Том 151, кн. 1

Естественные науки

2009

УДК 541.128.3:541.127:524.941.7:547:313.2:541:183:546.98'623

ИССЛЕДОВАНИЕ УГЛЕВОДОРОДНЫХ ОТЛОЖЕНИЙ, СФОРМИРОВАННЫХ НА ПОВЕРХНОСТИ Pd-Ag-Al₂O₃-Катализатора и Ag-Al₂O₃-Хемосорбента в процессе селективного гидрирования алкинов

И.Р. Ильясов, Л.Р. Галимзянова, М.В. Назаров, А.И. Ласкин, С.Р. Егорова, А.А. Ламберов

Аннотация

Изучено зауглероживание промышленных образцов Pd–Ag–Al₂O₃-катализатора селективного гидрирования ацетилена в этан-этиленовой смеси и Ag–Al₂O₃-катосорбента микропримесей соединений мышьяка, ртути, серы. Показано, что при проведении процесса селективного гидрирования ацетилена в адиабатическом мини-реакторе, под-ключенном к линии подачи этан-этиленовой смеси, параллельно основному промышленному реактору оба образца подвергаются интенсивному зауглероживанию. Количество, состав и свойства углеводородных отложений определяются природой металлов и кислотно-основными характеристиками алюмооксидного носителя. На поверхности частиц металлического палладия и серебра формируются углеводороды состава $C_nH_{2,0-2,5n}$ с низкой степенью ароматичности, представленные преимущественно линейными олигомерами и не образующие с ними прочной связи. На поверхности алюмооксидного носителя формируются углеводородные соединения состава $C_nH_{1,5-1,8n}$ с высокой степенью ароматичности.

Ключевые слова: селективное гидрирование ацетилена, этан-этиленовая смесь, углеводородные отложения, Ag-Al₂O₃-хемосорбент «защитного» слоя, дезактивация катализатора, Pd-Ag-Al₂O₃-катализатор, зауглероживание палладиевого катализатора, степень ароматичности, скорость зауглероживания, алюмооксидный носитель.

Введение

Процесс селективного гидрирования примесей ацетилена в этиленовых смесях является крупнотоннажным и предназначен для производства высокочистого этилена для полимеризации и эпоксидирования [1]. В промышленных условиях селективное гидрирование проводят преимущественно в присутствии Pd–Ag–Al₂O₃-катализаторов [2–5], эксплуатация которых, особенно в этиленовых потоках с высоким содержанием ацетилена, сопровождается ускоренной дезактивацией поверхности недесорбируемыми углеводородными отложениями [6–10]. Изучение состава, природы, характера накопления и локализации углеводородных отложений в таких катализаторах затруднено ввиду невозможности отбора проб зауглероженных образцов из промышленных реакторов. Катализаторы многократно в течение срока службы, а также перед извлечением из реакторов подвергаются высокотемпературным обработкам (окислительной и паровой регенерациям) для удаления накопленных отложений [6, 7]. Поэтому основные механизмы, описывающие зауглероживание катализаторов селективного гидрирования, основаны на результатах исследований, проведенных в лабораторных условиях, которые не всегда адекватно описывают реальные промышленные процессы и чаще всего выполнены с использованием модельных углеводородных смесей [10–12] и модельных катализаторов [4, 8, 13]. Последние, как правило, упрощаются до одно- или двухкомпонентных систем, включающих частицы металлического палладия и пористый алюмооксидный носитель. При этом рассматривают формирование на поверхности частиц палладия первичного углеводородного монослоя σ -связанных С₂-фрагментов, участвуюцих при длительной экспозиции в реакционной среде в наращивании олигомерных или полимерных цепей через образование π -связанных или несвязанных с палладием ненасыщенных С₄-углеводородов [3, 8, 11, 14], которые, в свою очередь, в присутствии кислотных и основных центров поверхности алюмооксидного носителя способны к дальнейшим превращениям с образованием недесорбируемых олигомеров, полимеров и различных ароматических структур [12, 15].

В отличие от модельных, промышленные катализаторы селективного гидрирования ацетилена имеют более сложный состав и включают помимо перечисленных компонентов серебряный промотор. В восстановленных формах катализатора серебро присутствует в виде как монометаллических, так и биметаллических сплавных Pd–Ag-частиц, а его концентрация в ряде случаев в 15–20 раз превышает содержание палладия. Высокие концентрации и способность к слабому комплексованию ненасыщенных углеводородов [16] позволяют предположить, что частицы металлического серебра также могут быть вовлечены в процесс накопления углеводородных отложений при эксплуатации катализаторов данного типа. Однако в настоящее время вклад серебряного промотора в зауглероживание практически не учитывается, а в литературе не приводятся сведения о характере накопления, природе и составе отложений, сформированных на поверхности его частиц в условиях селективного гидрирования ацетилена.

Изучение вклада серебра в процесс зауглероживания важно и для других систем, которые в настоящее время эксплуатируются в промышленных реакторах селективного гидрирования ацетилена одновременно с Pd–Ag–Al₂O₃-катализаторами. Такими системам являются так называемые хемосорбенты «защитного» слоя, представляющие собой металлическое серебро, нанесенное на поверхность оксида алюминия, и предназначенные для предотвращения отравления палладиевых катализаторов микропримесями соединений мышьяка, ртути, серы, поступающими в реактор с сырьевым потоком. Ag–Al₂O₃-хемосорбенты «защитного» слоя размещают в специальных реакторах перед или непосредственно над слоем Pd–Ag–Al₂O₃-катализатора, поэтому условия их эксплуатации идентичны. Дезактивация и снижение сорбционной способности Ag–Al₂O₃-хемосорбента в результате зауглероживания, в свою очередь, могут негативно отразиться на протекании процесса селективного гидрирования ацетилена, например, при отравлении Pd–Ag–Al₂O₃-каталитическими ядами.

