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1 Introduction 
Recent years have witnessed extensive research of soft condensed matter physics to 

investigate the structure, dynamics, and macroscopic behavior of complex systems (CS). CS 

are a very broad and general class of materials that are typically non-crystalline. Polymers, 

biopolymers, colloid systems (emulsions and microemulsions), biological cells, porous 

materials, and liquid crystals can all be considered as CS. All of these systems exhibit a 

common feature: the new "mesoscopic" length scale, intermediate between molecular and 

macroscopic. The dynamic processes occurring in CS include different length and time scales. 

Both fast and ultra-slow molecular rearrangements take place within the microscopic, 

mesoscopic and macroscopic organization of the systems. A common theme in CS is that 

while the materials are disordered at the molecular scale and homogeneous at the macroscopic 

scale, they usually possess a certain amount of order at an intermediate, so-called mesoscopic, 

scale due to a delicate balance of interaction and thermal effects. Simple exponential 

relaxation law and the classical model of Brownian diffusion cannot adequately describe the 

relaxation phenomena and kinetics in such materials. This kind of non-exponential relaxation 

behavior and anomalous diffusion phenomena is today called “strange kinetics” [1,2]. 

Generally, the complete characterization of these relaxation behaviors requires the use of a 

variety of techniques in order to span the relevant ranges in frequency. In this approach, 

Dielectric Spectroscopy (DS) has its own advantages. The modern DS technique may overlap 

extremely wide frequency (10-6 to 1012 Hz), temperature (- 170 °C to +500 °C) and pressure 

ranges [3-5].  DS is especially sensitive to intermolecular interactions and is able to monitor 

cooperative processes at the molecular level. Therefore, this method is more appropriate than 

any other to monitor such different scales of molecular motions. It provides a link between the 

investigation of the properties of the individual constituents of the complex material via 

molecular spectroscopy and the characterization of its bulk properties.  

 This tutorial concentrates on the results of DS study of the structure, dynamics, and 

macroscopic behavior of complex materials. First, we present an introduction to the basic 

concepts of dielectric polarization in static and time dependent fields, before the Dielectric 

Spectroscopy technique itself is reviewed both for frequency and time domains. This part has 

three sections, i.e. Broad Band Dielectric Spectroscopy, Time Domain Dielectric 

Spectroscopy and a section where different aspects of data treatment and fitting routines are 

discussed in detail. Then, some examples of dielectric responses observed in various 

disordered materials are presented. Finally, we will consider the experimental evidence of 
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non-Debye dielectric responses in several complex disordered systems such as 

microemulsions, porous glasses, porous silicon, H-bonding liquids, aqueous solutions of 

polymers and composite materials.  
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2 Dielectric Polarization, Basic Principles  

2.1 Dielectric Polarization in Static Electric Fields 

When placed in an external electric field E, a dielectric sample acquires a non-zero 

macroscopic dipole moment. This means that the dielectric is polarized under the influence of 

the field. The polarization P of the sample, or dipole density, can be presented in a very 

simple way 

V
M

P = ,      (2.1) 

 

where <M>  is the macroscopic dipole moment of the whole sample volume V, which  is 

formed by the permanent micro dipoles (i.e. coupled pairs of opposite charges)  as well as by 

dipoles that are not coupled pairs of micro charges within the electro neutral dielectric sample. 

The brackets < > denote ensemble average. In a linear approximation the macroscopic 

polarization of the dielectric sample is proportional to the strength of the applied external 

electric field E [6]: 

kiki EP χε0=   ,                                                         (2.2) 

 

where χik  is the tensor of the dielectric susceptibility of the material and ε0 =8.854⋅10-12   

[F⋅m-1]  is the dielectric permittivity of the vacuum. If the dielectric is isotropic and uniform, 

χ is a scalar and equation (2.2) will be reduced to the more simple form: 
 

EP χε0= .      (2.3) 

 

According to the macroscopic Maxwell approach, matter is treated as a continuum, and 

the field within the matter in this case is the direct result of electrical displacement (electrical 

induction) vector D, which is the electric field corrected by polarization [7]:  

D=ε0E+P.               (2.4) 

 

 For an uniform isotropic dielectric medium, the vectors D, E, P have the same direction, 

and the susceptibility is coordinate-independent, therefore  
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EED εεχε 00 )1( =+=   ,                                                      (2.5) 

where χε += 1  is the relative dielectric permittivity. Traditionally, it is also called the 

dielectric constant, because in a linear regime it is independent of the field strength. However, 

it can be a function of many other variables. For example in the case of time variable fields it 

is dependent on the frequency of the applied electric field, sample temperature, sample 

density (or pressure applied to the sample), sample chemical composition, etc.  

 

 

2.1.1 Types of Polarization 

 For uniform isotropic systems and static electric fields, from (2.3)-(2.5) we have  
 

 ( )EP 10 −= εε  .      (2.6) 

 

The applied electric field gives rise to a dipole density through the following 

mechanisms: 

Deformation polarization: It can be divided in the two independent types: 

Electron polarization - the displacement of nuclei and electrons in the atom under the 

influence of an external electric field. As electrons are very light they have a rapid 

response to the field changes; they may even follow the field at optical frequencies. 

Atomic polarization - the displacement of atoms or atom groups in the molecule under the 

influence of an external electric field. 

Orientation polarization: The electric field tends to direct the permanent dipoles. The 

rotation is counteracted by the thermal motion of the molecules. Therefore, the orientation 

polarization is strongly dependent on the frequency of the applied electric field and on the 

temperature.  

Ionic Polarization: In an ionic lattice, the positive ions are displaced in the direction of an 

applied field while the negative ions are displaced in the opposite direction, giving a resultant 

dipole moment to the whole body. The ionic polarization demonstrates only weak temperature 

dependence and determines mostly by the nature of the interface where the ions can 

accumulate. Many cooperative processes in heterogeneous systems are connected with ionic 

polarization.  

To investigate the dependence of the polarization on molecular quantities it is 

convenient to assume the polarization P to be divided into two parts: the induced polarization 
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Pα, caused by translation effects, and the dipole polarization Pµ, caused by the orientation of 

the permanent dipoles. Note that in the case of ionic polarization the transport of charge 

carriers and their trapping can also create induced polarization. 

( )EPP 10 −=+ εεµα   .                                             (2.7) 

We can now define two major groups of dielectrics: polar and non-polar. A polar 

dielectric is one in which the individual molecules possess a permanent dipole moment even 

in the absence of any applied field, i.e. the center of positive charge is displaced from the 

center of negative charge. A non-polar dielectric is one where the molecules possess no 

dipole moment unless they are subjected to an electric field. The mixture of these two types of 

dielectrics is common in the case of complex liquids and the most interesting dielectric 

processes occur at their phase borders or liquid-liquid interfaces. 

Due to the long range of the dipolar forces an accurate calculation of the interaction of a 

particular dipole with all other dipoles of a specimen would be very complicated. However, a 

good approximation can be made by considering that the dipoles beyond a certain distance, 

say some radius a, can be replaced by a continuous medium having the macroscopic dielectric 

properties. Thus, the dipole, whose interaction with the rest of the specimen is being 

calculated, may be considered as surrounded by a sphere of radius a containing a discrete 

number of dipoles. To make this approximation the dielectric properties of the whole region 

within the sphere should be equal to those of a macroscopic specimen, i.e. it should contain a 

sufficient number of molecules to make fluctuations very small [7,8]. This approach can be 

successfully used also for the calculation of dielectric properties of ionic self-assembled 

liquids. In this case the system can be considered as a monodispersed consisting of spherical 

polar water droplets dispersed in a non-polar medium [9]. 

Inside the sphere where the interactions take place, the use of statistical mechanics is 

required. To represent a dielectric with dielectric constant ε, consisting of polarizable 

molecules with a permanent dipole moment, Fröhlich [6] introduced a continuum with 

dielectric constant ε∞ in which point dipoles with a moment µd are embedded. In this model 

µd  has the same non-electrostatic interactions with the other point dipoles as the molecule 

had, while the polarizability of the molecules can be imagined to be smeared out to form a 

continuum with dielectric constant ε∞  [7]. 

In this case, the induced polarization is equal to the polarization of the continuum with 

the ε∞, so that one can write: 
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( )EP 10 −= ∞εεα .     (2.8) 

 

The orientation polarization is given by the dipole density due to the dipoles µd. If we 

consider a sphere with volume V containing dipoles, one can write: 

><= dV
MP 1

µ      (2.9) 

where ( )∑
=

=
 N

1i
idd μM  is the average component in the direction of the field of the moment 

due to the dipoles in the sphere. 

In order to describe the correlations between the orientations (and also between the 

positions) of the i-th molecule and its neighbors, Kirkwood [7] introduced a correlation factor 

g, which was accounted as ∑
=

><=
N

j
ijg

1
cosθ , where θij denotes the angle between the 

orientation of the i-th and the j-th dipole. An approximate expression for the Kirkwood 

correlation factor can be derived by taking only nearest-neighbor interactions into account. It 

reads as follows: 

><+= ijzg θcos1 .     (2.10) 

 

In this case the sphere is shrunk to contain only the i-th molecule and its z nearest neighbors. 

Correlation factor g will be different from 1 when 0cos >≠< ijθ , i.e. when there is a 

correlation between the orientations of neighboring molecules. When the molecules tend to 

direct themselves with parallel dipole moments, >< ijθcos  will be positive and g > 1. When 

the molecules prefer to arrange themselves with anti-parallel dipoles, then g < 1. Both cases 

are observed experimentally [6-8]. If there is no specific correlation then g = 1. If the 

correlations are not negligible, detailed information about the molecular interactions is 

required for the calculations of g. 

For experimental estimation of the correlation factor g the Kirkwood-Fröhlich 

equation [7] 

( )( )
( )2

02

2
29
+

+−
=

∞

∞∞

εε
εεεεεµ

N
TVkg B

d     (2.11) 

 

is used, which gives the relation between the dielectric constant ε , the dielectric constant of 

induced polarization ∞ε . Here kB = 1.381⋅10-23 [J⋅K-1] is the Boltzmann constant, T is absolute 
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temperature. The correlation factor is extremely useful in understanding the short-range 

molecular mobility and interactions in self assembled systems [10]. 

 

 

2.2 Dielectric Polarization in Time - Dependent Electric Fields  

When an external field is applied to a dielectric, polarization of the material reaches its 

equilibrium value, not instantaneously, but rather over a period of time. By analogy, when the 

field is suddenly removed, the polarization decay caused by thermal motion follows the same 

law as the relaxation or decay function of dielectric polarization φ(t): 
 

)0(
)()(

P
P tt =φ

 ,                                                      
(2.12) 

 

where P(t) is a time dependent polarization  vector. The relationship for the dielectric 

displacement vector D(t) in the case of time dependent fields may be written as follows 

[6,11]: 

( ) ( ) ( ) 







′′−′Φ+= ∫

∞−

•

∞

t

tdttttt EED )(0 εε
.                                   

