Том 150, кн. 3

Естественные науки

2008

УДК 547:541.127+547:541.128

СЖИМАЕМОСТЬ ЖИДКОСТИ И ЕЕ ВНУТРЕННЕЕ ДАВЛЕНИЕ

В.Д. Киселев, А.В. Болотов, А.П. Сатонин, Е.А. Кашаева, А.И. Коновалов

Аннотация

Методом взвешивания жидкости, выведенной из стальных бомб при плавном сбросе давления от 1 кбар при температурах 20, 30, 40 и 50 °С, определены сжимаемости 1,4-диоксана, ацетонитрила, толуола, этилацетата, хлорбензола и *н*-гексана. Определены коэффициенты Тайта для этих жидкостей в изученном интервале давлений и температур. Обнаружена четкая линейная зависимость (r = 0.9999, n = 272) между обратной величиной изотермической сжимаемости при атмосферном давлении, ($1/\beta_T$) и модулем сжатия при 1000 бар, ($V_0/\Delta V_{1kbar}$): $1/\beta_T = 0.9865 \cdot (1000 V_0/\Delta V_{1kbar}) - 4559$, что соответствует выполнению в широком интервале давлений и температур правила непересечения кривых сжимаемости для жидкостей различных классов, включая даже ртуть. Эта зависимость позволяет рассчитать коэффициенты уравнения Тайта (C, B) по первичным данным о сжимаемости (β_T) при атмосферном давлении.

Ключевые слова: внешнее давление, сжимаемость жидкостей, уравнение Тайта, правило непересечения, внутреннее давление.

Введение

Сжимаемость жидкости отражает баланс энергий межмолекулярного притяжения и отталкивания, поэтому есть необходимость в прямом экспериментальном определении этой характеристики. Это свойство жидкости в значительной степени определяет изменение парциального мольного объема соединений в разных средах, величину электрострикции в растворах электролитов, изменение при повышенном давлении таких параметров, как диэлектрическая проницаемость, показатель преломления, вязкость, а также позволяет уточнить причины изменения объема активации, объема реакции и эффекта ускорения реакции под давлением [1, р. 99-107; 2, р. 50-100; 3; 4]. В работе [3] была предпринята попытка найти корреляцию между величинами β_{Γ} и набором других физических характеристик жидкости, таких, как термический коэффициент расширения (α_P), мольный объем (V), энтальпия ($\Delta_{vap}H$) и свободная энергия $(\Delta_{vap}G)$ испарения. Мы расширили набор физических параметров жидкости, включив дополнительно долю пустот при упаковке молекул в растворителе $(V - V_{\rm W})/V$ с учетом ван-дер-ваальсового объема ($V_{\rm W}$) и ряд других параметров, однако надежной корреляции также не обнаружили [5]. Можно предположить, что величина β_{Γ} формируется другими свойствами жидкости, не отраженными в перечисленных характеристиках.

Надежных данных о сжимаемости жидкостей в интервале температур и давлений недостаточно [1, р. 66–73; 3; 6, р. 73–730; 7–14]. Известны различные

приемы измерения объема жидкости при повышенном давлении, которые условно можно разделить на три группы: 1) методы с применением пьезометров постоянного объема; 2) методы с применением пьезометров переменного объема; 3) методы гидростатического взвешивания. В первой группе измерения связаны с различными приемами слежения за изменением объема экспериментальной жидкости при ее сжатии. Во второй группе измерения основаны на изменении объема сосуда с жидкостью, например, сильфона [15, с. 367–373]. Разработаны пикнометры с внутренним капилляром, через который вдавливаются капельки ртути при выравнивании давления внутри пьезометра [1, р. 67– 69; 15, с. 367–371]. Зависимость скорости звука от изменения плотности жидкости, индуцированного давлением, лежит в основе надежных расчетов адиабатической сжимаемости жидкости. Однако применение этих данных для расчета изотермической сжимаемости при выбранных значениях давления (Р) и температур (T) требует знания соотношения теплоемкостей (C_P/C_S) в этих условиях. Все эти методы требуют учета объемной деформации рабочих сосудов под давлением, что связано со значительными трудностями. Известен также метод прямого гидростатического взвешивания непосредственно в жидкости в условиях высокого давления [15, с. 373-376; 16 с. 121-131; 17]. Этот метод свободен от проблем объемной деформации цилиндра высокого давления, но требует учета деформации шаров и разновесов. Как и все измерения с одноразовой заправкой, этот метод обладает низкой производительностью. В ряде работ проведен критический анализ явных и скрытых ошибок при получении данных о сжимаемости [18, 19].

1. Экспериментальная часть

В предлагаемом здесь методе (рис. 1) определения сжимаемости жидкости используется равенство объемов сжатия ($V_{P1} \rightarrow V_{P2}$) и расширения ($V_{P2} \rightarrow V_{P1}$). Технический результат заключается в определении отличия сжимаемости исследуемой жидкости относительно известной сжимаемости эталонной жидкости, что позволяет исключить необходимость определения изменения объемов в других частях системы, в том числе и деформации системы. Давление в системе создается масляным компрессором 1 до 2000 бар. Компрессор создает давление при помощи гидравлической жидкости, в качестве которой мы используем вакуумное масло «ВМ-4». Прецизионный цифровой манометр 2 фиксирует показания давления с точностью $\pm 0.15\%$. С помощью крана 3 созданное в системе давление сохраняется неизменным. Гидравлическая жидкость выводится из системы с помощью клапана тонкой регулировки 4 и попадает в емкость, расположенную на электронных весах 5. Система содержит толстостенный цилиндр 7 из нержавеющей стали, в котором размещен сифон 8; в нижней части цилиндра 7 расположен ртутный затвор 9, разделяющий гидравлическую жидкость (ГЖ) в объеме 10 и исследуемую жидкость в объеме 11. Для уменьшения погрешности используется дополнительная бомба высокого давления 6, содержащая только исследуемую жидкость в объеме 12. Компоненты системы соединены между собой сетью капиллярных трубок из нержавеющей стали.