Достоверные сведения о составе, природе и характере накопления углеводородных отложений могут быть получены только при изучении катализаторов, зауглероженных в условиях, максимально приближенных к промышленным, и не подвергавшихся окислительной регенерации. В данной работе исследуется процесс зауглероживания Pd–Ag–Al₂O₃-катализатора и Ag–Al₂O₃-хемосорбента при селективном гидрировании ацетилена в специально сконструированном адиабатическом мини-реакторе, подключенном к линии подачи этан-этиленовой смеси параллельно основному реактору гидрирования, в промышленных условиях.

Экспериментальная часть

Исследованы промышленные образцы Pd-Ag-Al₂O₃-катализатора селективного гидрирования ацетилена в этан-этиленовой смеси (образец A) и Ag-Al₂O₃-хемосорбента микропримесей соединений мышьяка, ртути, серы (образец Б). Образцы представляют собой сферические диаметром 2–3 мм гранулы оксида алюминия с распределенными на их поверхности частицами металлов: палладия (0.03 мас. %) и серебра (0.2 мас. %) – образец А, серебра (6 мас. %) – образец Б.

Pd-Ag-Al₂O₃-катализатор и Ag-Al₂O₃-хемосорбент послойно (Ag-Al₂O₃хемосорбент над слоем Pd-Ag-Al₂O₃-катализатора) по 5 кг помещали в специально сконструированный мини-реактор, представляющий собой вертикальный цилиндрический аппарат общим объемом 0.025 м³, который устанавливали параллельно основному промышленному трехсекционному реактору гидрирования ацетилена и подключали к линии подачи этан-этиленовой смеси, смешанной с метан-водородной фракцией, подаваемой на первый слой катализатора. Состав этан-этиленовой смеси, об. %: CH₄ - 0.05-0.09; C₂H₂ - 1.17-2.13; C₂H₄ -20.27-21.90; C₂H₆ - 75.23-78.31; C₃H₆ - 0.10-0.12. Состав метан-водородной фракции, об. %: H₂ - 99.99-90.09; CH₄ - 4.00; C₂H₆ - 0.01. В промышленных условиях реакцию гидрирования проводили согласно регламенту при T = 50-70 °C, P = 1.9 MIa, разбавлении сырья водородом из мольного соотношения H₂: C₂H₂ = 1.4 : 1.0. Условия процесса гидрирования в мини-реакторе полностью соответствовали промышленным. Исходную этан-этиленовую смесь направляли в верхнюю часть мини-реактора, а полученный гидрогенизат – на смешение с этан-этиленовой смесью, поступающей на второй слой катализатора основного промышленного реактора. $Pd-Ag-Al_2O_3$ -катализатор и $Ag-Al_2O_3$ хемосорбент выдерживали в мини-реакторе в течение шести (образцы А-6 и Б-6) и десяти (образцы А-10 и Б-10) недель, а затем извлекали и помещали в герметичную емкость, которую заполняли азотом.

Рентгенофазовый анализ проводили на модернизированном автоматическом дифрактометре на базе серийного ДРОН-2 с независимым вращением образца и счетчика с использованием длинноволнового излучения CuK_{α} с монохромным фильтром. Диапазон записи углов 2 θ – от 5 до 95 °.

Текстурные характеристики определяли на универсальном анализаторе площадей поверхности и пористости ASAP 2400 Micromeritics. Величину удельной поверхности $S_{y_{d}}$ определяли методом термодесорбции азота. Расчет $S_{y_{d}}$ проводили с учетом принятой площади поверхности молекулы азота 0.162 нм². Плотность азота в нормальном жидком состоянии – 0.808 г/см³. Точность измерения $S_{y_{d}} \pm 3\%$. Измерения изотерм адсорбции проводили при 77 К, дегазацию при 773 К до остаточного вакуума 10⁻⁴ мм рт. ст. Расчеты порометрического объема и распределения объемов пор по размерам осуществляли по десорбционной ветви изотермы, пользуясь стандартной процедурой Баррета – Джойнера – Хайленду. Точность измерения ±13%.

Термический анализ образцов проводили на синхронном термоанализаторе CTA-409 PC Luxx (Германия, фирма Netzsch) в интервале температур 25–1000 °C со скоростью нагрева 10 °C/мин в атмосфере аргона; масса образца ~0.2 г; точность определения потерь массы $\pm 0.5\%$. Анализ выделяющихся при терморазложении газов проводили на совмещенном с термоанализатором ИК-Фурье спектрометре Tensor-27.

Содержание углерода в образцах определяли на приборе «HORIBA» (EMIA-510) с детектором по теплопроводности по методике ASTM [17] путем сжигания пробы катализатора в токе кислорода массой ~1 г при температуре 1450 °C в течение 60 с.

Элементный состав образцов определяли на атомно-эмиссионом спектрометре «Optima 2000 DN». Съемку осуществляли из раствора, для чего пробу сплавляли с LiBO₃ и растворяли в соляной кислоте HCl. Подготовленную пробу образца сжигали в электрической дуге при температуре 7000–10000 °C. В качестве газа-носителя использовали аргон. Относительная ошибка измерения концентраций составляла ±5%.

Сканирующую электронную микроскопию (СЭМ) с микрозондовым рентгеноспектральным анализом проводили на электронном микроскопе EVO 50 XVP, совмещенном со спектрометром энергетической дисперсии INCA 350. Разрешение спектрометра 130 эВ. Анализ осуществляли при ускоряющемся напряжении 20 эВ и рабочем отрезке 8 мм, что позволяет избежать минимальных погрешностей. Глубина зондирования составляла 1 мкм. Паспортное разрешение микроскопа 2 нм.