(2.13) 

 

In (2.13) ( ) ( ) ( )ttt PED += 0ε , and Φ(t) is the dielectric response function 

[ ])(1)()( tt s φεε −−=Φ ∞ , where εs and ε∞ are the low and high frequency limits of the 

dielectric permittivity respectively. The complex dielectric permittivity ε*(ω) (where ω is the 

angular frequency) is connected with the relaxation function by a very simple relationship 

[6,11]: 





−=

−
−

∞

∞ )(ˆ)(*
t

dt
dL

s
φ

εε
εωε

 ,                                                 
(2.14) 

 

where L̂  is the operator of the Laplace transform, which is defined for the arbitrary time-

dependent function f(t) as: 

  

[ ]

unitimaginary an  is  and 0  where,

,)()()(ˆ
0

ixixp

dttfeFtfL pt

→+=

=≡ ∫
∞

−

ω

ω

.  

(2.15) 
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Relation (2.14) shows that the equivalent information on dielectric relaxation 

properties of the sample being tested both in frequency and time domain. Therefore the 

dielectric response might be measured experimentally as a function of frequency or time, 

providing data in the form of a dielectric spectrum ( )ωε *  or the macroscopic relaxation 

function ( )tφ . For example, when macroscopic relaxation function obeys the simple 

exponential law 

              )/exp()( mtt τφ −= ,    (2.16) 
 

where τm represents the characteristic relaxation time, the well-known Debye formula for the 

frequency dependent dielectric permittivity can be obtained by substitution (2.16) into (2.15) 

[6-8,11]: 

ms iωτεε
εωε

+
=

−
−

∞

∞
1

1)(*

.                   (2.17) 
 

For many of the systems being studied, the relationship above does not sufficiently describe 

the experimental results. The Debye conjecture is simple and elegant. It enables us to 

understand the nature of dielectric dispersion. However, for most of the systems being 

studied, the relationship above does not sufficiently describe the experimental results. The 

experimental data is better described by non-exponential relaxation laws. This necessitates 

empirical relationships, which formally take into account the distribution of relaxation times. 

 

 

2.2.1 Dielectric response in Frequency and Time Domains 

In the most general sense non-Debye dielectric behavior can be described in terms of a 

continuous distribution of relaxation times, G(τ) [11]. This implies that the complex dielectric 

permittivity can be presented as follows: 
 

( ) ( )
∫
∞

∞

∞

+
=

−
−

0

*

1
τ

ωτ
τ

εε
εωε d

i
G

S   ,                                             
(2.18) 

 

where the distribution function G(τ) satisfies the normalization condition 
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( ) 1
0

=∫
∞

ττ dG
  .                                                   

(2.19) 

The corresponding expression for the decay function is 

 

( ) ( ) τ
τ

τφ dtGt 





 −= ∫

∞

exp
0   .                                       

(2.20) 

 

It must be clearly understood that by virtue of the univalent relationship (2.14) between 

frequency and time representation the G(τ) calculation does not provide in itself anything 

more than another way of describing the dynamic behavior of dielectrics in time domain [12]. 

Moreover, such a calculation is a mathematically ill-posed problem [13,14], which leads to 

additional mathematical difficulties.  

In most cases of non-Debye dielectric spectrum has been described by the so-called 

Havriliak-Negami (HN) relationship [8,11,15]: 

 

[ ]βαωτ

εε
εωε

)(1
)(*

m

s

i+

−
+= ∞

∞ ,           0 ≤ α, β ≤ 1 .                         (2.21)  

 

Here α and β are empirical exponents. The specific case α=1, β=1 gives the Debye relaxation 

law, β=1, α≠1 corresponds to the so-called Cole-Cole (CC) equation [16], whereas the case 

α=1, β≠1, corresponds to the Cole-Davidson (CD) formula [17]. The high and low frequency 

asymptotic of relaxation processes are usually assigned to Jonscher's power-law wings 

( ) )1( −niω and ( )miω  (0<n, m≤1 are Jonscher stretch parameters) [18,19]. Notice that the real 

part ε’(ω) of the complex dielectric permittivity is proportional to the imaginary part σ”(ω) of 

the complex ac conductivity )(* ωσ , ωωσωε /)(")(' −∝ , and the dielectric losses ε”(ω) are 

proportional to the real part )(ωσ ′  of the ac conductivity, ωωσωε /)()( ′∝′′ .  The asymptotic 

power law for )(* ωσ  has been termed “universal” due to its appearance in many types of 

disordered systems [20, 21]. Progress has been made recently in understanding the physical 

significance of the empirical parameters α, β and exponents of Jonscher wings [22-26]. 

An alternative approach to DS study is to examine the dynamic molecular properties of a 

substance directly in time domain. In the linear response approximation, the fluctuations of 

polarization caused by thermal motion are the same as for the macroscopic rearrangements 
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induced by the electric field [27,28]. Thus, one can equate the relaxation function φ(t) and the 

macroscopic dipole correlation function (DCF) Ψ(t) as follows: 
 

( ) ( )
( ) ( )00
0

)()(
MM
MM t

tt =≅Ψφ
,                                      

 (2.22) 

 

where M(t) is the macroscopic fluctuating dipole moment of the sample volume unit, which is 

equal to the vector sum of all the molecular dipoles. The rate and laws governing the DCF are 

directly related to the structural and kinetic properties of the sample and characterized the 

macroscopic properties of the system under study. Thus, the experimental function Φ(t) and 

hence φ(t) or Ψ(t) can be used to obtain information on the dynamic properties of the 

dielectric under investigation.  

The dielectric relaxation of many complex systems deviates from the classical exponential 

Debye pattern (2.16) and can be described by the Kohlrausch-Williams-Watts (KWW) law or 

the "stretched exponential law" [29,30] 
 





















−=

ν

τ
φ

m

tt exp)(

                                               

(2.23) 

 

 with a characteristic relaxation time τm and empirical exponent 0 < ν  ≤ 1. The KWW decay 

function can be considered as a generalization of Eq.(2.16) that becomes Debye's law when 

ν=1. Another common experimental observation of DCF is the asymptotic power law [18,19] 
 

µ

τ
φ

−









=

1

t A)t(  ,   t ≥ τ1 
  ,                                                           (2.24) 

 

with an amplitude A, an exponent µ > 0 and a characteristic time τ1 which is associated with 

the effective relaxation time of the microscopic structural unit. This relaxation power law is 

sometimes referred by the literature as describing anomalous diffusion when the mean square 

displacement does not obey the linear dependency <R2> ~ t. Instead, it is proportional to some 

power of time <R
2
> ~ t

γ
 (0<γ<2) [31-33]. In this case, the parameter τ1 is an effective 

relaxation time required for the charge carrier displacement on the minimal structural unit 

size. A number of approaches exists to describe such kinetic processes: Fokker-Planck 

14 
 



  

equation [34], propagator representation [35,36], different models of dc- and ac-conductivity 

[20,25], etc. 

In frequency domain, Jonscher's power-law wings, when evaluated by ac conductivity 

measurements, sometimes reveal a dual transport mechanism with different characteristic 

times. In particular, they treat anomalous diffusion as a random walk in fractal geometry [31] 

or as a thermally activated hopping transport mechanism [37].  

An example of a phenomenological decay function that has different short- and long-time 

asymptotic forms (with different characteristic times) can be presented as follows [38,39] 
 





















−








=

− νµ

ττ
φ

m

ttAt exp )(
1

.                                       

(2.25) 

 

This function is the product of KWW and power-law dependencies. The relaxation law 

(2.25) in time domain and the HN law (2.21) in frequency domain are rather generalized 

representations that lead to the known dielectric relaxation laws. The fact that these functions 

have the power-law asymptotic has inspired numerous attempts to establish a relationship 

between their various parameters [40,41]. In this regard, the exact relationship between the 

parameters of (2.25) and the HN law (2.21) should be a consequence of the Laplace transform 

according to (2.14) [11,12]. However, there is currently no concrete proof that this is indeed 

so. Thus, the relationship between the parameters of equations (2.21) and (2.25) seems to be 

valid only asymptotically. 

 In summary, we must say that unfortunately there is as yet no generally acknowledged 

opinion about the origin of the non-Debye dielectric response. However, there exist a 

significant number of different models which have been elaborated to describe non-Debye 

relaxation in some particular cases. In general these models can be separated into three main 

classes: 

a. The models in the first class are based on the idea of relaxation times distribution and 

regarded non-Debye relaxation as a cumulative effect arising from the combination of 

a large number of microscopic relaxation events obeying the appropriate distribution 

function. These models such as the concentration fluctuations model [42], the 

mesoscopic mean-field theory for supercooled liquids [43], or the recent model for ac 

conduction in disordered media [20], are derived and closely connected to the 

microscopic background of the relaxation process. However, they cannot answer the 

question about the origin of very elegant empiric equations of (2.21) or (2.25).  
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b. The second type of models are based on the idea of Debye’s relaxation equation with 

the derivatives of non-integer order (for example [22,26,44,45]). This approach is 

immediately able to reproduce all known empirical expressions for non-Debye 

relaxation. However, they are rather formal models and they are missing the link to the 

microscopic relaxations.  

c. In a certain sense the third class of models provides the bridge between the two 

previous cases. From one side they are based on the microscopic relaxation properties 

and, from another side reproduced the known empirical expressions for non-Debye 

relaxation. The most famous and definitely most elaborate example of such a 

description is the application of the continuous random walk theory to the anomalous 

transport problem (see the very detailed review of this problem in [31]).  

Later, we will discuss in detail two examples of such models:  The model of Relaxation Peak 

Broadening which describes a relaxation of the Cole-Cole type [46] and the model of 

Coordination Spheres for relaxations of the KWW type [47]. 

 

2.3 Relaxation kinetics 

It was already mentioned that the properties of a dielectric sample are a function of many 

experimentally controlled parameters. In this regard, the main issue is the temperature 

dependency of the characteristic relaxation times, i.e. relaxation kinetics. Historically, the 

term “kinetics” was introduced in the field of Chemistry for the temperature dependency of 

chemical reaction rates. The simplest model, which describes the dependency of reaction rate 

k on temperature T, is the so-called Arrhenius law [48]: 
 









−=

Tk
Ekk
B

aexp0

,                                                    
(2.26) 

 

where aE  is the activation energy and k0 is the pre- exponential factor corresponding to the 

fastest reaction rate at the limit ∞→T . In his original paper [48] Arrhenius deduced this 

kinetic law from transition state theory. The basic idea behind (2.26) addressed the single 

particle transition process between two states separated by the potential barrier of height aE .  