Рис. 1. Установка для определения сжимаемости жидкости

Надежные результаты измерений достигаются, когда объем 11 составляет не менее 2/3 общего объема. Все исходные значения объемов определяли при заполнении. В первом цикле измерений объемы 11 и 12 заполняли ГЖ, в качестве которой мы использовали чистое дегазированное вакуумное масло BM-4. Такое же масло находилось в резервуаре компрессора 1. Цилиндры 6 и 7 помещали в термостат (±0.02 °C). С помощью масляного (ГЖ) компрессора *l* создавали давление порядка 1000 бар, закрывали кран 3 и выдерживали систему для выравнивания температуры около 1 ч до установления постоянных показаний манометра 2. Затем клапаном тонкой регулировки 4 давление в системе медленно сбрасывали, направляя гидравлическую жидкость с помощью капилляра в емкость, расположенную на весах 5. Фиксируя изменения массы на весах и убыль давления по показаниям манометра, мы получали зависимость массы выведенной ГЖ от давления (m - P) во всем интервале падения давления. Подходящая скорость сброса ГЖ ($\partial m / \partial t$), необходимая для изотермических условий, составляет около 2 бар/мин. Масса гидравлической жидкости $(m_{\Gamma \not \times \Gamma \not \times})$, попадающей в приемник 11 при сбросе давления, равна массе дополнительно введенной ГЖ при повышении давления в системе:

$$\frac{m_{1,P}}{d_{P}} = \sum \Delta V_{\Gamma \mathcal{K}/\Gamma \mathcal{K}} = \Delta V_{9,P} + \Delta V_{10,P} + \Delta V_{11,P} + \Delta V_{12,P} + \Delta V_{\kappa \alpha \pi,P} + \Delta V_{\mu e \phi,P}, \qquad (1)$$

Здесь $m_{1,P}$ – масса ГЖ, определенная взвешиванием, d_P – плотность ГЖ при давлении (*P*) и рабочей температуре (*T*), $\Delta V_{9,P}$ – изменение объема при сжатии

ртути в объеме 9, $\Delta V_{10,P}$, $\Delta V_{11,P}$, $\Delta V_{12,P}$ соответствуют изменению объемов ГЖ, находящейся в объемах 10, 11 и 12, $\Delta V_{\text{кап},P}$ – изменение объема в соединительных капиллярных трубках, $\Delta V_{\text{деф},P}$ – объем деформации системы под давлением.

Во втором цикле измерений объемы 11 и 12 заполняли бидистиллированной водой и проводили измерения аналогично первому циклу. В этом случае объем расширения всех жидкостей в системе при уменьшении давления определяется соотношением (2):

$$\frac{m_{2,P}}{d_P} = \sum \Delta V_{\Gamma \mathcal{K}/BO \mathcal{J}A} = \Delta V_{9,P} + \Delta V_{10,P} + \Delta V_{11,P} + \Delta V_{12,P} + \Delta V_{\kappa a \pi, P} + \Delta V_{\mu e \phi, P}, \quad (2)$$

где d_P – плотность ГЖ при давлении (*P*) и температуре (*T*).

Сжимаемость жидкости можно определить по изменению объема или плотности (3):

$$\frac{V_0 - V_P}{V_0} = \frac{d_P - d_0}{d_P},$$
(3)

поэтому задача сводится к определению величины либо V_P , либо d_P в выбранном интервале давлений. Величина $\Delta V_{\text{деф},P}$ включает в себя упругое изменение объема всех частей системы при повышении давления и является наиболее трудно определяемой. В предлагаемом нами методе расчета ее определение не является обязательным. Если взять разность соотношений (1) и (2), то получаем простое соотношение (4):

$$\frac{m_{1,P} - m_{2,P}}{d_P} = \Delta V_{(11+12),\Gamma K} - \Delta V_{(11+12),BOJA}.$$
(4)

Для нахождения зависимости плотности ГЖ (d_P) от давления (P) с помощью соотношения (4) необходимо иметь в выбранном температурном интервале экспериментальные данные о зависимостях ($m_p - P$) при загрузке в объемы 11 и 12 ГЖ и при загрузке воды. Из соотношения (3) следует:

$$\Delta V_{P(11+12),\Gamma \mathbb{K}} = \left[V_0(d_p - d_0) / d_0 \right]_{\Gamma \mathbb{K}} \quad \mathbb{M} \quad \Delta V_{P(11+12),\text{вода}} = V_0 - V_{p,\text{вода}} = \left[V_0(d_p - d_0) / d_0 \right]_{\text{вода}}.$$

При рассмотрении сжимаемости равных исходных объемов (V_0) воды и ГЖ в объемах 11 и 12 имеем:

$$\frac{\Delta m_P}{d_P} = \Delta V_{P(11+12),\Gamma\mathcal{K}} - \Delta V_{P(11+12),BOZA} = \left[\frac{V_0(d_P - d_0)}{d_P} \right]_{\Gamma\mathcal{K}} - (V_0 - V_P)_{BOZA}, \quad (5)$$

где d_0 и d_P – плотности ГЖ при атмосферном и повышенном давлениях соответственно.