Запись ИК спектров осуществляли при температуре адсорбции на Фурьеспектрометре Shiumadzu 8300 с разрешением 4 см⁻¹ и числом накоплений спектров 50. Образцы предварительно прессовали в виде таблеток плотностью 7– 17 мг/см², прокаливали в ИК-кювете при 450 °C в течение 1 ч в вакууме (0.013– 0.001 МПа) и охлаждали до 110 °C жидким азотом. При определении кислотных и основных центров в качестве молекулы-зонда использовали монооксид углерода и дейтерированный хлороформ соответственно [17]. Адсорбцию СО проводили при температуре жидкого азота в интервале давлений 13.3–1333.3 МПа. Концентрацию комплексов СО с льюисовскими кислотными центрами оксида алюминия ($N_{\rm CO}$) определяли из интегральной интенсивности соответствующих комплексам полос поглощения (п. п.) адсорбированного СО, нормированной на толщину таблетки ($I_{\rm CO}$), с учетом коэффициентов интегрального поглощения I_0 , взятых из [18] по формуле:

$$N_{\rm CO} = I_{\rm CO} / I_0. \tag{1}$$

Коэффициенты интегрального поглощения льюисовских кислотных центров оксида алюминия рассчитывали по формуле:

$$I_0 = 0.13 \cdot (\nu_{\rm CO} - 2130). \tag{2}$$

Силу льюисовских кислотных центров характеризовали теплотой адсорбции СО, которую определяли из уравнения [17]:

$$Q_{\rm CO,i} = 10.5 + 0.5 \cdot (\nu_{\rm CO,i} - 2143), \tag{3}$$

где $v_{CO,i}$ – частота колебаний CO, адсорбированного на *i*-м льюисовском кислотном центре.

При определении основных центров получали спектры предварительно подготовленного образца в области 2000–2300 и 3000–3900 см⁻¹ при комнатной температуре, затем при той же температуре проводили адсорбцию CDCl₃ при давлении насыщенных паров дейтерохлороформа до полного насыщения основных центров. После адсорбции CDCl₃ записывали спектр. Концентрацию основных центров вычисляли из интегральной интенсивности полос V_{CD}, соответствующих комплексам дейтерохлороформа с основными центрами различной силы. Коэффициенты поглощения приведены в [17]. Силу основных центров характеризовали в шкале протонного сродства РА, которые находили из уравнения:

$$\lg \Delta v_{\rm co} = 0.0066 \rm{PA} - 4.36, \tag{4}$$

где Δv_{co} – сдвиг *i*-й полосы CD колебаний от положения Δv_{co} в газовой фазе.

Для определения бренстедовской (В-) кислотности анализировали спектры поглощения ОН-групп, проявляющихся в диапазоне 3550–3796 см⁻¹ (мостиковые и терминальные ОН-группы). В-кислотность оценивали методом Н-связей, рассчитывая из интенсивностей полос поглощения комплексов Al-OH...CO, проявляющихся в области частот $v_{\rm CO} = 2157 - 2159$ см⁻¹, концентрация которых определялась из интегральной интенсивности п. п. в спектре адсорбированного СО. Силу В-центров характеризовали по шкале протонного сродства (PA), кДж/моль:

$$PA_{OH} = 1390 - 422 \lg \left(\Delta v_{OH}^{CO} / \Delta v_{SiOH}^{CO} \right).$$
(5)

Состав накопленных в образцах углеводородных отложений определяли методом масс-спектрометрии электронной ионизации при постепенном повышении температуры от комнатной до 470 °C на масс-спектрометре MAT-212 путем прямого ввода образца в ионный источник. Ионизирующее напряжение 60 В, ток ионизации 0.5 мА. Для идентификации структуры углеводородных соединений использовали библиотечные данные NIST.

Обсуждение результатов

Из дифрактограмм, представленных на рис. 1, следует, что носители Pd– Ag–Al₂O₃-катализатора (далее катализатора) и Ag–Al₂O₃-хемосорбента (далее хемосорбента) представляют собой γ-Al₂O₃.

Дополнительные рефлексы со значениями с d = 2.359 и 2.043 Å на дифрактограмме хемосорбента указывают на формирование крупных кристаллитов металлического серебра с размерами ОКР, рассчитанными для плоскости (111), около 60 нм [19].

Рис. 1. Дифрактограммы Pd-Ag-Al₂O₃-катализатора (1) и Ag-Al₂O₃-хемосорбента (2)

0500001	Содержание, мкмоль/г (мкмоль/м ²)								
Образец	Pd	Ag	Na	Ca	К	Mg	Fe	С	
	2.8	18.5	134.8	7.5	5.1	4.1	12.5	75.04	
A	(0.01)	(0.09)	(2.25)	(0.04)	(0.03)	(0.02)	(0.06)	(0.37)	
	отс.	12.3	137.9	6.0	7.2	4.8	17.0	31.7	
Ац		(0.06)	(0.68)	(0.03)	(0.03)	(0.02)	(0.08)	(0.16)	
Б	отс.	552.4	117.4	7.0	5.1	4.1	14.3	33.3	
D		(2.24)	(0.48)	(0.03)	(0.03)	(0.02)	(0.06)	(0.135)	
Г	0.770	375.8	110.2	7.2	5.0	5.3	20.4	22.5	
D _Ц	ore.	(1.53)	(0.45)	(0.03)	(0.02)	(0.02)	(0.08)	(0.09)	

Содержание палладия, серебра и микропримесей в свежих образцах Pd–Ag–Al₂O₃-катализатора и Ag–Al₂O₃-хемосорбента по данным атомно-эмиссионного анализа

Свежие образцы катализатора и хемосорбента имеют близкий состав микропримесей металлов Na, Ca, K, Mg, Fe, равномерно распределенных по объему сферических гранул, на что указывают сопоставимые концентрации элементов как в гранулах в целом, так и в их центральной части (обр. A_u и обр. Б_u) (табл. 1), но отличаются содержанием микропримеси углерода – 75.0 и 33.3 мкмоль/г в образцах A и Б соответственно.