The next development of the chemical reaction rate theory was provided by Eyring [49-51] 

who suggested a more advanced model 
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where S∆  is activation entropy, H∆  is activation enthalpy, and s]J[ 10626.6 34 ⋅⋅= −  is 

Plank’s constant. As in the case of (2.26) the Eyring law (2.27) is based on the idea of a 

transition state. However, in contrast to the Arrhenius model (2.26), the Eyring Eq. (2.27) is 

based on more accurate evaluations of the equilibrium reaction rate constant, producing the 

extra factor proportional to temperature.  

 The models (2.26) and (2.27) used to explain the kinetics of chemical reaction rates, 

were also found to be very useful for other applications. Taking into account the relationship 

k/1~τ , these equations can describe the temperature dependency of relaxation time τ  for 

dielectric or mechanical relaxations provided by the transition between the initial and final 

states separated by an energy barrier.  

The relaxation kinetics of the Arrhenius and Eyring types were found for an extremely 

wide class of systems in different aggregative states [7,52-54]. Nevertheless, in many cases, 

these laws cannot explain the experimentally observed temperature dependences of relaxation 

rates in different systems. Thus, to describe the relaxation kinetic, especially for amorphous 

and glass-forming substances [55-59], many authors have used the Vogel-Fulcher-Tammann 

(VFT) law: 
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 ,                                                 
(2.28) 

 

where TVFT is the VFT temperature and EVFT is the VFT energy. This model was first 

proposed in 1921 by Vogel [60]. Shortly afterwards it was independently discovered by 

Fulcher [61] and then utilized by Tammann and Hesse [62] to describe their viscosimetric 

experiments. It is currently widely held that VFT relaxation kinetics has found its explanation 

in the framework of the Adam and Gibbs model [63]. This model is based on the Kauzmann 

concept [64,65], which states that the configurational entropy is supposed to disappear for an 

amorphous substance at temperature kT . Thus, the coincidence between the experimental data 

and VFT law is usually interpreted as a sign of cooperative behavior in a disordered glass-like 

state. 

 An alternative explanation of the VFT model (2.28) is based on the free volume 

concept introduced by Fox and Floury [66-68] to describe the relaxation kinetics of 

polystyrene. The main idea behind this approach is that the probability of movement of a 
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polymer molecule segment is related to the free volume availability in a system. Later, 

Doolittle [69] and Turnbull and Cohen [70] applied the concept of free volume to a wider 

class of disordered solids. They suggested similar relationship  
 

fv
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0

ln =







τ
τ

  ,                                                     
(2.29) 

 

where 0v  is the volume of a molecule (a mobile unit) and fv  is the free volume per molecule 

(per mobile unit). Thus, if the free volume grows linearly with temperature kf TT −~ν  the 

VFT law (2.28) is immediately obtained. 

Later, the VFT kinetic model was generalized by Bendler and Shlesinger [71]. Starting 

from the assumption that the relaxation of an amorphous solid is caused by some mobile 

defects, they deduced the relationship between τ  and T in the form  
 

2/3
0 )(

ln
kTT

B
−

=







τ
τ

  ,                                          
(2.30) 

 

where B is a constant dependent on the defect concentration and the characteristic correlation 

length of the defects space distribution [71].  Model (2.30) is not as popular as the VFT law, 

however it has been found to be very useful for some substances [72,73]. 

Another type of kinetics pattern currently under discussion is related to the so-called 

Mode-Coupling Theory (MCT) developed by Götze et al. [74]. In the MCT the cooperative 

relaxation process in supercooled liquids and amorphous solids is considered to be a critical 

phenomenon. The model predicts the dependency of relaxation time versus temperature for 

such substances in the form 
 

γτ −− )(~ cTT  ,                                                    (2.31) 

 

where cT  is a critical temperature and γ  is the critical MCT exponent. Relation (2.31) was 

introduced for the first time by Bengtzelius et al. [75] to discuss the temperature dependency 

of viscosity for methyl-cyclopean and later was utilized for a number of other systems 

[76,77].  

Beside monotonous relaxation kinetics, which is usually treated within the framework 

of one of the above models, there is experimental evidence of non-monotonous relaxation 

kinetics [78]. Some of these experimental examples can be described by the model  
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which can be applied to the situation when dielectric relaxation occurs within a confined 

geometry. In this case the parameters of (2.32) are the ‘confinement factor’, C, (a small value 

of C denotes weak confinement) and two characteristic activation energies of relaxation 

process: aE , which is the activation energy of the process in the absence of confinement, and 

bE , which characterizes the temperature dependency of free volume in a confined geometry 

[78]. In contrast to the VFT equation, which is based on the assumption of linear growth of 

sample free volume with temperature, the above Eq. (2.32) implies that due to the 

confinement free volume shrinks out with temperature increase. 

 

 

3 Basic Principles of Dielectric Spectroscopy and Data 

Analyses 
 The DS method occupies a special place among the numerous modern methods used 

for physical and chemical analysis of material, because it enables investigation of relaxation 

processes in an extremely wide range of characteristic times (105 - 10-13 s). Although the 

method does not possess the selectivity of NMR or ESR it offers important and sometimes 

unique information about the dynamic and structural properties of substances. DS is especially 

sensitive to intermolecular interactions, therefore cooperative processes may be monitored. It 

provides a link between the properties of the bulk and individual constituents of a complex 

material (See Figure 1). 

 However, despite its long history of development, this method is not widespread for 

comprehensive use because the wide frequency range (10-6 - 1012 Hz), overlapped by discrete 

frequency domain methods, have required a great deal of complex and expensive equipment. 

Also, for various reasons, not all frequency ranges have been equally available for 

measurement. Thus, investigations of samples with variable properties over time (for 

example, non-stable emulsions or biological systems) have been difficult to conduct. In 

addition, low frequency measurements of conductive systems were strongly limited due to 

electrode polarization. All these reasons mentioned above led to the fact that reliable 

information on dielectric characteristics of a substance could only be obtained over limited 
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frequency ranges. As a result the investigator had only part of the dielectric spectrum at his 

disposal to determine the relaxation parameters. 

 

 
Figure 1. The frequency band of Dielectric spectroscopy. 

 

 

The successful development of the time domain dielectric spectroscopy method 

(generally called time domain spectroscopy - TDS) [79-86] and Broadband Dielectric 

Spectroscopy (BDS) [3,87-90] have radically changed the attitude towards DS, making it an 

effective tool for investigation of solids and liquids on the macroscopic, mesoscopic and, to 

some extent, on microscopic levels.  

 

 

3.1 The Basic Principles of the BDS Methods 

As mentioned previously, the complex dielectric permittivity ε*(ω) can be measured by DS in 

the extremely broad frequency range 10-6 - 1012 Hz (See Figure 1). However, no single 

technique can characterize materials over all frequencies. Each frequency band and loss 

regime requires a different method. In addition to the intrinsic properties of dielectrics, their 

aggregate state, dielectric permittivity and losses, the extrinsic quantities of the measurement 

tools must be taken into account. In this respect, most dielectric measurement methods and 

sample cells fall into three broad classes [3,4,91]: 

1100--66  

Time Domain Dielectric Spectroscopy;   Time Domain Reflectometry 

Broadband Dielectric Spectroscopy 

1100--22  1100--44  110000  110022  110044  110066  110088  11001100  11001122  
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a) Those in which the dielectric properties are measured by means of impedance, Z, or 

admittance, Y, where the sample in a measuring cell is treated as a parallel or serial 

circuit of an ideal (plate or cylindrical) capacitor and an active resistor. All these 

methods may be called Lumped-Impedance Methods and are largely used at low 

frequencies (LF) (10-6-107Hz) and in the radio frequency (RF) range of the spectrum 

up to 1 GHz. The EM wavelength in these methods is much larger than the sample cell 

size (See Figure 1). To cover the frequency range 10-6 – 107 Hz, dielectric analyzers 

that consist of a Fourier correlation analysis in combination with dielectric converters 

or impedance analyzers (10 – 107 Hz) are used [3,4,90]. At higher frequencies (106 –

 109 Hz) RF-reflectometry or spectrum analyzers are applied [3,92].  

b) Those in which the dielectric is interacted with travelling and standing electromagnetic 

waves and can be called “Wave Methods” (109-1011 Hz) [3,4,8]. In this frequency 

range both network analyzers as well as waveguide and cavity techniques can be 

applied. The wavelength in these methods is comparable to the sample cell size (See 

Figure 1). 

c) Those (1010-1012 Hz) in which the wavelengths are much shorter than the sample cell 

size (See Figure 1). In these cases quasioptical set-ups like interferometers or 

oversized cavity resonators are applied [3,4,93]. At sufficiently high frequencies 

quasioptical methods essentially become optical methods.  

The LF measurements (a) are provided by means of impedance/admittance analyzers or 

automatic bridges. Another possibility is to use a frequency response analyzer. In lumped-

impedance measurements for a capacitor, filled with a sample, the complex dielectric 

permittivity is defined as [3] 

0

)(*)()()(*
C

Ci ωωεωεωε =′′−′= ,                (3.1) 

 

where C*(ω) is the complex capacitance and C0 is the vacuum capacitance respectively. 

Applying a sinusoidal electric voltage )exp()(* 0 tiUU ωω =  to the capacitor, the complex 

dielectric permittivity can be derived by measuring the complex impedance Z*(ω) of the 

sample as follows 

( ) ( ) 0
*

0

* 1
CZi ωωε

ωε = ,              (3.2) 

 

where ( ) ( ) ( ),/ *** ωωω IUZ =  and ( )ω*I  is the complex current through the capacitor. 

However, the measuring cells require correction for the residual inductance and capacitance 
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arising from the cell itself and the connecting leads [4,94]. If a fringing field at the edges of 

parallel plate electrodes causes a serious error, the three-terminal method is effective for its 

elimination [95]. 

In general, the “Wave Methods” (b) may be classified in two ways [4,8,91,96]: 

a) They may be travelling-wave or standing wave methods. 

b) They may employ a guided-wave or a free–field propagation medium. Coaxial line, 

metal and dielectric waveguide, microstrip line, slot line, co-planar waveguide and 

optical-fiber transmission lines are examples of guided-wave media while propagation 

between antennas in air uses a free-field medium. 

In guided-wave propagating methods the properties of the sample cell are measured in terms 

of Scattering parameters or “S-parameters” [4,97], which are the reflection and transmission 

coefficients of the cell, defined in relation to a specified characteristic impedance, Z0. In 

general, Z0 is the characteristic impedance of the transmission line connected to the cell (50 Ω 

for most coaxial transmission lines). Note that S-parameters are complex number matrices in 

the frequency domain, which describe the phase as well as the amplitude of travelling waves.  