С учетом $V_0 \cdot d_{0,\Gamma K} = M_{0,\Gamma K}$ получаем основное соотношение (6):

$$(\Delta m_P + M_{0,\Gamma \mathcal{K}}) = V_{P,BOJA} \cdot d_{P,\Gamma \mathcal{K}}, \qquad (6)$$

где $M_{0,\Gamma Ж}$ – масса ГЖ в объеме 11 и 12 с известным объемом V_0 при атмосферном давлении. Прецизионные данные о сжимаемости воды для широкого интервала температур и давлений были взяты из работ [20, 21], а значения $d_{P,\Gamma Ж}$ были рассчитаны из уравнения (6).

Последующие измерения (третий цикл) проводили для исследуемой жидкости *S*, помещаемой в объемы *11* и *12* устройства. Аналогичное сопоставление приводит к соотношению (7):

$$\frac{m_{\Gamma \mathcal{K}/\Gamma \mathcal{K}} - m_{\Gamma \mathcal{K}/S}}{d_P} = \Delta V_{(11+12),\Gamma \mathcal{K}} - \Delta V_{(11+12),S} = M_{\Gamma \mathcal{K}} \left[\frac{(d_P - d_0)}{d_0 d_P} \right]_{\Gamma \mathcal{K}} - M_S \left[\frac{(d_P - d_0)}{d_0 d_P} \right]_S. (7)$$

В уравнении (7) $M_{\Gamma Ж}$ и M_{S} – массы ГЖ и исследуемой жидкости S равных исходных объемов при атмосферном давлении и выбранной температуре, d_0 и d_P – плотности при обычном и повышенном давлении для ГЖ и исследуемой жидкости S. Значения $d_{P,S}$ в уравнении (7) были рассчитаны из экспериментальных данных ($m_{\Gamma Ж/Г Ж} - P$) и ($m_{\Gamma Ж/S} - P$) и из найденной выше зависимости плотности от давления для гидравлической жидкости (6). Необходимо отметить, что в предлагаемом методе сравнения сжимаемостей эталонной и исследуемой жидкости снимается необходимость учета пластической деформации системы, учета изменения объема в соединительных капиллярных трубках и изменения объема при сжатии ртути ($\Delta V_{9,P}$, $\Delta V_{кап,P}$ и $\Delta V_{деф,P}$).

2. Результаты и обсуждение

В табл. 1 приведены полученные экспериментальные данные, необходимые для расчета сжимаемости ($\Delta V/V_0 = F(P)$) толуола при 20 °C.

Табл. 1

Эксперии	иентальные	данные д	іля расчета	сжимаемости	толуола в	интервале	давлений до
1000 бар	при 20 °С						

Ρ,	ш. г	ш. г	ш. Г	Δ	V_P , вода,	d_P , ГЖ,	Δ. μ	<i>d</i> _{<i>p</i>} , толуол	$\Delta V/V_0$
бар	<i>m</i> ₁ , 1	$m_2, 1$	<i>m</i> ₃ , 1	$\Delta m_{1-2}, 1$	CM ³	г·см ⁻³	$\Delta m_{1-3}, 1$	г·см ⁻³	толуол
0	0	0	0	0	82.523028	0.8831	0	0.8668	0
50	0.283	0.232	0.381	0.051	82.335287	0.8858	0.097	0.8705	0.00431
100	0.561	0.463	0.749	0.097	82.150380	0.8883	0.188	0.8742	0.00842
150	0.831	0.691	1.105	0.139	81.968220	0.8908	0.275	0.8776	0.01235
200	1.094	0.917	1.449	0.176	81.788729	0.8932	0.356	0.8810	0.01612
250	1.351	1.141	1.783	0.209	81.611829	0.8956	0.432	0.8842	0.01973
300	1.602	1.363	2.106	0.239	81.437447	0.8979	0.504	0.8874	0.02320
350	1.848	1.583	2.419	0.265	81.265511	0.9001	0.572	0.8904	0.02652
400	2.088	1.799	2.724	0.288	81.095954	0.9022	0.636	0.8934	0.02972
450	2.323	2.014	3.019	0.309	80.928711	0.9044	0.697	0.8962	0.03281
500	2.553	2.226	3.307	0.326	80.763719	0.9064	0.754	0.8990	0.03579
550	2.778	2.436	3.587	0.342	80.600920	0.9085	0.810	0.9017	0.03867
600	2.998	2.642	3.861	0.355	80.440255	0.9104	0.862	0.9043	0.04147
650	3.213	2.846	4.127	0.367	80.281669	0.9124	0.913	0.9069	0.04419
700	3.425	3.048	4.387	0.377	80.125109	0.9143	0.962	0.9094	0.04684
750	3.633	3.246	4.643	0.387	79.970524	0.9162	1.010	0.9119	0.04943
800	3.836	3.441	4.893	0.395	79.817865	0.918	1.057	0.9143	0.05198
850	4.037	3.633	5.139	0.403	79.667084	0.9199	1.103	0.9167	0.05448
900	4.233	3.822	5.382	0.411	79.518136	0.9217	1.149	0.9191	0.05695
950	4.427	4.008	5.621	0.419	79.370977	0.9235	1.194	0.9215	0.05940
1000	4.618	4.191	5.858	0.427	79.225564	0.9253	1.240	0.9239	0.06183