Палладий в количестве 2.8 мкмоль/г распределен только во внешнем корочковом слое гранул катализатора и в их центральной части не идентифицируется. В отличие от палладия, серебро как в катализаторе, так и в хемосорбенте распределено в объеме гранул, но неравномерно. В центральной части содержание

		Содержание элементов, %								
Обра-	С		0		Na		Al		Ag	
зец	мас.	ат.	мас.	ат.	мас.	ат.	мас.	ат.	мас.	ат.
А	0.2	0.3	56.0	66.2	0.4	0.2	43.4	30.2	-	-
A _u	0.1	0.1	57.5	64.3	0.3	0.2	42.3	28.0	_	-
A-10 ₄	7.0	11.2	49.0	57.9	0.2	0.2	43.6	30.5	_	
Б	0.1	0.2	53.3	59.8	0.2	0.2	42.3	29.0	6.2	1.1
Бц	0.1	0.2	54.9	63.3	0.2	0.2	40.9	28.0	3.8	0.7
Б-10 _ц	4.1	20.7	48.5	54.2	-	-	43.8	29.2	3.6	0.5

Данные сканирующей электронной микроскопии свежих и зауглероженных образцов Pd–Ag–Al₂O₃-катализатора и Ag–Al₂O₃-хемосорбента

Табл. 3

Текстурные характеристики свежих образцов Pd-Ag-Al₂O₃-катализатора и Ag-Al₂O₃-хемосорбента

	C		Объем пор в области диаметров пор (Å)					
Образец	З _{уд} , м ² /г	$V_{\pi}, \mathrm{cm}^{3}/\mathrm{f}$	<	75	> 100			
			см ³ /г	%	см ³ /г	%		
А	202	0.48	0.15	31.2	0.33	68.8		
Б	246	0.44	0.22	50.0	0.22	50.0		

металла значительно (> 30 мас. %) ниже его общей концентрации, что может быть обусловлено особенностями синтеза образцов. Неравномерность нанесения серебра подтверждают данные СЭМ хемосорбента (табл. 2).

При зондировании участка внешнего слоя сферической гранулы регистрируемое содержание серебра – 6.2 мас. %, а его центральной части – 3.8 мас. %. В катализаторе, напротив, ни палладий, ни серебро методом СЭМ не регистрируются ввиду их малой поверхностной концентрации, равной 0.01 и 0.09 мкмоль/м² соответственно. Расчет текстурных характеристик образцов показывает (табл. 3), что катализатор и хемосорбент обладают высокой величиной удельной поверхности, составляющей 202 и 246 м²/г соответственно, при этом их общий объем пор не превышает 0.5 см³/г.

Как следует из анализа ИК-спектров адсорбированного СО (табл. 4), образцы обладают близкой бренстедовской кислотностью. Концентрации бренстедовских кислотных центров, рассчитанные по интенсивностям полос поглощения (п. п.) комплексов Al–OH...СО при (п.п. при 2157÷2161 см⁻¹), равны 0.8 и 0.9 мкмоль/м² в образцах A и Б соответственно. Катализатор и хемосорбент существенно различаются льюисовской кислотностью. В катализаторе присутствуют льюисовские кислотные центры двух типов (п. п. при 2183 и 2190 см⁻¹), в хемосорбенте – только одного (п. п. при 2187 см⁻¹). Концентрация последних приблизительно в 4 раза ниже, что может быть обусловлено частичным экранированием поверхности оксида алюминия крупными кристаллитами нанесенного металлического серебра.

		Типы центров							
05	Льюисовские			Бренстедовские		Основные			
разец	ν _{co} , cm ⁻¹	<i>Q</i> _{СО} , кДж∕ моль	N _{CO} , мкмоль/г (мкмоль/м ²)	v_{CO}, cm^{-1}	N _{CO} , мкмоль/г (мкмоль/м ²⁾	ν _{CD} , см ⁻¹	РА, кДж/ моль	N _{CD} , мкмоль/г (мкмоль/м ²)	
٨	2183	30.5	505 (2.5)	215	162 (0.8)	2246	845	121 (0.6)	
A	2190	34	283 (1.4)	7	102 (0.8)	2226	896	343 (1.7)	
				216		2248	841	74 (0.3)	
Б	2187	7 32.5 246 (1.0)	210	221 (0.9)	2231	881	197 (0.8)		
				1		2207	936	148 (0.6)	

Кислотно-основные свойства свежих образцов Pd-Ag-Al₂O₃-катализатора и Ag-Al₂O₃хемосорбента

Экранированием поверхности также можно объяснить и меньшее количество основных центров в хемосорбенте (1.1 мкмоль/м²) по сравнению с катализатором (2.3 мкмоль/м²). В спектрах адсорбированного дейтерохлороформа различающиеся по силе основные центры проявляются двумя типичными для γ -Al₂O₃ п. п. при 2246–2248 см⁻¹ (слабые) и 2226–2231 см⁻¹ (сильные), представляя собой атомы кислорода в Al–OH- и Al–O–Al-фрагментах соответственно. При этом в образце Б наблюдаются дополнительные очень сильные центры (п. п. при 2207 см⁻¹), появление которых, вероятно, свидетельствует о модифицировании поверхности оксида алюминия серебром (мостиковый кислород с рядом расположенным междоузельным Ag⁺). Аналогичное усиление основности наблюдали в [20] в оксидах алюминия с высокими концентрациями натрия.