The reflection S-parameters are usually given by the symbols S*
11(ω) for the multiple 

reflection coefficients and S*
12 for the forward multiple transmission coefficients. In the case 

of single reflection S*11(ω)=ρ*(ω) the simplest formula gives the relationship between the 

reflection coefficient ρ*(ω) and impedance of the sample cell terminated by a transmission 

line with characteristic impedance Z0: 
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    (3.3) 

 

In all wave methods the transmission line is ideally matched except the sample holder. If the 

value of Z*(ω) is differ from Z0, one can observe the reflection from a mismatch of the finite 

magnitude. A similar type of wave analysis also applies in free space and in any other wave 

systems, taking into account that in free space Z0≈377 Ω for plane waves. 

Several comprehensive reviews on the BDS measurement technique and its application 

were published [3,4,95,98] and the details of experimental tools, sample holders for solids, 

powders, thin films and liquids were described there. Note that in the frequency range 

10-6-3⋅1010 Hz the complex dielectric permittivity ε*(ω) can be also evaluated from the time 

domain measurements of dielectric relaxation function φ(t) which is related to ε*(ω) by 

(2.14). In the frequency range 10-6-105 Hz the experimental approach is simple and less time-
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consuming than measurement in the frequency domain [3,99-102]. However, the evaluation 

of complex dielectric permittivity in frequency domain requires the Fourier transform. The 

details of this technique and different approaches including electrical modulus 

( ) ( )ωεω ** 1=M  measurements in the low frequency range were presented recently in a very 

detailed review [3]. Here we will concentrate more on the time domain measurements in the 

high frequency range 105-3⋅1010 Hz, usually called Time Domain Reflectometry (TDR) 

methods. These will still be called TDS methods. 

 

 

3.2 The Basic Principles of the TDS Methods 

TDS is based on transmission line theory in the time domain that aids in the study of 

heterogeneities in coaxial lines according to the change of the shape of a test signal [79-86]. 

As long as the line is homogeneous the shape of this pulse will not change. However, in the 

case of a heterogeneity in the line (the inserted dielectric, for example) the signal is partly 

reflected from the interface and partly passes through it. Dielectric measurements are made 

along a coaxial transmission line with the sample mounted in a sample cell that terminates the 

line. The simplified block diagram of the setup common for most TDS methods (except 

transmission techniques) is presented in Figure 2. Main differences include the construction 

of the measuring cell and its position in the coaxial line. These lead to different kinds of 

expressions for the values that are registered during the measurement and the dielectric 

characteristics of the objects under study. A rapidly increasing voltage step V0(t) is applied to 

the line and recorded, along with the reflected voltage R(t) returned from the sample and 

delayed by the cable propagation time (Figure 3). Any cable or instrument artefacts are 

separated from the sample response due to the propagation delay, thus making them easy to 

identify and control. The entire frequency spectrum is captured at once, thus eliminating drift 

and distortion between frequencies. 

 

incident

reflected

sample
      TDDS

Oscilloscope

 
Figure 2. Illustration of the basic principles of the TDS system. (Reproduced with permission 
from Ref. 113. Copyright 2000, Marcel Dekker, Inc.) 
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Figure 3. Characteristic shape of the signals recorded during a TDS experiment, V0(t), 
incident pulse; R(t), reflected signal. (Reproduced with permission from Ref. 86. Copyright 
1996, American Institute of Physics.) 

 

 

The complex permittivity is obtained as follows: For non-disperse materials (frequency-

independent permittivity), the reflected signal follows the exponential response of the RC 

line-cell arrangement; for disperse materials, the signal follows a convolution of the line-cell 

response with the frequency response of the sample. The actual sample response is found by 

writing the total voltage across the sample as follows 

)()()( 0 tRtVtV +=  ,                                                  (3.4) 

and the total current through the sample [80,86,103] 

( ) ( ) ( )[ ]tRtVtI −= 0
0Z

1

  ,                                              
(3.5)

 

where the sign change indicates direction and Z0 is the characteristic line impedance. The 

total current through a conducting dielectric is composed of the displacement current ( )tI D , 

and the low-frequency current between the capacitor electrodes ( )tI R . Since the active 

resistance at zero frequency of the sample-containing cell is [86] (Figure 3): 
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the low-frequency current can be expressed as: 
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Thus relation (3.5) can be written as: 
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Relations (3.4) and (3.8) present the basic equations that relate I(t) and V(t) to the signals 

recorded during the experiment. In addition, (3.8) shows that TDS permits one to determine 

the low-frequency conductivity σ of the sample directly in time domain [84-86]:  
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0

00
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(3.9) 

Using I(t),V(t) or their complex Fourier transforms i(ω) and v(ω) one can deduce the relations 

that will describe the dielectric characteristics of a sample being tested either in frequency or 

time domain. The final form of these relations depends on the geometric configuration of the 

sample cell and its equivalent representation [79-86].  

The admittance of the sample cell terminated to the coaxial line is then given by  
 

( ) ( )
( )ω
ω

=ωΥ
v
i

   ,                                                         
(3.10) 

 

and the sample permittivity can be presented as follows: 

( ) ( )
0

Y
Ciω
ω

=ωε
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(3.11) 

To minimize line artefacts and establish a common time reference, (3.10) is usually rewritten 

in differential form, to compare reflected signals from the sample and a calibrated reference 

standard and thus eliminate V0(t) [79-86]. 

If one takes into account the definite physical length of the sample and multiple 

reflections from the air-dielectric or dielectric-air interfaces, relation (3.11) must be written in 

the following form [79-84,103]:  

( ) ( ) ( ) XXY
di

c cotω
γω

=ωε∗

  ,                                       
(3.12) 

where )()c/d(X * ωεω= ,  d is the length of the inner conductor, c is the velocity of light, 

and γ is the ratio between the capacitance per unit length of the cell to that of the matched 

coaxial cable. Equation (3.12) in contrast to (3.11) is a transcendental one, and its exact 

solution can be obtained only numerically [79-84]. The key advantage of TDS methods in 
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comparison with frequency methods is the ability to obtain the relaxation characteristics of a 

sample directly in time domain. Solving the integral equation one can evaluate the results in 

terms of the dielectric response function Φ(t) [86,103,104]. It is then possible to associate 

( ) ( ) ∞ε+Φ=ϕ tt  with the macroscopic dipole correlation function Ψ(t) [2,105,106] in the 

framework of linear response theory.  

 

 

3.2.1 Experimental Tools 

3.2.1.1 Hardware 

The standard time-domain reflectometers used to measure the inhomogeneities of coaxial 

lines [80, 86,107,108] are the basis of the majority of modern TDS-setups. The reflectometer 

consists of a high-speed voltage step generator and a wide-band registering system with a 

single or double-channel sampling head. In order to meet the high requirements of TDS 

measurements such commercial equipment must be considerably improved. The main 

problem is due to the fact that the registration of incident V(t) and reflected R(t) signals is 

accomplished by several measurements. In order to enhance the signal - noise ratio one must 

accumulate all the registered signals. The high level of drift and instabilities during generation 

of the signal and its detection in the sampler are usually inherent to the serial reflectometry 

equipment.  

The new generation of digital sampling oscilloscopes [109-111] and specially designed 

time domain measuring set-ups [86] offer comprehensive, high precision, and automatic 

measuring systems for TDS hardware support. They usually have a small jitter-factor (< 1.5 

ps), important for rise time; small flatness of incident pulse (<0.5 % for all amplitudes) and in 

some systems a unique option for parallel time non-uniform sampling of the signal [86].  

The typical TDS set-up consists of a signal recorder, a 2-channel sampler and a built-in 

pulse generator. The generator produces 200 mV pulses of 10 µs duration and short rise time 

(~30 ps). Two sampler channels are characterized by an 18 GHz bandwidth and 1.5 mV noise 

(RMS). Both channels are triggered by one common sampling generator that provides their 

time correspondence during operation. The form of the voltage pulse thus measured is 

digitized and averaged by the digitizing block of Time Domain Measurement System 

(TDMS). The time base is responsible for the major metrology TDMS parameters. The block 

diagram of the described TDS set-up is presented in Figure (4) [86]. 
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A B 

Control 
Unit 

USB 
(Main Frame) 

Sample 

Sampling head with  
built in generator  

Figure 4. Circuit diagram of a TDS setup. Here A and B are two sampler channels. 

 

 

3.2.1.2 Non-uniform Sampling 

In highly disordered complex materials, the reflected signal R(t) extends over wide ranges of 

time and cannot be captured on a single time scale with adequate resolution and sampling 

time. In an important modification of regular TDR systems, a non-uniform sampling 

technique (parallel or series), has been developed [86,112].  

In the series realization consecutive segments of the reflected signal on an increasing 

time scale are registered and linked into a combined time scale. The combined response is 

then transformed using a running Laplace transform to produce the broad frequency spectra 

[112].  

In the parallel realization a multi-window sampling time scale is created [86]. The 

implemented time scale is the piecewise approximation of the logarithmic scale. It includes 

nw⊆16 sites with a uniform discretization step determined by the following formula: 

nw
nw 21 ×δ=δ ,                                                       (3.13) 

where δ1=5 ps is the discretization step at the first site, and the number of points in each step 

except for the first one is equal to npw=32. At the first site, the number of points 

npw1=2*npw. The doubling of the number of points at the first site is necessary in order to 

have the formal zero time position, which is impossible in the case of the strictly logarithmic 

structure of the scale. In addition, a certain number of points located in front of the zero time 

position are added. They serve exclusively for the visual estimation of the stability of the time 

position of a signal and are not used for the data processing. 
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The described structure of the time scale allows the overlapping of the time range from 

5 ps to 10 µs during one measurement, which results in a limited number of registered 

readings. The overlapped range can be shortened, resulting in a decreasing number of 

registered points and thus reducing the time required for data recording and processing.  

The major advantage of the multi-window time scale is the ability to get more 

comprehensive information. The signals received by using such a scale contain information 

within a very wide time range and the user merely decides which portion of this information 

to use for further data processing. Also, this scale provides for the filtration of registered 

signals close to the optimal one already at the stage of recording.  