Рис. 2. Сжимаемость толуола при 20 °С. Сплошная линия соответствует литературным данным прецизионных измерений сжимаемости толуола при этой температуре [11], точки (■) и (Δ) соответствуют данным независимых дублей этой работы

Высокая чувствительность и воспроизводимость экспериментальных данных (рис. 2) в предложенном методе обусловлены надежным измерением массы ГЖ [(3000 - 10000) ± 1 мг] и избыточного давления [(0 - 1000) ± 0.1 бар]. Суммарная ошибка измерений сжимаемости не превышает $\pm 0.3\%$ и может быть уменьшена повышением уровня контроля температуры, массы и давления. Сопоставление полученных кривых ($\Delta V/V - P$) (рис. 2) с литературными данными дает прямую линию с угловым коэффициентом, равным 1.001051, r = 0.99999, N = 21.

Результаты измерений плотности при 20, 30, 40 и 50 °С и давлении до 1000 бар для 1,4-диоксана, ацетонитрила, толуола, этилацетата, хлорбензола и *н*-гексана приведены в табл. 2. Там же указаны рассчитанные значения коэффициентов уравнения Тайта:

$$\frac{\Delta V}{V_0} = C \ln \frac{B+P}{B}.$$
(8)

Полиномная функция ($\Delta V/V_0 - P$) может удовлетворительно описывать кривую сжатия, однако ее производные в граничных точках P_{\min} и P_{\max} могут быть сильно искажены. Особенно ненадежные результаты следует ожидать при экстраполяции за границы измерений, где часто предсказывается ложный экстремум для этой зависимости. Тщательный анализ ошибок при измерении сжимаемости проведен в ряде работ [18, 19, 22].

Растворитель T, °C CT, ℃ CВ, бар Растворитель В, бар 0.0891 0.0893 1,4-диоксан 25 1192 20 792 этилацетат 0.0893 30 1153 30 0.0891 726 40 0.0893 1080 0.0891 40 666 50 0.0893 996 50 0.0891 601 20 942 20 1272 0.1025 хлорбензол 0.0938 ацетонитрил 30 0.1025 871 30 0.0938 1202 1129 40 0.1025 812 40 0.0938 1060 50 0.1025 743 50 0.0938 20 549 толуол 0.0901 1013 н-гексан 20 0.0882 30 0.0901 944 30 0.0882 500 40 0.0901 891 40 0.0882 458 50 0.0901 819 50 0.0882 410

Рассчитанные значения коэффициентов уравнения Тайта для изученных растворителей

Табл. 2

Для определения изотермического коэффициента сжимаемости при атмосферном давлении использование данных при небольшом изменении давления $(\Delta P \sim 5 \text{ бар})$ приводит к ошибке $\pm 0.5\%$ только лишь от пренебрежения кривизной зависимости $\Delta V/V_0 = F(P)$, однако само изменение объема $\Delta V/V_0$ очень мало и составляет лишь около 5·10⁻⁴. Это требует измерений $\Delta V/V_0$ на уровне ±2–3 ppm, чтобы экспериментальная ошибка при определении величины β_{0,T} не превышала 0.5%. По этой же причине контроль температуры должен быть порядка ±1·10⁻³ °С. С другой стороны, для надежной характеристики коэффициентов уравнения (8) желательно прописать кривизну зависимости $\Delta V/V_0 = F(P)$ в таком интервале давлений, чтобы ошибка в определении $\Delta V/V_0$ не превышала 0.5%. При 1 кбар величина $\Delta V/V_0$ составляет обычно (3–7)·10⁻², что требует определения $\Delta V/V_0$ с точностью порядка $\pm (1-3) \cdot 10^{-4}$. Большинство известных методов использует небольшой интервал давлений (до 100-300 бар), что приводит к увеличению ошибки измерений. Из-за флуктуации экспериментальных ошибок желательно иметь достаточно большое число измерений для сглаживания зависимости $\Delta V/V_0 = F(P)$. Предлагаемый нами метод удовлетворяет этим условиям (рис. 2). Анализ различных способов обработки данных ($\Delta V/V_0 - P$) показал [18, 19], что для жидкости в интервале давлений до 1000 бар лучшим следует считать линейное соотношение (9):

$$\frac{V_0 P}{V_0 - V_P} = \frac{1}{\beta_0} + kP,$$
(9)

где k – коэффициент пропорциональности для данной жидкости. Показано, что значительные ошибки в определении величины $V_0P/(V_0 - V_P)$ наблюдаются в области низких давлений (до 100–200 бар), причем влияние ряда артефактов резко уменьшается с ростом давления. Соотношение (9) оказалось простым и надежным для описания экспериментальных данных о сжимаемости выбранной жидкости в области 200–1000 бар и для их проверки в области 0–200 бар.

В отличие от соотношения (9), которое было предложено для отдельно взятой жидкости, мы обнаружили, что для разнообразных соединений наблюдается четкая линейная зависимость (10) между изменением модуля объемного сжатия при избыточном давлении, близком к нулю, $[K_0 = 1/\beta_0 = -V_0/(\partial P/\partial V)_T]$ и обратной величиной сжатия при 1000 бар ($-1000V_0/\Delta V$):

$$\frac{1}{\beta_0} = (-4559 \pm 22.9) + (0.9865 \pm 0.0010) \cdot \frac{1000V_0}{\Delta V_{1_{\kappa \bar{\delta} ap}}},$$
(10)
 $r = 0.9999; n = 272.$

Она охватывает жидкости разных классов и при разных температурах, включая спирты, гликоли и даже ртуть.