С учетом химического состава образцов, а также возможного участия кислотных и основных центров, способных взаимодействовать с образующимися на поверхности металлических частиц ненасыщенными С₄-углеводородами, в реакциях олигомеризации, полимеризации, конденсации, а также в формировании ненасыщенных циклов или полиароматических структур логично предположить, что скорость зауглероживания гранул хемосорбента, обладающего значительно меньшей суммарной концентрацией кислотно-основных и металлических центров со слабой реакционной способностью [16], будет существенно ниже скорости зауглероживания катализатора, а количество аккумулированных при этом углеводородных отложений – незначительным.

Однако извлеченные после шести недель эксперимента из мини-реактора гранулы хемосорбента, наряду с гранулами катализатора, характеризуются достаточно высокой степенью зауглероженности. Содержание углерода в образцах А-6 и Б-6 составляет 9.4 и 4.0 мас. % соответственно (табл. 5). Небольшое возрастание концентрации углерода после десяти недель эксперимента свидетельствует о замедлении процесса формирования отложений в обоих случаях и о дезактивации центров зауглероживания. Количество накопленного в хемосорбенте углерода в сравнении с образцом катализатора сопоставимо с суммарной концентрацией льюисовских кислотных и основных центров (концентрация ниже в первом случае в 2.3 раза). Столь значительное содержание углерода в образцах Б-6 и Б-10 говорит о том, что хемосорбент обладает высокоактивными центрами, способными в условиях промышленного процесса

Образец	Концентрация углерода, мас. %	Образец	Концентрация углерода, мас. %
A-6	9.4	Б-б	4.0
A-10	9.6 (7.8*)	Б-10	4.6 (3.0*)
A-10 ₄	7.3 (6.9*)	Б-10 _ц	4.2

Содержание углерода в образцах Pd-Ag-Al₂O₃-катализатора и Ag-Al₂O₃-хемосорбента

*Образцы после кипячения в толуоле при 110 °С в течение 60 ч.

Рис. 2. Масс-спектры углеводородных отложений Pd–Ag–Al₂O₃-катализатора (*a*) Ag–Al₂O₃-хемосорбента (*б*)

селективного гидрирования ацетилена взаимодействовать с молекулами исходных C₂-углеводородов и катализировать образования олигомеров, которые могут быть локализованы и на кристаллитах серебра, и на алюмооксидном носителе.

На рис. 2 представлены масс-спектры электронной ионизации образцов твердых отложений, снятых с внешней поверхности гранул катализатора и хемосорбента, зауглероженных после десяти недель эксперимента. Видно, что спектры обоих образцов близки. В области высоких масс пики молекулярных ионов не проявляются, а наблюдаются только пики осколочных ионов с m/z 278–428, являющихся продуктами термической деструкции закрепленных на поверхности высокомолекулярных соединений. Составы наиболее характерных осколочных ионов и структур, выбранных для них из библиотеки NIST, приведены в табл. 6 и 7.

m/z фрагмент- ных ионов	<i>М</i> _{эксп} , а.е.м.	Состав	<i>М</i> _{расч} , а.е.м.
278	278.2852	$C_{20}H_{38}$	278.2974
278	278.1993	$C_{21}H_{26}$	278.2035
306	306.2363	C ₂₃ H ₃₀	306.2348
306	306.1400	$C_{24}H_{18}$	306.1408
334	334.2648	$C_{25}H_{34}$	334.2661
334	334.1707	$C_{26}H_{22}$	334.1722
428	428.4360	$C_{31}H_{56}$	428.4382
428	428.3461	$C_{32}H_{44}$	428.3443
428	428.2531	C ₃₃ H ₃₂	428.2504

Составы наиболее характерных осколочных ионов

К продуктам термической деструкции углеводородных отложений могут быть отнесены различные линейные ненасыщенные олигомеры и полиядерные ароматические соединения с количеством бензольных колец от двух до четырех. Приведенные выше фрагменты, вероятно, являются составляющими элементами высокомолекулярной макромолекулы, предположительно, с разветвленной или сетчатой структурой, закрепленной на поверхности в виде углеводородной матрицы.

Более детальный анализ зауглероженных образцов показал, что, имея близкий состав закрепленных на внешней поверхности гранул соединений, катализатор и хемосорбент существенно отличаются распределением и степенью взаимодействия с поверхностью углеводородных отложений. Так, в катализаторе, помимо плотной полимерной пленки на внешней поверхности гранул, также формируются углеводородные соединения и в их объеме. Причем на долю последних приходится до 76% сконцентрированного в катализаторе углерода, часть (~ 6%) которого не связана с поверхностью и удаляется после 60-часовой экстракции в кипящем толуоле. Отложения внешнего слоя после экстракции теряют до 20% накопленного углерода. Гранулы хемосорбента характеризуются только одним типом отложений рыхлой консистенции, равномерно распределенных на поверхности и в объеме, значительная (~ 35% углерода) часть которых легко экстрагируется в толуол.