 

3.2.1.3 Sample Holders 

Unfortunately, a universal sample holder that can be used for both liquid and solid samples in 

both the low and high frequency regions of the TDS as well as BDS methods is not yet 

available. The choice of a sample holder configuration depends on the method, value of 

dielectric permittivity, dc-conductivity and dielectric losses, state of the substance (liquid, 

solid, powder, film, etc) and data treatment procedure. In the framework of the lumped 

capacitor approximation one can consider three main types of sample holders [86,103,113] 

(See Figure 5):  

(a) A cylindrical capacitor filled with sample. This cell (a cut-off cell) can also be 

regarded as a coaxial line segment with the sample having an effective γd length 

characterized in this case by the corresponding propagation parameters. This makes it 

possible to use practically identical cells for various TDS and BDS method 

modification [114]. For the total reflection method the cut-off cell is the most frequent 

configuration [79-85]. The recent theoretical analysis of the cut-off sample cell 

(Figure 5a) showed that a lumped-element representation enables the sample cell 

properties to be accurately determined over a wide frequency range [114].  

(b) Another type of sample holder that is frequently used is a plate capacitor terminated to 

the central electrode on the end of the coaxial line (Figure 5b) [86, 103, 114-116].  

(c) The current most popular sample holder for different applications is an open-ended 

coaxial line sensor (Figure 5c) [117-125].  
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Figure 5. Simplified drawings of sample cells. (a) Open coaxial line cell; (b) lumped 
capacitance cell; (c) open-ended coaxial cell. (Reproduced with permission from Ref. 113. 
Copyright 2000, Marcel Dekker, Inc.) 

 

 

In the case of lumped capacitance approximation the configurations in (See Figures 5a-b) 

have high frequency limitations and for highly polar systems one must take into account the 

finite propagation velocity of the incident pulse [82-86,113]. The choice of sample cell shape 

is determined to a high extent by the aggregate condition of the system under study. While 

cell (a) is convenient to measure liquids, configuration (b) is more suitable for the study of 

solid disks, crystals [115,126] and films. Both cell types can be used to measure powder 

samples. While studying anisotropic systems (liquid crystals, for instance) the user may 

replace a coaxial line by a strip line or construct the cell with the configuration providing 

measurements under various directions of the applied electric field [84,85]. The (c) type cell 

is used only when it is impossible to put the sample into the (a) or (b) cell types [86,121-

125,127-129]. The fringing capacity of the coaxial line end is the working capacity for such a 

cell. This kind of cell is widely used now for investigating the dielectric properties of 

biological materials and tissues [122-125], petroleum products [119], constructive materials 

[110], soil [129] and numerous other non-destructive permittivity and permeability 

measurements. Theory and calibration procedures for such open-coaxial probes are well 

developed [129-131] and the results meet the high standards of other modern measuring 

systems. 

 Teflon Sample 

(a) (b)   (c) 
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3.2.2 Data Processing 

Measurement procedures, registration, storage, time referencing and data analyses are 

carried out automatically in the modern TDS systems. The process of operation is performed 

in an on-line mode and the results can be presented in both frequency and time domain [86]. 

There are several features of the modern software that control the process of measurement and 

calibration. One can define the time windows of interest that may be overlapped by one 

measurement. During the calibration procedure the precise determination of the front edge 

position is carried out and the setting of an internal auto centre on these positions applies to 

all subsequent measurements. The precise determination and settings of horizontal and 

vertical positions of calibration signals are also carried out. All parameters may be saved in a 

configuration file, allowing for a complete set of measurements using the same parameters 

without additional calibration.  

The data processing software includes the options of signal correction, correction of 

electrode polarization and dc-conductivity, and different fitting procedures both in time and 

frequency domain [86].  

 

3.3 Data analysis and fitting problems 

 The principle difference between the BDS and TDS methods is that BDS 

measurements are fulfilled directly in frequency domain while the TDS operates in time 

domain. In order to avoid unnecessary data transformation it is preferable to perform data 

analysis directly in the domain, where the results were measured.  However, nowadays there 

are no principle difficulties to transform data from one domain to another by direct or inverse 

Fourier transform. Below we will concentrate on the details of data analysis only in the 

frequency domain.  

 

3.3.1 The continuous parameter estimation problem 

Dielectric relaxation of complex materials over wide frequency and temperature 

ranges in general may be described in terms of several non-Debye relaxation processes. A 

quantitative analysis of the dielectric spectra begins with the construction of a fitting function 

in selected frequency and temperature intervals, which corresponds to the relaxation processes 

in the spectra. This fitting function is a linear superposition of the model functions (such as 

HN, Jonscher, dc-conductivity terms, See Paragraph 2.2.1) that describes the frequency 
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dependence of the isothermal data of the complex dielectric permittivity. The temperature 

behavior of the fitting parameters reflects the structural and dynamic properties of the 

material.  

However, there are several problems in selecting the proper fitting function, such as 

the limited frequency and temperature ranges of the experiment, distortion influences of the 

sample holder and the overlapping of several physical processes with different amplitudes in 

the same frequency and temperature ranges. The latter is the most crucial problem, because 

some of the relaxation processes are “screened” by the others. For such a “screened” process, 

the confidence in parameter estimations can be very small. In this case, the temperature 

functional behavior of the parameters may be inconsistent. Despite these discontinuities, there 

may still be some trends in the parameter behavior of the “screened” processes which may 

reflect some tendencies of the physical processes in the system. Therefore, it is desirable to 

obtain a continuous solution of the model parameters via temperature. This solution is hardly 

achievable if the estimation of the parameters is performed independently for the different 

temperature points on the selected fitted range. Post-fitted parameter smoothing can spoil the 

quality of the fit. A new procedure for smooth parameter estimation, named the “global fit”, 

was proposed recently [132]. It obtains a continuous solution for the parameter estimation 

problem. In this approach, the fitting is performed simultaneously for all the temperature 

points. The smoothness of the solution is obtained by the addition of some penalty term to the 

cost function in the parameter minimization problem. Coupled with a constraint condition for 

the total discrepancy measure between the data and the fit function [132], the desired result is 

achieved. 

The penalized functional approach for obtaining a continuous solution of the 

minimization problem is a well-known regularization technique in image restoration problems 

such as image de-noising or image de-blurring [133]. 

In the field of dielectric spectroscopy such regularization procedures have been used 

by Schäfer et al. [14] for extracting the logarithmic distribution function of relaxation times, 

G(τ). In contrast to the parametric description of the broadband dielectric spectra considered 

in our work, the approach of Schäfer et al is essentially non-parametric. These authors used a 

regularization technique for the construction of the response function through the Fredholm 

integral equation solution. The approach proposed in [132] deals with the problem of finding 

fitting parameters that describe dielectric data in the frequency domain in a wide frequency 

band, to obtain a continuous estimation of the fitting parameters via temperature, or any other 

external parameters. 
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3.3.2 dc-Сonductivity problems 

The dielectric spectroscopy study of conductive samples is very complicated because 

of the need to take into account the effect of dc-conductivity. The dc-conductivity 0σ  

contributes, in frequency domain, to the imaginary part of the complex dielectric permittivity 

as an additional function 0 0/( )σ ε ω . The presence of dc-conductivity makes it difficult to 

analyze relaxation processes especially when the contribution of the conductivity is much 

greater than the amplitude of the process. The correct calculation of the dc-conductivity is 

important in terms of the subsequent analysis of the dielectric data. Its evaluation by fitting of 

the experimental data does not always give correct results, especially when relaxation 

processes are present in the low frequency range. In particular, the dc-conductivity function 

has frequency power-law dependence similar to the Jonscher terms in the imaginary part of 

the complex dielectric permittivity and this makes computation of dc-conductivity even more 

difficult.  

It is known that in some cases the modulus representation M*(ω) of dielectric data is 

more efficient for dc-conductivity analysis, since it changes the power law behavior of the 

dc-conductivity into a clearly defined peak [134]. However, there is no significant advantage 

of the modulus representation when the relaxation process peak overlaps the conductivity 

peak. Moreover, the shape and position of the relaxation peak will then depend on the 

conductivity. In such a situation, the real component of the modulus, containing the 

dc-conductivity as an integral part, does not help to distinguish between different relaxation 

processes. 

Luckily, the real and imaginary parts of the complex dielectric permittivity are not 

independent of each other and are connected by means of the Kramers–Kronig relations [11]. 

This is one of the most commonly encountered cases of dispersion relations in linear physical 

systems. The mathematical technique used by the Kramers–Kronig relations is the Hilbert 

transform. Since dc-conductivity enters only the imaginary component of the complex 

dielectric permittivity the static conductivity can be calculated directly from the data by 

means of the Hilbert transform. 
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3.3.3 Continuous Parameter Estimation Routine 

The complex dielectric permittivity data of a sample, obtained from DS measurements in a 

frequency and temperature interval can be organized into the matrix data massive ,i jε ≡  ε  of 

size M N× , where , ( , )i j i jTε ε ω≡ , M is the number of measured frequency points and N is 

the number of measured temperature points. Let us denote by ( ; )f f ω= x the fitting function 

of n parameters 1 2{ , ,..., }nx x x=x . This function is assumed to be a linear superposition of the 

model descriptions (such as the Havriliak-Negami function or the Jonscher function, 

considered in section 2.2.1). The dependence of f on temperature T can be considered to be 

via parameters only: ( ; ( ))f f Tω= x .  Let us denote by ( )i jX x T ≡    the n N× matrix of n 

model parameters xi , computed at N different temperature points jT . 

 The classical approach to the fit parameter estimation problem in dielectric 

spectroscopy is generally formulated in terms of a minimization problem: finding values of X 

which minimize some discrepancy measure ( , )S ε ε  between the measured values, collected in 

the matrix ε  and the fitted values [ ( , ( ))]i jf Tω=ε x  of the complex dielectric permittivity. 

The choice of ( , )S ε ε  depends on noise statistics [132].  

 

 

3.3.4 Computation of the dc-conductivity using Hilbert transform  

The coupling between real and imaginary components of the complex dielectric 

permittivity )(* ωε is provided by the Kramers-Kronig relations, one of the most general 

cases of dispersion relations in physical systems. The mathematical technique used by the 

Kramers-Kronig relations, which allows one component to be defined through another, is the 

Hilbert transform since '( )ε ω  and ''( )ε ω are Hilbert transform pairs. Performing a Hilbert 

transform of '( )ε ω  and subtracting the result from ''( )ε ω , the dc-conductivity, 0 0/( )σ ε ω , can 

be computed directly from the complex dielectric permittivity data. The simulated and 

experimental examples show very good accuracy for calculating dc-conductivity by this 

method.  