Интересно отметить, что если исключить ртуть, резко отличающуюся по сжимаемости от остальных жидкостей, то параметры корреляции практически не изменяются:

$$\frac{1}{\beta_0} = (-4386 \pm 51.2) + (0.9759 \pm 0.0030) \cdot \frac{1000V_0}{V_{1 \text{ kfoap}}},$$
(11)

$$r = 0.9993; n = 271.$$

Обнаруженные зависимости (10), (11) для большого числа соединений различных классов (циклические, линейные и разветвленные алканы, алкены, спирты, альдегиды, кетоны, простые и сложные эфиры, нитрилы, галоген- и нитропроизводные, амины, амиды, гетероциклы, бифункциональные соединения) при разных температурах позволяют сделать вывод о выполнении правила непересечения кривых сжатия. Это соответствует тому, что начальная способность сжимаемости определяет и последующую сжимаемость при более высоком давлении.

Ранее было показано [23-25], что небольшое изотермическое расширение не разрушает все межмолекулярные взаимодействия, затрагивая только наиболее слабые ван-дер-ваальсовы взаимодействия. Недостаточное число данных о внутреннем давлении жидкости ($P_{int} = T\alpha / \beta = T\gamma$) привело к привлечению значений плотности энергии когезии в качестве меры внутреннего давления $[P_{\text{int,coh}} = (\Delta_{\text{vap}}H - RT) / V]$, которая отражает все виды межмолекулярного взаимодействия, и поэтому по величине должна превышать значения P_{int} = $= T\alpha / \beta = T\gamma [23, 25]$. Если в жидкости нет направленных («структурирующих») взаимодействий, то значения P_{int} и P_{int,coh} должны быть близкими по величине. Поскольку сжимаемость жидкости отражает баланс энергий притяжения и отталкивания, полезно провести сопоставление величин P_{int}, рассчитанных разными подходами. Кроме рассмотренных величин $P_{int} = T\alpha / \beta$ и $P_{int,coh} =$ $= (\Delta_{vap}H - RT) / V$, здесь проведено сопоставление с величиной внутреннего давления, P_{int}^S, рассчитанной по данным [26-28] об энергии образования полости в жидкости при растворении в ней циклогексана (с-H): $P_{int,cav} = P_{int}^{c-H} +$ + δh^S . Здесь $P_{\text{int}}^{\text{c-H}}$ – внутреннее давление в циклогексане ($P_{\text{int}} = 2800 \text{ бар}$), δh^S – избыточная энтальпия образования полости объемом в 1 см³ в среде (S) при растворении в ней циклогексана, выраженная в барах. Дополнительно приведена оценка внутреннего давления жидкости (P_{int,exp}) по данным об энергии, необходимой для расширения 1 л жидкости на 1 см³. Принимая, что разность в теплоемкостях жидкости и пара $(C_{P_1} - C_{P_y})$ отражает, в первую очередь, затрату энергии на изменение межмолекулярного расстояния (и объема) в жидкости,

ее значение можно рассчитать из соотношения: $\Delta H / 1 \text{ см}^3 = (C_{P,l} - C_{P,V})_S / V_S \alpha_S$, где V_S – мольный объем, α_S – термический коэффициент расширения жидкости (S). В табл. 3 приведены значения внутреннего давления жидкости при 25 °C, определенные этими приемами: $P_{\text{int}} = T\alpha / \beta$; $P_{\text{int,coh}} = (\Delta_{\text{vap}}H - RT)/V$; $P_{\text{int, cav}} = P_{\text{int}}^{\text{c-H}} + \delta h^S$ и $P_{\text{int,expan}} = (C_{P,l} - C_{P,V})_S / V_S \alpha_S$.

Анализ данных табл. 3 показывает, что расчет внутреннего давления жидкости по данным об энергии расширения ($P_{int,expan}$) спиртов приводит к завышенным значениям (рис. 3). Хорошо известно [23], что для сильно полярных и ассоциированных жидкостей значение $P_{int} = T\alpha / \beta$ всегда меньше величины $P_{int,coh} = (\Delta_{vap}H - RT)/V$. Однако такое заключение не является строгим, что следует из целого ряда исключений (табл. 3). Следует отметить, что удельная относительная энтальпия образования полости в жидкости для циклогексана не коррелирует ни с энергией изотермического расширения жидкости ($P_{int} = T\alpha / \beta$), ни с энергией термического расширения жидкости ($P_{int,expan} = (C_{P,1} - C_{P,V})_S / V_S \alpha_S$) (рис. 4).