Неоднородный характер отложений подтверждают также кинетические кривые выгорания углерода, полученные при сжигании зауглероженных гранул катализатора и хемосорбента в токе кислорода в изотермических (1450 °C) условиях. На рис. 3 представлены кинетические кривые для десятинедельных образцов, гранул в целом (кривая 1) и их объемной части (кривая 2). Наложение кривых образцов А-10 и А-10_и (рис. 3, *a*) позволило выделить область (заштрихована), характерную для углеводородов, локализованных преимущественно на внешней поверхности в области корочкового слоя, обогащенного нанесенными металлами, и выгорающих главным образом во временном интервале от 0 до 20 с с максимумом при $\tau = 12$ с. Область выгорания соединений, сконцентрированных в объеме гранул катализатора, уширяется до $\tau \approx 50$ с. Появление на кривой образца А-10_и трех выраженных максимумов (приблизительно равной

Табл. 6

Структура осколочных ионов из библиотеки NIST

m/z	Брутто- формула	Вероятная структура					
		эйкосадиен-1,19: , 1-эйкозин: , , , , , , , , , , , , , , , , , , ,					
278	$C_{20}H_{38}$	3-эйкозин:					
		эйкосадиен-2,4:					
		5-эйкозин:					
306	C ₂₃ H ₃₀	1,1'-бифенил-4-ундец-9-енил: 1-(4-этилфенил)-4-(пропилциклогексил)-бензол: 1,1'- [4-этил-(4'-пропилциклогексил)]-бифенил: 1,1'-4-[2-(4-пропилциклогексил) этил]-бифенил: + ,					
334	C ₂₅ H ₃₄	бис-1,1'-[3-бутил-3'-гексен-4-ил)-метил]-фенил:					
428	C ₃₂ H ₄₄	1,1'-бифенил,4- (4'-пентилциклогексил)- 4'-(4-пропил-1-циклогексен-1-ил):					

интенсивности) при $\tau = 7$, 12 и 27 с говорит о формировании в объеме гранул различных по свойствам отложений. При этом не образуют прочной связи с поверхностью катализатора наиболее быстросгораемые с $\omega = 0.010-0.013$ моль/с·г_{кат} (табл. 8) углеводороды, так как характерные для них максимумы выгорания не проявляются на кривой образца, полученного после экстракции. Вероятно, отложения данного типа локализованы преимущественно на частицах металлов Pd⁰ и Ag⁰ (обр. А-10) или Ag⁰ (обр. А-10_п), тогда как прочно закрепленные с $\omega = 0.023$ моль/с·г_{кат} – на поверхности или в порах алюмооксидного носителя.

Рис. 3. Кинетические кривые выгорания углерода для образцов Pd–Ag–Al₂O₃-катализатора (*a*) и Ag–Al₂O₃-хемосорбента (*б*): 1 – A-10 и Б-10, 2 – A-10₄ и Б-10₄, 3 – A-10 и Б-10 после кипячения в толуоле, 4 – A-10₄ после кипячения в толуоле

Данные по выгоранию углерода в образцах Pd-Ag-Al₂O₃-катализатора и Ag-Al₂O₃-хемосорбента

Образец	Максимум выгорания т, с	Скорость выгорания (ω), моль/(г·с)	Образец	Максимум выгорания т, с	Скорость выгорания (ω) моль/(г·с)	
A_10	12	0.010	Б-10	10	0.011	
	33	0.018	D 10	10		
	7	0.012				
A-10 ₄	12	0,013	Б-10 _ц	10	0.010	
	28	0,023				

Аналогичная закономерность отмечается и при сопоставлении кинетических кривых выгорания углерода десятинедельных образцов хемосорбента (рис. 3, δ). Близкий характер кинетических кривых с максимумами при $\tau = 10$ с ($\omega = 0.010-0.011$ моль/с·г_{кат}) для образцов Б-10 и Б-10_ц обусловлен равномерным распределением накопленных отложений по слою гранулы. Смещение же максимума до $\tau = 20$ с на кривой полученного после экстракции в толуоле образца свидетельствует о выгорании главным образом отложений, сохранившихся на поверхности алюмооксидного носителя после удаления растворимых углеводородов с частиц металлического серебра.

На кривых ДСК зауглероженных образцов катализатора и хемосорбента (рис. 4) экзотермические эффекты термического разложения углеводородных соединений проявляются без четких максимумов в широком интервале температур.

Рис. 4. представление данных термогравиметрического анализа, дифференциальной сканирующей калориметрии (а, б, с) и ИК-Фурье спектроскопии (д, е, ж) продуктов терморазложения в образцах Pd-Ag-Al₂O₃-катализатора и Ag-Al₂O₃-хемосорбента

Появляющиеся одновременно на ИК-Фурье спектрах полосы, обусловленные выделением молекул воды и оксида углерода, позволили установить диапазоны терморазложения углеводородов в образцах А-10 и А- $10_{\rm u}$ – 180–550 °C, и Б-10 – 200–650 °C. На кривых ДТГ всех образцов потери массы при выгорании углеводородов проявляются двумя эффектами. Первые эффекты (I эф) на кривых образцов А-10 и А- $10_{\rm u}$ отмечаются в температурной области 180– 350 °C, а вторые (II эф) – в области 350–550 °C. На кривой ДТГ образца Б-10 обоим эффектам соответствуют области 200–300 °C и 300–650 °C. Согласно литературным данным [21, 22], первый и второй эффекты интерпретируются как терморазложение углеводородов, локализованных на поверхности частиц нанесенных металлов и оксидного носителя соответственно. С учетом потерь массы образцов на каждом эффекте (табл. 9) рассчитаны атомные соотношения Н/С (табл. 10) и определен формальный углеводородный состав отложений:

	І эф	II эф
A-10	$C_nH_{2,0n}$	$C_nH_{1,84n}$
A-10 _ц	$C_nH_{2,1n}$	$C_nH_{1,6n}$
Б-10	$C_nH_{2,5n}$	$C_nH_{1,5n}$

Соединения, локализованные преимущественно на поверхности металлических частиц и подвергающиеся термическому разложению в низкотемпературной области первого эффекта, характеризуются высокой величиной атомного отношения H/C = 2.0-2.5.