 The Kramers-Kronig dispersion relations between imaginary and real parts of 

dielectric permittivity can be written as follows [11]:  
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where the symbol P̂  denotes the Cauchy principal value of the integral. The Hilbert transform 

[ ]H g of a real function ( )g t  is defined as: 

1 ( )[ ] gH g P dξ ξ
π ξ ω

∞

−∞

= −
−∫

                                             
(3.16) 

 

Therefore the conductivity term in the second dispersion relation (3.15) can be presented as 

follows: 

( ) ( )ωεωε
ωε

σ ˆ
0

0 ′′−′′=
 .                                              

(3.17) 

 

The result shows that dc-conductivity can be computed by using the Hilbert transform 

applied to the real components of the dielectric permittivity function and subtracting the result 

from its imaginary components. The main obstacle to the practical application of the Hilbert 

transform is that the integration in equation (3.16) is performed over infinite limits; however, 

a DS spectroscopy measurement provides values of )(* ωε  only over some finite frequency 

range. Truncation of the integration in the computation of the Hilbert Transform can yield a 

serious computational error in calculating [ ])(ωε ′H  in the measured frequency range. This 

problem cannot be overcome unless the “missing” dielectric data is supplied. However, the 

computational error can be reduced by extending '( )ε ω  into a frequency domain outside the 

measuring frequency range. Although this is a rather crude data treatment, computer 

simulations show that computational error due to the truncation of the measuring frequency 

range is greater near the borders of the range. Far from the borders of the frequency range the 

relative error is much smaller and is of the order of 410− . 

 While our method works well with most situations, it is limited when '( )ε ω exhibits a 

low frequency tail.  Such a situation is characteristic of percolation, electrode polarization or 

other low-frequency process, where the reciprocal of the characteristic relaxation time for the 

process is just below our frequency window.  In this case aliasing effects distort the transform 

result. 
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 Practically, the Numerical Hilbert Transform can be computed by means of the well-

known Fast Fourier Transform (FFT) routine. It is based on the following property of the 

Hilbert Transform [135]. If  

[ ]
0

1( ) ( )cos ( )sing t a t b t dω ω ω ω ω
π

∞

= +∫
                             

(3.18)
 

is the Fourier transform of a real function ( )g t , then the Fourier-transform of the function 

[ ]H g  is the following:  

[ ]
0

1[ ] ( )cos ( )sinH g b t a t dω ω ω ω ω
π

∞

= −∫
.                           

(3.19) 

 

Thus, by performing the Fourier transform of the data with an FFT algorithm, the Hilbert 

transform is computed by inverse-FFT operation to the phase-shifting version of the Fourier 

transform of the original data. Such an approach was realized in the work of Castro and Nabet 

[136], where the real component of the dielectric permittivity was calculated from its 

imaginary component, using the Hilbert transform. For the Hilbert transform computation, the 

authors used a procedure included in the MATLAB package. This methodology was also 

based on the FFT technique, requiring uniform sampling over the frequency interval. If the 

data are not measured uniformly, it should be interpolated to frequency points, evenly spaced 

with an incremental frequency equal to or less than the start frequency. However, this routine 

cannot be used for a wide spectral range. For example, in order to cover an interval of 12 

decades with an incremental frequency equal to the start frequency 1012 points are required. 

This, of course, is not practical. To overcome this limitation, a procedure based on a moving 

frequency window has been developed, where the scale inside the window is linear, but the 

window jump is logarithmic. This kind of methodology employing moving windows with 

FFT has been used in the past [137]. 

 

 

3.3.5 Computing software for data analysis and modeling  

Software for dielectric data treatment and modeling in frequency domain has been 

developed recently [132]. This program (MATFIT) was built around the software package 

MATLAB (Math Works Inc.) and its functionality is available through an intuitive visual 

interface. Key features of the program include: 
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• Advanced data visualization and pre-processing tools for displaying complex dielectric 

permittivity data and selecting appropriate frequency and temperature intervals for modeling; 

• A library of standard relaxation fit functions; 

• Simultaneous fit of both real and imaginary components of the complex dielectric 

permittivity data; 

• Linear and nonlinear fitting methods, from least-squares and logarithmic to fitting 

procedures based on the entropy norm; 

• Global fit procedure on all selected temperature ranges for continuous parameter estimation; 

• Hilbert transform for computing dc-conductivity; 

• Parameter visualization tool for displaying fitting parameter functions via temperature and 

subsequent analysis of the graphs. 

 The methodology described above, utilized in the presented program [132], and 

reduces the problem of dielectric data analysis to choosing the appropriate model functions 

and an estimation of their model parameters. The penalized maximum likelihood approach for 

obtaining these parameters as a function of temperature has proven to be a consistent method 

for accurately obtaining the global minimum in this estimation. This methodology is a 

phenomenological approach to obtaining the underlying temperature dependence of the 

parameter space, while not presupposing a particular physical model. The risk is present that 

such a regularization routine may perturb the result if used excessively. For this reason a 

regularization parameter is used to control the smoothing term. However, this risk is far less 

than the risk of a priori conclusion of the result according to the researcher’s personal belief 

in a preferred analytical model. 

 

 

4 Dielectric response in some disordered materials 
 In this contribution we are presenting some concepts of modern dielectric 

spectroscopy. We are going to illustrate these ideas by experimental examples related to 

different complex systems. In many cases we will refer different features of dielectric 

response observed in the same samples. Parallel with the description of morphology for each 

system, the phenomenological identification of the relaxation processes and their relation to 

dynamic of structural units is established. In spite of the structural and dynamic differences, 

the general features of the relaxation processes will be indicated.  
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4.1 Microemulsions 

 Microemulsions are thermodynamically stable, clear fluids, composed of oil, water, 

surfactant and sometimes co-surfactant that have been widely investigated during recent years 

because of their numerous practical applications. The chemical structure of surfactants may be 

low-molecular weight as well as polymeric, with nonionic or ionic components [138-141]. In 

the case of a water/oil-continuous (W/O) microemulsion, at low concentration of the 

dispersed phase, the structure is that of spherical water droplets surrounded by a 

monomolecular layer of surfactant molecules whose hydrophobic tails are oriented towards 

the continuous oil phase (See Figure 6). When the volume fractions of oil and water are high 

and comparable, random bicontinuous structures are expected to form.  

 
Figure 6. Schematic presentation of spherical water droplet surrounded by a monomolecular 
layer of ionic surfactant molecules. 

 

 

The structure of the microemulsion depends on the interaction between droplets. In the 

case of repulsive interaction, the collisions of the droplets are short and no overlapping occurs 

between their interfaces. However, if the interactions are attractive, transient random droplet 

clusters are formed. The number and sizes of such clusters are increasing with the 

temperature, the pressure, or the water to surfactant ratio, leading to a percolation in the 

system [113,142-145].  

The majority of the different chemical and physical properties, as well as the 

morphology of microemulsions, is determined mostly by the micro-Brownian motions of its 

components. Such motions cover a very wide spectrum of relaxation times ranging from tens 

of seconds to a few picoseconds. Given the complexity of the chemical makeup of 

microemulsions, there are many various kinetic units in the system. Depending on their 

nature, the dynamic processes in the microemulsions can be classified into three types:  
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The first type of relaxation processes reflects characteristics inherent to the dynamics of 

single droplet components. The collective motions of the surfactant molecule head groups at 

the interface with the water phase can also contribute to relaxations of this type. This type can 

also be related to various components of the system containing active dipole groups, such as 

cosurfactant, bound and free water. The bound water is located near the interface, while “free” 

water, located more than a few molecule diameters away from the interface, hardly influenced 

by the polar or ion groups. In the case of ionic microemulsions, the relaxation contributions of 

this type are expected to be related to the various processes associated with the movement of 

ions and/or surfactant counterions relative to the droplets and their organized clusters and 

interfaces [113,146]; 

For percolating microemulsions, the second and the third types of relaxation processes 

characterize the collective dynamics in the system and are of a cooperative nature. The 

dynamics of the second type may be associated with the transfer of an excitation caused by 

the transport of electrical charges within the clusters in the percolation region. The relaxation 

processes of the third type are caused by rearrangements of the clusters and are associated 

with various types of droplet and cluster motions, such as: translations, rotations, collisions, 

fusion and fission [113,143].  
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Figure 7. The percolation behavior in AOT–water–decane microemulsion (17.5:21.3:61.2 
vol%) is manifested by the temperature dependences of the static dielectric permittivity εs ( 
left axis)  and conductivity σ ( right axis). Ton is the temperature of the percolation onset; Tp 
is the temperature of the percolation threshold. Insets are schematic presentations of the 
microemulsion structure far below percolation and at the percolation onset. (Reproduced with 
permission from Ref. 149. Copyright 1998, Elsevier Science B.V.) 
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Dielectric Spectroscopy can be successful in providing unique information about the 

dynamics and structure of microemulsions on various spatial and temporal scales. Being 

sensitive to percolation, DS is expected to provide unambiguous conclusions concerning the 

stochastic type, the long time scale cooperative dynamics and the imposed geometric 

restrictions of molecular motions before, during and after the percolation threshold in 

microemulsions. It also can give valuable information about fractal dimensions and sizes of 

the percolation clusters. 

The percolation behavior is manifested by the rapid increase in the dc-electrical 

conductivity σ and the static dielectric permittivity εs as the system approaches the 

percolation threshold (Figure 7). 

The dielectric relaxation properties in a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) - 

water - decane microemulsion near the percolation temperature threshold have been 

investigated in a broad temperature region [47,143,147]. The dielectric measurements of ionic 

microemulsions were carried out using the TDS in a time window with a total time interval of 

~ 1µs. It was found that the system exhibits a complex non-exponential relaxation behavior 

that is strongly temperature dependent (Figure 8).  

An interpretation of the results was done in the framework of the dynamic percolation 

model [148]. According to this model, near the percolation threshold, in addition to the fast 

relaxation related to the dynamics of droplet components (τ1 ≅ 1 ns) [149], there are at least 

 

  
Figure 8. Three-dimensional plots of the frequency and temperature dependence of the 
dielectric permittivity ε′ (a) and dielectric losses ε″ (b) for AOT–water–decane 
microemulsion. (Reproduced with permission from Ref. 143. Copyright 1995, The American 
Physical Society.)  
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two much longer characteristic time scales. The longest process has a characteristic relaxation 

time greater than a few microseconds and is associated with the rearrangement of the typical 

percolation cluster. The temporal window of the intermediate process is a function of 

temperature. This intermediate process reflects the cooperative relaxation phenomenon 

associated with the transport of charge carriers along the percolation cluster [148,150,151]. 

Thus, due to the cooperative nature of relaxation, the DCF decay behavior (See Figure 9) 

contains information regarding the transient cluster morphology at the mesoscale that reflects 

the dynamical character of percolation. 

 
Figure 9. The three-dimensional plot of experimental dipole correlation function versus time 
and temperature. The percolation threshold temperature Tp=26.5°C. (Reproduced with 
permission from Ref. 47. Copyright 1996, The American Physical Society.)  