Табл. 3

Значения внутреннего давления жидкости в барах при 25 °C, рассчитанные разными приемами: $P_{\text{int}} = T\alpha / \beta$; $P_{\text{int,expan}} = (C_{P,l} - C_{P,V})_S / V_S \alpha_S$; $P_{\text{int,coh}} = (\Delta_{\text{vap}}H - RT)/V$; $P_{\text{int, cav}} = P_{\text{int}}^{\text{c-H}} + \delta h$

№	Жидкость	$P_{\rm int}$	$P_{\rm int,expan}$	$P_{\rm int,coh}$	$P_{\rm int,cav}$
1	этиловый эфир	2536	3301	2361	2959
2	ди-н-пропиловый эфир	2200	3529	2412	2870
3	диизопропиловый эфир	2365	2882	2076	
4	ди-н-бутиловый эфир	2774	5360	2460	2853
5	этил-трет-бутиловый эфир	2108			
6	этиленгликоль диметиловый эфир	3204		3250	3236
7	диэтиленгликоль диметиловый эфир	3888		2844	
8	Анизол	4316	6245	4058	3369
9	ΤΓΦ	5478	4756	3607	3128
10	фуран	4374		3449	
11	ацетон	3226	4915	3892	3565
12	2-бутанон	3320	4873	3552	
13	2-пентанон	3575	4938	3343	
14	3-пентанон	3427	4953	3391	
15	2-гексанон	4055		3256	
16	4-метил-2-пентанон	3549	4516	3062	
17	циклопентанон	2971		4505	
18	циклогексанон	3656	5442	4068	3141
19	бутаналь	4414	5296	3446	
20	бензальдегид	4224	6953	4687	
21	уксусная кислота	3434	9790	8539	
22	пропионовая кислота	3528		3823	
23	2-метилпропионовая кислота			3512	
24	метилацетат	3486	5148	3735	
25	этилацетат	3364	4339	3365	3398
26	метилметакрилат	3916		3577	

27	пропилен карбонат	5357	7769	5938	3814
28	метанол	2899	8103	8578	3310
29	этанол	2912	7437	6786	3080
30	1-пропанол	3063	7836	5966	2950
31	1-бутанол	3120	8060	5420	2960
32	1-пентанол	3114	7763	5009	
33	1-гексанол	3252		4738	
34	1-октанол	3257	7958	4321	2910
35	2-пропанол	2823	8141	5595	3080
36	2-бутанол	3188	9088	5108	
37	2-метил-1-пропанол	2799	8023	5200	
38	2-метил-2-пропанол	3574	7596	4673	3080
39	2-пентаноп	3019	1030	4625	2000
40	3-пентанол	3343		4686	
41	4-метил-2-пентанол	3186		4422	
42	2-октанол	3203		4123	
43		5205	20203	11682	
44		4950	20205	8404	
45 45		4578		0703	
46	г,э-пропандиол	6200		12167	
40	балаат	3748	5030	3508	3302
4/	тописа	2525	JUJ9 1706	2222	2065
40		5555 4175	4/80	2523 2507	5005
49	стирол	4173	3233	2221	
50	этилоензол	3501	4690	3231	
51	п-ксилол	3186	1444	3219	
52	изопропилоензол	3510	4666	3043	2010
53	1,3,5-триметилоензол	3584	4665	3224	2910
54	1,2,3,4-тетрагидронафталин	3639		3854	
55	втор-бутилбензол	3364		3002	
56	1-метилнафталин	3988		4118	
57	пентан	2260	2566	2062	
58	гексан	2519	3114	2209	2826
59	гептан	2638	3247	2310	
60	октан	2763	4098	2386	
61	нонан	2979	3763	2447	
62	декан	2895	4010	2496	
63	додекан	2907	4336	2573	
64	тридекан	2821	4785	2603	
65	2-метилбутан	2113	2398	1904	
66	2,2-диметилпропан	1870		1565	
67	2-метилпентан	2369	2779	2061	
68	3-метилпентан	2425	2839	2128	
69	2,2-диметилбутан	2222	2526	1885	
70	2,3-диметилбутан	2317	2765	2031	
71	изооктан	2325	2619	1967	
72	1-гексен	2508	2937	2236	
73	1-октен	2580	3556	2412	
74	шиклопентан	3068	3536	2750	

85

75	метилциклопентан	2870	3505	2573	
76	циклогексан	3202	3904	2796	
77	метилциклогексан	3155	3264	2562	
78	дихлорметан	4015	5811	4043	3543
79	хлороформ	3620	4870	3585	3147
80	тетрахлорметан	3245	4084	3083	2991
81	бромметан	3311		3638	
82	бромоформ	4715	7656	4804	
83	йодометан	3554	4955	4068	
84	1,1-дихлорэтан	3450	4540	3321	
85	1,2-дихлорэтан	4133	5815	4115	3656
86	1,1,1-трихлорэтан	3579	4005	2982	3057
87	1,1,2-трихлорэтан	4141	6748	4058	
88	1,1,2,2-тетрахлорэтан	4884	6480	4093	
89	бромэтан	3141	3940	3437	
90	1-бромпропан	3312	4244	3216	
91	2-бромпропан	2745	4113	2939	
92	1-йодопропан	3600	4417	3455	
93	1-хлорбутан	3248	3873	2954	3007
94	1-бромбутан	3188	4458	3159	2966
95	1-йодобутан	3517		3332	
96	1-хлорпентан	3075	4205	2942	
97	1-бромпентан	3287		3125	
98	фторбензол	3475		3395	3078
99	гексафторбензол	3537	4261	2869	
100	хлорбензол	3907	5356	3765	3056
101	1,2-дихлорбензол	4184		4222	3147
102	бромбензол	4165	5855	3987	
103	2-метил-2-пропанамин	2548		2565	
104	анилин	5451	10740	5829	3585
105	2-метиланилин	5865		5035	
106	ацетонитрил	3748	5323	5762	3866
107	пропионитрил	3450		4732	
108	бутанонитрил	3573		4194	
109	2-метилпропионитрил	3278		3786	
110	бензонитрил	4145	6358	5143	3201
111	пиридин	4761	6435	4691	3466
112	нитрометан	5095	7405	6633	4174
113	нитроэтан	4313	6954	5443	
114	1-нитропропан	3992		4574	
115	2-нитропропан	3767	6885	4287	
116	нитробензол	4936		5113	3299
117	формамид	5731		15668	
118	N-метилформамид	4367		9082	
119	N,N-диметилформамид	4655		5815	3662
120	N,N-диметилацетамид	4852		5016	3566
121	диметилсульфоксид	5260		7066	4187
122	вода	1656		23020	