Табл. 9

	Тепловые эффекты и потери массы в температурных интервалах, °С							
Образец	Эндотерм	лический			потери			
-	25-180		180–350		350–550		массы, %	
	T_{\min} , °C	$\Delta m, \%$	T_{\min} , °C	$\Delta m, \%$	T_{\min} , °C	Δ <i>m</i> , %		
A-10	105	3.1	280	4.3	420	6,8	21.7	
A-10 _ц	97	1.2	270	3.3	420	5,1	17.6	
F 10*	100	4.0	200-300		300-	-650	13.2	
D-10*	100	4.7	_	1.6	_	3.7	13.2	

Терморазложение образцов Pd-Ag-Al₂O₃-катализатора и Ag-Al₂O₃-хемосорбента

* Образец нагревали до 700 °C.

Табл. 10

Образец		Coc	тав, %	H/C	<i>N</i> *	
		С	Н	11/0	14	
A-10	І эф	3.7	0.6	2.00	2.00	
	ІІ эф	5.9	0.9	1.84	2.17	
А-10ц	І эф	2.8	0.5	2.10	1.90	
	ІІ эф	4.5	0.6	1.60	2.50	
B-10	Ιэф	1.4	0.3	2.50	1.60	
	ІІ эф	3.3	0.4	1.50	2.20	

Свойства углеводородных отложений

* N – степень ароматичности.

Видно, что наиболее легкие углеводородные отложения состава C_nH_{2,5n} с минимальной степенью ароматичности (равной 1.6), полученной из уравнения Ван-Кревелена [23], образуются на поверхности хемосорбента, на крупных кристаллитах нанесенного металлического серебра и, вероятно, представлены преимущественно линейными ненасыщенными олигомерами, слабо связанными

с поверхностью металла. По данным термогравиметрического анализа общее количество накопленных в образце Б-10 углеводородов достигает 5.3 мас. %, из которых приблизительно третья часть сконцентрирована на частицах металлического серебра.

Состав отложений, разлагающихся в высокотемпературной области второго эффекта, существенно отличается от вышерассмотренных: на поверхности оксидного носителя как катализатора, так и хемосорбента формируются более тяжелые углеводородные соединения с атомным соотношением H/C = 1.5–1.84 и высокой степенью ароматичности 2.2–2.5.

Таким образом, при проведении процесса селективного гидрирования ацетилена в адиабатическом мини-реакторе, подключенном к линии подачи этанэтиленовой смеси параллельно основному промышленному реактору, происходит интенсивное зауглероживание как Pd-Ag-Al₂O₃-катализатора, так и Ag-Al₂O₃-хемосрбента уже в течение первых шести недель. Формирующиеся при этом на внешней поверхности гранул твердые углеводородные отложения представлены высокомолекулярными соединениями, включающими линейные алифатические и неконденсированные полиароматические структуры с числом бензольных колец от двух до четырех. Количество углерода в образцах катализатора и хемосорбента сопоставимо с суммарной концентрацией кислотных и основных центров на поверхности оксидного носителя. Углеводородные отложения формируются на частицах металлического палладия и серебра, а также оксида алюминия, отличаясь при этом по составу и степени взаимодействия с их поверхностью. Макромолекулы отложений состава C_nH_{2.0-2.5n}, представленные преимущественно линейными олигомерами и локализованные на частицах металлов, не образуют прочной связи с их поверхностью, растворяясь в толуоле. На крупных кристаллитах металлического серебра хемосорбента концентрируются наиболее легкие углеводороды состава C_nH_{2,5n} с минимальной степенью ароматичности. В отличие от металлов, кислотно-основные центры алюмооксидного носителя катализируют олигомеризацию и циклизацию ненасыщенных соединений с образованием углеводородных отложений состава С_nH_{1,5-1,8n} с высокой степенью ароматичности.

Summary

I.R. Il'yasov, L.R. Galimzyanova, M.V. Nazarov, A.I. Laskin, S.R. Egorova, A.A. Lamberov. Investigation of Hydrocarbonic Deposition Forming on Pd–Ag–Al₂O₃ Catalysts and Ag–Al₂O₃ Chemisorbent for Selective Hydrogenation of Alkins.

The article views hydrocarbonic deposition in industrial samples of Pd–Ag–Al₂O₃ catalyst for selective hydrogenation of acetylene in an ethane-ethylene mixture and Ag–Al₂O₃ chemisorbent of arsenic, mercury, sulfur impurities. In the process of selective hydrogenation of acetylene in adiabatic mini-reactor, both samples are shown to be subject to intensive deactivation. The quantity, structure and properties of hydrocarbonic deposition are defined by the nature of metals and by acid-base characteristics of the alumina support. On the surface of metal palladium and silver particles, hydrocarbons of $C_nH_{2,0-2,5n}$ structure are formed, possessing low degree of aromaticity. They are presented mainly by linear oligomers, and do not form a strong bridging with metal palladium and silver particles. On the surface of the alumina support, hydrocarbon compounds of $C_nH_{1,5-1,8n}$ structure with high degree of aromaticity are formed.

Key words: selective hydrogenation of acetylene, ethane-ethylene mixture, hydrocarbon deposits, Ag–Al₂O₃ chemosorbents "shielding" layer, deactivation of catalyst, Pd–Ag–Al₂O₃ catalyst, carbonization of palladium catalyst, the degree of aromaticity, rate of carbonization, alumina support.