 

 

The type of the relaxation law seen in time domain is strongly dependent on the 

distance from the percolation threshold. Figure 10 shows in log-log coordinates that at the 

percolation onset temperature (~14°C) the relaxation follows a fractional power law: 

Ψ(t) ~ (t/τ1)−µ. By the same token, in the coordinates logΨ versus log(t/τ1) in the close 

vicinity of the percolation threshold Tp=26.5°C, the relaxation law changes from power law to 

stretched exponential behavior, i.e., Ψ(t) ~ exp[-(t/τm)ν] (See Figure 11). In the crossover 

region the relaxation law is considered to be a product of both the power law and stretched 

exponential terms described by (2.25). The results of the fitting of the experimental dipole 

correlation functions to Eq.(2.25) are shown in Figure 12 and Figure 13.  

One can see (Figure 12) that the magnitude of parameter µ decreases to almost zero as 

the temperature approaches that of the percolation threshold. This effect confirms the 

statement mentioned above that at the percolation threshold temperature the behavior of the 
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dipole correlation function is of the KWW type. The stretched parameter ν changes its value 

from ~0.2 near the percolation onset to ∼0.8 in the vicinity of the percolation threshold.  

 

  
Figure 10. The dipole correlation function 
ψ (t/τ1) demonstrates power-law behavior 
for the temperature region near the 
percolation onset (Ton = 12°C). (Reproduced 
with permission from Ref. 2. Copyright 
2002, Elsevier Science B.V.)  

Figure 11. The dipole correlation function 
ψ (t/τ1) demonstrates KWW behaviour near the 
temperature of the percolation threshold (Tp = 
26.5°C). (Reproduced with permission from 
Ref. 2. Copyright 2002, Elsevier Science B.V.) 

 
 
 

 

  

Figure 12. The temperature dependence of 
the exponents µ (▼) and ν (■) illustrate the 
transformation of the dipole correlation 
function ψ (t/τ1) from the power-law pattern 
to the KWW behavior at the percolation 
threshold. (Reproduced with permission 
from Ref. 2. Copyright 2002, Elsevier 
Science B.V.) 

Figure 13. The temperature dependence of the 
parameter τm (● left axis) and A (▲ right axis), 
obtained by the fitting of the relaxation law (25) 
to the experimental data. (Reproduced with 
permission from Ref. 2. Copyright 2002, 
Elsevier Science B.V.) 
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Notwithstanding that the value of ν is not equal to zero at percolation onset, note that the 

stretched exponential term with ν = 0.2 changes insignificantly in the considerable time 

interval (~1µs) and the decay of the DCF ψ(t) is governed mainly by the power law. Figure 

13 plots the relaxation times ratio, τm / τ1 and the amplitude A corresponding to the 

macroscopic relaxation time of the decay function determined by (2.25). Near the percolation 

threshold, τm / τ1 exhibit a maximum and reflect the well-known critical slowing down effect 

[152]. The description of the mechanism of the cooperative relaxation in the percolation 

region will be presented in section 5.2. 

 

 

4.2 Porous materials 

 Non-Debye dielectric relaxation in porous systems is another example of the dynamic 

behavior of complex systems on a mesoscale. The dielectric properties of various complex 

multi-phase systems (borosilicate porous glasses [153-156], sol-gel glasses [157,158], 

zeolites [159] and porous silicon [160,161]) were studied and analyzed in terms of 

cooperative dynamics. The dielectric response in porous systems will be considered here in 

detail using two quite different types of the materials namely: porous glasses and porous 

silicon.  

 

4.2.1 Porous glasses 

 The porous silica glasses obtained from sodium borosilicate glasses are defined as 

bicontinuous random structures of two interpenetrating percolating phases, the solid and the 

pore networks. The pores in the glasses are connected to each other and the pore size 

distribution is narrow. The characteristic pore spacing depends on the method of preparation, 

and can be between 2 and 500 nm [156,162]. A rigid SiO2 matrix represents the irregular 

structure of porous glasses. Water can be easily adsorbed on the surface of this matrix. The 

dielectric relaxation properties of two types of silica glasses have been studied intensively 

over broad frequency and temperature ranges [153-156]. The typical spectra of the dielectric 

permittivity and losses associated with the relaxation of water molecules of the adsorptive 

layer for the studied porous glasses versus frequency and temperature are displayed in Figure 

14. 
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Figure 14 shows that the complex dielectric behavior can be described in terms of the four 

distributed relaxation processes as follows: 

The first relaxation process, which is observed in the low temperature region from –100°C 

to +10°C is due to the reorientation of the water molecules in ice-like water cluster structures. 

It was shown that the hindered dynamics of the water molecules located within the pores 

reflects the interaction of the absorptive layer with the inner surfaces of the porous matrix 

[153,155]; 

The second relaxation process has a specific saddle-like shape and is well marked in the 

temperature range of –50°C to +150°C. This relaxation process is thought to be a kinetic 

transition due to water molecule reorientation in the vicinity of a defect [155]; 

 

  
Figure 14. The typical three-dimensional plot of the complex dielectric permittivity real ε′ 
(a) and imaginary part ε″ (b) versus frequency and temperature for porous glass (sample E). 
All the details of different sample preparation and their properties are presented in Ref. 156. 
(Reproduced with permission from Ref. 2. Copyright 2002, Elsevier Science B.V.) 

 

 

The third relaxation process is located in the low-frequency region and the temperature 

interval 50°C to 100°C. The amplitude of this process essentially decreases when the 

frequency increases, and the maximum of the dielectric permittivity versus temperature has 

almost no temperature dependence (Figure 15). Finally, the low-frequency ac-conductivity σ 

demonstrates an S-shape dependency with increasing temperature (Fig. 16), which is typical 

of percolation [2,143,154]. Note in this regard that at the lowest-frequency limit of the 

covered frequency band the ac-conductivity can be associated with dc-conductivity σ0 usually 

measured at a fixed frequency by traditional conductometry. The dielectric relaxation process 

here is due to percolation of the apparent dipole moment excitation within the developed 
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fractal structure of the connected pores [153,154,156].This excitation is associated with the 

self-diffusion of the charge carriers in the porous net. Note that in distinction from dynamic 

percolation in ionic microemulsions the percolation in porous glasses appears via the transport 

of the excitation through the geometrical static fractal structure of the porous medium. 

The fourth relaxation process is observed in the high temperature region, above 150°C, 

where the glasses become remarkably electrically conductive and show an increase of 

dielectric constant and dielectric losses in the low frequency limit. This relaxation process is 

most probably related to the interface polarization process as a result of the trapping of free 

charge carriers at the matrix-air interface inside the sample. It causes a build-up of 

macroscopic charge separation or space charge with a relatively long temperature independent 

relaxation time. As shown [153,156], the value of the relaxation time is well correlated to the 

pore sizes: the larger the pores, the slower the relaxation process. The description of the 

mechanism of cooperativity in confinement (Process II) and relaxation in the percolation 

region (Process III) will be presented below.  

 

  
Figure 15. Typical temperature 
dependence (for sample E [156]) of the 
complex dielectric permittivity of the real 
part of different frequencies (■ 8.65 kHz; 
● 32.4 kHz; ▲ 71.4 kHz). (Reproduced 
with permission from Ref. 2. Copyright 
2002, Elsevier Science B.V.) 

Figure 16. Typical temperature dependence of 
the low frequency ac-conductivity σ of the 
porous glass sample E. (Reproduced with 
permission from Ref. 2. Copyright 2002, 
Elsevier Science B.V.) 
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4.2.2 Porous Silicon 

Non-Debye dielectric relaxation was also observed in porous silicon (PS) [25, 

160,161]. PS has attracted much attention, mainly due to its interesting optical and electro-

optical properties that can be utilized for device applications [164,165]. So far, most of the 

activity in this field has focused on the intense visible photoluminescence (PL) from nano-PS 

and the underlying physical mechanism that is responsible for the generation of light. In 

addition, transport and dielectric relaxation phenomena in PS have also attracted considerable 

attention for injection-type PS devices. It was mentioned in the previous section that the 

correlation between the morphology of porous media and their dielectric properties has 

already been studied [153,154,166]. In many porous media, dielectric response is directly 

related to the fractality and the nano- and meso-structural properties of these disordered 

systems [153,156-159]. In principle, one would expect to find a similar correlation between 

the micro-geometry and the dielectric properties of PS media. For example, dc-conductivity 

measurements demonstrate a dual transport mechanism that has been assigned to thermally 

activated hopping and exited charged carrier tunneling [167]. As a result, carriers excited to 

the band tail would give rise to a thermally activated dc-conduction with activation energy of 

about 0.5 eV [163,168]. This activation energy is less than half the optical band-gap of PS 

deduced from PL experiments [164]. The ac-conductivity measurements in PS revealed 

complex transport properties due to a random walk in fractal geometry and thermally 

activated hopping, as in the case of dc-conductivity [163]. Therefore, it is commonly accepted 

that both the nano-geometry, the nature of the Si nanocrystallites that form the PS medium 

and their surfaces as well as the host matrix all contribute to the electrical and optical 

properties of PS. 

 The dielectric relaxation properties in nano-PS with different thicknesses have been 

investigated in broad frequency and temperature regions [160,161]. The dielectric properties 

of the PS samples were measured in the 20 Hz to 1MHz frequency range and in the 

173 to 493 K temperature interval. For all the dielectric measurements, the amplitude of a 

sinusoidal ac voltage source was kept constant at 1V so that the average electric field across 

our sample was about hundreds V/cm depending on the sample thickness. It was verified that 

the response was linear with respect to the ac voltage amplitude such that a linear response 

analysis could be utilized for our sample. 

Three-dimensional plots of both the measured real part ε′ and the imaginary part ε′′ of 

the complex dielectric permittivity versus frequency and temperature for 20 µm thickness PS 
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sample are shown in Figure 17a, b. From the figure one can identify three distinct processes, 

marked by I, II and III, defined as follows: 

Low temperature process I: This process extends over the low temperatures (170 to 

270 K). Despite the fact that both the real and imaginary parts of the dielectric function 

display this process, it can be appreciated most by looking at ε′′ at high frequencies and low 

temperatures where the local maximum, which shifted to higher frequencies with increasing 

temperature, can be easily detected.  

Process I represents an existence of additional groups of exited states in PS, which 

contribute to a thermally activated transport processes [160]. 

Mid temperature process II: This process extends over the mid-range temperatures 

(300 to 400K) and over low to moderate frequencies (up to 105 Hz). The mid temperature 

process was associated with the percolation of charge excitation within the developed fractal 

structure of connected pores at low frequencies and with an activated hopping conductivity 

between neighboring Si crystallites at high-frequency tail [160]. 

