволжского) федерального университета.

E-mail: Sergej.Efimov@ksu.ru

Юльметов Айдар Рафаилович – кандидат физико-математических наук, ассистент кафедры общей физики Казанского (Приволжского) федерального университета.

Клочков Антон Владимирович – кандидат физико-математических наук, ведущий инженер кафедры молекулярной физики Казанского (Приволжского) федерального университета.

Азиатская Гузель Анваровна – студент кафедры биохимии Казанского государственного медицинского университета.

Мухамадиев Фархат Рифатович – лаборант кафедры биохимии Казанского государственного медицинского университета.

Байкеев Рустем Фрунзевич – доктор медицинских наук, профессор кафедры биохимии Казанского государственного медицинского университета.

Клочков Владимир Васильевич – доктор химических наук, профессор кафедры общей физики Казанского (Приволжского) федерального университета.

E-mail: Vladimir.Klochkov@ksu.ru