86

Рис. 3. Соотношение между значениями внутреннего давления жидкости по данным $P_{\text{int.coh}} = (\Delta_{\text{vap}}H - RT) / V \text{ и } P_{\text{int}} = T\gamma \text{ при 25 °C}$

Рис. 4. Соотношение между значениями внутреннего давления жидкости по данным $P_{\text{int,expan}} = (C_{P,l} - C_{P,V})_S / V_S \alpha S$ и $P_{\text{int}} = T \gamma$ при 25 °C

Более высокие значения $P_{\text{int.coh}} = (\Delta_{\text{vap}}H - RT) / V$ по сравнению с $P_{\text{int}} = T\gamma$ (рис. 3) понятны, поскольку в первом случае учитывается разрыв всех межмолекулярных связей, включая и водородные связи, тогда как параметр γ формируется более слабыми дисперсионными межмолекулярными взаимодействиями. Близкая картина наблюдается при сравнении значений внутреннего давления $P_{\text{int,expan}} = (C_{P,l} - C_{P,V})_S / V_S \alpha_S$ и $P_{\text{int}} = T\gamma$ (рис. 4). Для остальных параметров корреляция отсутствует.

4. Выводы

В заключение можно отметить три основных результата:

1) предложенный новый метод определения сжимаемости жидкости способен дать надежные параметры в широком интервале давлений и температур;

 обнаруженная надежная корреляция между атмосферным и килобарным модулем сжимаемости соответствует выполнению правила непересечения кривых сжимаемости для широкого ряда жидкостей;

 сопоставление данных о внутреннем давлении жидкости, полученных разными способами, приводит к выводу о наличии довольно больших ошибок в их определении.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 08-03-00219).

Summary

V.D. Kiselev, A.V. Bolotov, A.P. Satonin, H.A. Kashaeva, A.I. Konovalov. Compressibility and Internal Pressure of Liquid.

Weight analysis of the liquid extracted from the stainless steel bomb under pressures up to 1 kbar in the temperature range of 20–50 °C at the interval of 10 °C was performed for 1,4dioxane, acetonitrile, toluene, ethyl acetate, chlorobenzene, and *n*-hexane. The coefficients of the Tait equation were determined for all of the solvents at each temperature. There was a clear linear relation between the tangent bulk modulus $(1/\beta_T)$ at atmospheric pressure (1 bar) and the secant bulk modulus at 1 kbar $(V_0/\Delta V_{1kbar})$: $1/\beta_T = 0.9865 \cdot (1000 V_0/\Delta V_{1kbar}) - 4559$ was found at a wide range of temperatures for different liquids, including glycerol and even mercury. This represents the rule of noncrossing P-V curvatures for the liquids. Using the correlation, it is possible to predict the coefficients (*C*, *B*) of the Tait equation from the experimental data of β_T at 1 bar or, on the other hand, to calculate the value of β_T from experimental compression at high pressures.

Key words: external pressure, compressibility of liquids, the Tait equation, rule of noncrossing, internal pressure.

Литература

- 1. *Isaacs N.S.* Liquid Phase High Pressure Chemistry. New York Chichester Brisbane Toronto: Wiley-Interscience, 1981. 414 p.
- le Noble W. J. Organic high pressure chemistry. Amsterdam Oxford New York Tokyo: Elsevier, 1988. – 489 p.
- Marcus Y., Hefter G.T. The compressibility of liquids at ambient temperature and pressure // J. Mol. Liquids. 1997. No 73–74. P. 61–74.