Литература

- 1. Платэ Н.А., Сливинский Е.В. Основы химии и технологии мономеров. М.: Наука, 2002. 696 с.
- Molnar A., Sarkany A., Varga M. Hydrogenation of carbon carbon multiple bonds: chemo-, regio-, and stereo-selectivity // J. Mol. Catal. A: Chemical. – 2001. – V. 173. – P. 185–221.
- 3. *Stacchiola D., Calaza F., Zheng T., Tysoe W.T.* Hydrocarbon conversion on palladium catalysts // J. Mol. Catal. A: Chemical. 2005. V. 228. P. 35–45.
- 4. *Borodzinski A.* Hydrogenation of actylene-ethylene mixtures on a com-mercial palladium catalyst // Catal. Lett. 1999. V. 63. P. 35–42.
- 5. *Huang D.C., Chang K.H., Pong W.F., Tsend P.K., Hung K.J., Huang W.F.* Effect of Agpromotion on Pd catalysts by XANES // Catal. Letters. 1998. –V. 53. P. 155–159.
- 6. Бусыгин В.М., Ламберов А.А., Егорова С.Р., Ильясов И.Р. Гильманов Х.Х., Трифонов С.В., Шатилов В.М. Изучение механизма дезактивации Pd–Ag–Al₂O₃-катализатора селективного гидрирования ацетилена в процессе промышленной эксплуатации. І. Влияние свойств нанесенных металлов и кислотных характеристик носителя на активность и селективность Pd–Ag–Al₂O₃-катализатора селективного гидрирования в промышленности. 2006. № 2. С. 24–33.
- Бусыгин В.М., Ламберов А.А., Егорова С.Р., Ильясов И.Р. Гильманов Х.Х., Трифонов С.В., Шатилов В.М. Изучение механизма дезактивации Pd-Ag-Al₂O₃-катализатора селективного гидрирования ацетилена в процессе промышленной эксплуатации. П. Влияние условий эксплуатации на фазовый состав и структуру носителя Pd-Ag-Al₂O₃-катализатора селективного гидрирования ацетилена // Катализ в промышленности. 2006. №. 3. С. 34–42.
- Bond G.C. The role of carbon deposits in metal-catalysed reactions of hydrocarbons // Appl. Catal. A: General. – 1997. – V. 149. – P. 3–25.
- Duca D., Barone G., Varga Z. Hydrogenation of actylene-ethylene mixtures on Pd catalysts: com-putational study on the surface mechanism and on the influence of the carbonaceous deposits // Catal. Lett. 2001 V. 72, No 1–2. P. 17–23
- 10. Sarkany A. Formation of C4 oligomers in hydrogenation of acetylene over Pd/Al_2O_3 and Pd/TiO_2 catalysts // Reaction Kinetics and Catalysis Lett. 2001. V. 74, No 2. P. 299–307
- Kim W.J., Shin E.W., Kang J.H., Moon S.H. Performance of Si-modifier Pd catalysts in acetylene hydrogenation: catalysts deactivation behavior // Appl. Catal. A: Ceneral. – 2003. – V. 251. – P. 305.
- Guisent M., Magnoux P. Organic chemistry of coke formation // Appl. Catal. A: General. 2001. – V. 212. – P. 83–96.
- 13. Shaikhutdinov Sh.K., Frank M., Baumer M., Jackson S.D., Oldman R.J., Hemminger J.C., Freund H.-J. Effect of carbon deposits on reactivity of supported Pd model catalysts // Catal. Lett. -2002. - V. 80, No 3-4. - P. 115-122.
- Judari K., Abbet S., Worz A.S., Ferrari A.M., Giordano L., Paccioni G., Heiz U. Acetylene polymerization on supported transition metal clusters // J. Mol. Catal. A: Chemical. – 2003. – V. 199. – P. 103–45.

- Bartolomew C.H. Mechanism of catalyst deactivation // Appl. Catal. A: General. 2001. V. 212. – P. 17–60.
- Sarkany A., Revay Zs. Some features of acetylene and 1,3-butadiene hydrogenation on Ag/SiO₂ and Ag/TiO₂ catalysts // Appl. Catal. A: General. – 2003. – V. 243, No 2. – P. 347–355.
- 17. Методика ASTM D 3663-99 «Стандартный метод определения углерода и серы в катализаторах и носителях катализаторов». Киото, Япония: Horiba Ltd, 1992. 112 с.
- 18. Паукштис Е.А. Инфракрасная спектроскопия в гетерогенном кислотно-основном катализе. Новосибирск: Наука, 1992. 255 с.
- 19. Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982. 632 с.
- 20. Паукштис Е.А., Юрченко Э.Н. Применение ИК-спектроскопии для исследования кислотно-основных свойств гетерогенных катализаторов // Усп. химии. 1983. Т. 52, № 3. С. 426–454.
- Larsson M., Jansson J., Asplund S. The role of coke in acetylene hydrogenation of Pd/α-Al₂O₃ // J. Catal. – 1998. – V. 178. – P. 49–57.
- 22. Azizi Yas., Petit C., Pitchon V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO₂ catalyst // J. Catal. – 2008. – V. 256. – P. 338–344.
- 23. Ван Кревелен Д.В., Шуэр Ж. Наука об угле. М.: Химия, 1986. 303 с.

Поступила в редакцию 22.01.09

Ильясов Ильдар Равилевич – аспирант кафедры физической химии Химического Института им. А.М. Бутлерова Казанского государственного университета.

E-mail: *ilildar@yandex.ru*

Галимзянова Лилия Рафкатовна – аспирант кафедры физической химии Химического Института им. А.М. Бутлерова Казанского государственного университета. E-mail: *lgalimzyanova@list.ru*

Назаров Максим Викторович – аспирант кафедры физической химии Химического Института им. А.М. Бутлерова Казанского государственного университета. E-mail: humic-acid@mail.ru

Ласкин Артем Игоревич – студент кафедры физической химии Химического Института им. А.М. Бутлерова Казанского государственного университета. E-mail: *artemka@mail.ru*

Егорова Светлана Робертовна – кандидат химических наук, старший преподаватель кафедры физической химии Химического Института им. А.М. Бутлерова Казанского государственного университета.

E-mail: *segorova@rambler.ru*

Ламберов Александр Адольфович – доктор технических наук, профессор кафедры физической химии Химического Института им. А.М. Бутлерова Казанского государственного университета.

E-mail: Alexander.Lamberov@ksu.ru