- Kiselev V.D., Kashaeva E.A., Konovalov A.I. Pressure effect on the rate and equilibrium constant of the Diels-Alder reaction 9-chloroanthracene with tetracyanoethylene // Tetrahedron. – 1999. – V. 55. – P. 1153–1162.
- 5. *Киселев В.Д., Болотов А.В., Кашаева Е.А., Коновалов А.И.* Определение изотермической сжимаемости растворителя по изменению оптической плотности раствора красителя под давлением // Изв. РАН. Сер. хим. 2006. № 12. С. 2049–2052.
- Riddick J.A. Organic solvents. N. Y.: John Wiley & Sons, 1986. 1325 p.
- Cibulka I., Zikova M. Liquid densities at elevated pressures of 1-alkanols from C₁ to C₁₀: a critical evaluation of experimental data // J. Chem. Eng. Data. – 1994. – V. 39. – P. 876–886.
- Cibulka I., Hnedkovsky L. Liquid densities at elevated pressures of n-alkanes from C₅ to C₁₆: a critical evaluation of experimental data // J. Chem. Eng. Data. – 1996. – V. 41. – P. 657–668.
- Cibulka I., Hnedkovsky L., Takagi T. P-d-T data of liquids: summarization and evaluation. 3. Ethers, ketones, aldehydes, carboxylic acids, and esters // J. Chem. Eng. Data. 1997. V. 42. P. 2–26.
- Cibulka I., Hnedkovsky L., Takagi T. P-d-T data of liquids: summarization and evaluation. 4. Higher 1-alkanols (C₁₁, C₁₂, C₁₄, C₁₆), secondary, tertiary, and branched alkanols, cycloalkanoles, alkanediols, alkanetriols, ether alkanols, and aromatic hydroxyl derivatives // J. Chem. Eng. Data. 1997. V. 42. P. 415–433.
- 11. *Cibulka I., Takagi T.* P-d-T data of liquids: summarization and evaluation. 5. Aromatic hydrocarbons // J. Chem. Eng. Data. 1999. V. 44. P. 411–429.
- 12. Cibulka I., Takagi T. P-d-T data of liquids: summarization and evaluation. 6. Nonaromatic hydrocarbons (C_n , $n \ge 5$) except n-alkanes C_5 to C_{16} // J. Chem. Eng. Data. 1999. V. 44. P. 1105–1128.
- Cibulka I., Takagi T., Ruzicka K. P-d-T data of liquids: summarization and evaluation. 7. Selected halogenated hydrocarbons // J. Chem. Eng. Data. – 2001. – V. 46. – P. 2–28.
- Cibulka I., Takagi T. P-d-T data of liquids: summarization and evaluation. 8. Miscellaneous compounds // J. Chem. Eng. Data. – 2002. – V. 47. – P. 1037–1070.
- 15. *Циклис Д.С.* Техника физико-химических исследований при высоких и сверхвысоких давлениях. – М.: Химия, 1976. – 430 с.
- 16. Бриджмен П.В. Физика высоких давлений. М.: Объедин. науч.-техн. изд-во НКТП СССР, 1935. – 402 с.
- Разумихин В.Н. Гидростатический метод определения плотности жидкостей при давлении до 5000 кгс/см² // Труды институтов Комитета стандартов мер и измерительных приборов. – М.: 1960. – Вып. 46 (106). – С. 96–106.
- Hayward A.T.J. How to measure the isothermal compressibility of liquids accurately // J. Phys. D: Appl. Phys. – 1971. – V. 4. – P. 938–950.
- Hayward A.T.J. Compressibility equations for liquids: A comparative study // British J. Appl. Phys. – 1967. – V. 18. – P. 965–977.
- Kell G.S., Whalley E. The PVT properties of water // Phyl. Trans. 1965. V. 258. -P. 565-617.
- 21. Kell G.S., McLaurin G.E., Whalley E. The PVT properties of water // Proc. R. Soc. Lond. A. 1989. V. 425. P. 49–71.
- 22. Whalley E. The compression of liquids, in Experimental Thermodynamics. Butterworth-London: IUPAC, 1975. – V. II. – P. 421–500.

- Dack M.R.J. Solvent structure. The use of internal pressure and cohesive energy density to examine contributions to solvent-solvent interactions // Aust. J. Chem. – 1975. – V. 28. – P. 1643–1648.
- Verdier S., Andersen S.I. Internal pressure and solubility parameter as a function of pressure // Fluid Phase Equilibria. 2005. V. 213. P. 125–137.
- 25. Колкер А.М., Королев В.П., Батов Д.В. К вопросу о взаимосвязи величин внутреннего давления и плотности энергии когезии жидкостей // Журн. структурн. химии. 2005. Т. 46, № 5. С. 959–962.
- Соломонов Б.Н., Антипин И.С., Горбачук В.В., Коновалов А.И. Сольватация органических соединений. Определение относительных энтальпий образования полости в растворителях // Журн. общ. химии. 1982. Т. 52. С. 2154–2160.
- Solomonov B.N., Novikov V.B., Varfolomeev M.A., Mileshenko N.M. A new method for the extraction of specific interaction enthalpy from the enthalpy of salvation // J. Phys. Org. Chem. – 2005. – V. 18. – P. 49–61.
- Solomonov B.N., Novikov V.B., Varfolomeev M.A., Klimovitskii A.E. Calorimetric determination of hydrogen-bonding enthalpy for neat aliphatic alcohols // J. Phys. Org. Chem. 2005. V. 18. P. 1132–1137.

Поступила в редакцию 05.06.08

Киселев Владимир Дмитриевич – доктор химических наук, профессор, заведующий отделом химии высоких давлений Химического института им. А.М. Бутлерова Казанского государственного университета.

E-mail: vkiselev.ksu@gmail.com

Болотов Александр Владимирович – аспирант, м.н.с. отдела Химии высоких давлений Химического института им. А.М. Бутлерова, Казанский государственный университет им. В.И. Ульянова-Ленина.

E-mail: highpress@gmail.com

Сатонин Алексей Павлович – студент Химического института им. А.М. Бутлерова Казанского государственного университета.

E-mail: *izenflamm@gmail.com*

Кашаева Елена Александровна – кандидат химических наук, старший научный сотрудник отдела химии высоких давлений Химического института им. А.М. Бутлерова Казанского государственного университета.

E-mail: lekasha@mail.ru

Коновалов Александр Иванович – доктор химических наук, академик, профессор кафедры органической химии Казанского государственного университета, заведующий отделом супрамолекулярной химии Института органической и физической химии им. А.Е. Арбузова КазНЦ РАН.

E-mail: *orgchem@ksu.ras.ru*