 

  
Figure 17. Three-dimensional plots of the frequency and temperature dependence of the real 
ε' (a) and imaginary part ε'' (b) of the complex dielectric permittivity for the 20 µm PS 
sample. (Reproduced with permission from Ref. 2. Copyright 2002, Elsevier Science B.V.) 

 

 

High temperature process III: This process is very significant at high temperatures 

(>400 K). Its amplitude increases very rapidly with decreasing frequency for both the real and 

the imaginary part of the dielectric function. One of the sources of its behavior is a large 

dc-conductivity of the sample that appears at high-temperatures. 
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Similar processes were also observed for the 30 µm thickness samples. The detailed 

description of the mechanism of the mid temperature process in the percolation region and 

porosity determination in PS will be presented below. 

 

 

4.3 Ferroelectric crystals 

 Amongst the perovskite family of ferroelectrics KTN crystals (KTa1-xNbxO3) have 

attracted great interest both as model systems and for their optical properties. They were first 

systematically studied in 1959 [169] and a complete microscopic description of the 

ferroelectric phase transition was given in 2001 [170]. They display both displacive-like and 

order disorder-like properties [171-174]. For niobium (Nb) concentrations of x > 0.2 the 

ferroelectric phase transition is of the first order and follows the linear rule for ferroelectric 

phase transition temperature Tc≈682x [175]. At the ferroelectric phase transition the crystal 

structure is transformed from cubic to tetragonal. Further cooling incurs two additional 

structural transitions: tetragonal to orthorhombic, and orthorhombic to rhombohedral [175].  It 

was recently shown that the interaction of the off-centre Nb ion with the soft mode phonon of 

the crystal in fact governs the phase transition [170]. At the phase transition the distortion of 

the crystal lattice caused by the off-centre position of the Nb ion leads to the creation of 

virtual dipoles in the crystal lattice which are randomly distributed throughout the crystal. The 

resultant local fields strongly polarize the lattice leading to long-range cooperativity, 

frequently of length scales 1000-10000 Ǻ [176], indicative of the ferroelectric phase. The 

addition of transition metal ions to this system leads to further novel properties.  Of particular 

interest is the addition of small quantities of copper (Cu) ions. Copper, in small 

concentrations, approximately 1.5 × 10-4 molar concentration, is known to greatly enhance the 

photorefractive effect in these crystals [177], leading to important electroholographic 

applications [178].  Generally Cu ions occupy the potassium site in the lattice and sit off-

centre.  This virtual dipole is the source of further relaxations in the crystal.   

 The dielectric behavior of copper-doped and pure KTN crystals were compared in 

wide temperature and frequency ranges in order to study the effect of such small Cu ion 

concentrations on the dielectric landscape [179].  The two studied KTN crystals were grown 

using the top seeded solution growth method [180]. The Ta/Nb ratio in both crystals was 

estimated by Perry’s linear relation [175] linking Tc, to the concentration of Nb, 

Tc=682x+33.2, and was found to be approximately 62/38 per mole. The first crystal (crystal 

#1) was doped with copper. The doping level was 2% in the flux yielding approximately 
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1.5 × 10-4 per mole in the grown crystal. The second crystal (crystal #2) was a pure KTN 

crystal. Samples of 1x1x2 mm3 were cut from the grown bole along the crystallographic [001] 

axes. The x-y faces of the samples (perpendicular to the growth direction z) were polished and 

coated with gold electrodes.  Cu concentration was established by using Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES) [181] on similarly grown crystals with the 

same flux concentrations of Cu. It was found that 2% Cu in the flux produced a nearly 

constant concentration of 1.5 × 10-4 per mole independent of the ratios of other constituents, 

with an accuracy of 0.2%.   

 Dielectric measurements were carried out in the frequency range of 10-2 – 106 Hz and 

the temperature interval 133 K to 473 K [179]. The crystals were cooled from 297 K to 190 K 

with a temperature step of 4 K. In the region of the phase transition, 292 K to 297 K, the 

temperature step was reduced to 0.5 K.  Reheating from 190 K to 440 K was done with a step 

of 5 K. As before, in the region of the ferroelectric phase transition the step was reduced to 

0.5 K.  The dielectric landscape of crystal #1 is presented in Figure 18.  

 

 
Figure 18. The dielectric losses, ε”, for crystal #1. The three phase transitions are evident at 
T=295.6 K, 291.1 K and 230 K respectively. (Reproduced with permission from Ref. 179. 
Copyright 2004, The American Physical Society.) 
 

 

The complex dielectric response of crystal #1 can be described in terms of a number of 

distributed dynamic processes separated by different frequency and temperature ranges. The 

ferroelectric phase transition is observed at 295.6 K. It is followed by tetragonal to 

rhombohedral transitions occurring at 291.1 K and 230 K respectively. A comparison of these 

transition temperatures with the undoped crystal #2 revealed that the second and third 
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transitions (tetragonal to orthorhombic and orthorhombic to rhombohedral) were shifted by 

approximately 40 K towards the lower temperatures (See Figure 19). 

 

 
Figure 19. The dielectric permittivity of crystals #1(∇ ) and #2 (Δ) measured at 12 Hz. The 
shift in the second and third phase transition temperatures, due to Cu ion doping, is clearly 
evident.  The insert shows the detail of the ferroelectric phase transition in both crystals. 
(Reproduced with permission from Ref. 257. Copyright 2005, Elsevier Science B.V.) 

 

 

In the paraelectric phase, above 295 K, there is a thermally activated process (process 

A) starting in the low frequencies at the phase transition and shifting towards higher 

frequencies as the temperature increases. The quantitative nature of Process A was established 

by examining the temperature dependence of Aτ , obtained as the inverse value of the 

characteristic frequency fm(T) along the crest representing process A in the ε”(T,f) landscape 

[6].  It was found to be Arrhenius in nature with activation energy of eVE A
a 01.094.0 ±= and 

the high temperature limit of the relaxation time А
0τ =1.7±0.4 x 10-15 s.  Additionally, it was 

found to be correlated with the well-pronounced dc-conductivity. The dc-conductivity, σ, was 

found to follow Arrhenius behavior, namely, ( )TkE B/exp0 σσσ −= , with an activation 

energy of σE =0.9±0.01 eV and the high temperature limit of conductivity =0σ  42 ± 7 sm-1. 

The similarity in nature and activation energy of Process A and the dc-conductivity suggests 

that they originate from the same physical mechanism, most likely electron mobility.  While 

Process A was observed in both crystal #1 and crystal #2, Process B was observed only in 

crystal # 1 (see Fig. 20). Process B was observed to pass through all three phase transitions 

and it was found to be non-Arrhenius with distinct changes in its relaxation behavior  
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Figure 20. A comparison of the dielectric 
losses measured at T=250 K: ∆ represents 
crystal #1 (KTN doped with Cu ions) and ○ 
represents crystal #2 (pure KTN). 
(Reproduced with permission from Ref. 179. 
Copyright 2004, The American Physical 
Society.) 
 

 

Figure 21. The characteristic relaxation 
times for Process B. On the figure are 
marked the three phase transitions and the 
critical cross-over temperature, T=354 K, 
between Ahrrenius and VFT behaviours. The 
circles are the experimental data and the 
lines are the fitting functions; Ahrrenius, 
VFT and “Saddle-like” [78,179]. 
(Reproduced with permission from Ref. 257. 
Copyright 2005, Elsevier Science B.V.)  

  

  

delineated by the phase transitions. In the same manner as for Process A relaxation time τB 

was extracted from the peak maximum of the dielectric losses, ε”(ω,T), (Figure 21).   

In the high temperature range, above 354K, Process B exhibits Arrhenius behavior 

with an activation energy B
aE =0.37 ± 0.01 eV and В

0τ = 2.8 ± 0.9 x 10-12 s. Below Tx=354K 

Process B obeys a Vogel-Fulcher-Tammann (VFT) relaxation in which τB is given by (2.28) 

)(
)ln()ln( 0

VFTB

VFTBB

TTk
E

−
+= ττ  with TVFT=228K, and EVFT = 0.02 eV. Following the onset of 

the ferroelectric phase transition at Tc=295.6 K, τB decreases until it reaches a minimum at 

264K, exhibiting a small cusp at the second (tetragonal to orthorhombic) phase transition. 

Upon further cooling τB increases until it reaches a maximum at the third (orthorhombic to 

rhombohedral) transition at 230K, exhibiting a “saddle” [78] that will be discussed in detail 

below.  
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4.4 H-bonding Liquids 

 The study of slow dynamics in glass forming liquids is currently a significant 

challenge in the research field of soft condensed matter science [182-186]. Hydrogen bonding 

liquids and their mixtures occupy a special place among complex systems due to existence of 

directed H-bonds (in contrast to van der Waals and ionic systems) that can be rearranged 

relatively easily (in contrast to covalent bonds). Although an enormous amount of literature 

exists which relates to the investigation of hydrogen-bonding systems (See for example 

[3,183,185]) there is still a lack of clear understanding of their dynamics, structure and glass 

transitions. Among them, glycerol (C3H8O3) [17,74,187-189] and its mixtures with water 

[190] is widely used as excellent model to study their cooperative dynamics.  

 Usually, glycerol exists only in liquid, supercooled, or glassy states. However, after 

special treatment pure dehydrated glycerol can be crystallized [191,192]. Uncrystallized 

glycerol is a common system used for studying glass-forming dynamics [3,184,187-189,193-

195] while crystallized glycerol, until now, has not been investigated.  

 Under normal conditions glycerol does not undergo crystallization but rather during 

cooling it becomes a supercooled liquid which can be vitrified [184,187,196,197] at Tg=190 

K. In contrast, anhydrous glycerol, cooled down below the glass transition point Tg and then 

slowly heated up, can be crystallized. However, crystallization of glycerol is a very unusual 

and unstable process, which depends on the temperature history and impurities of the sample. 

The main features of glycerol crystallization were studied [186] by comparing the glass-

forming dynamics of anhydrous glycerol (Sample A) with those of glycerol that was not 

specially treated to prevent water absorption (Sample B). To reach crystallization, sample A 

was cooled from room temperature to 133 K. Then measurements of the complex dielectric 

permittivity ε*(ω) were performed by a Novocontrol Alpha Analyzer in the frequency interval 

0.01 Hz - 3 MHz and the temperature range 133 K - 325 K (See Figure 22). Thus, overall 

experimental time was 30 h and average heating rate was about 0.1K min-1. Considerable 

changes in ε*(ω) behavior in the measured frequency range are observed in the temperature 

interval from 263 K to 293 K. The transition at 293 K is known as the glycerol melting point 

[198]. Thus, the transition near 263 K is thought to be attributed to the glycerol 

crystallization. 

Note that the relaxation process (I) of the supercooled glycerol in this temperature 

interval disappears and the relaxation process (II), with a reduced strength, appears in the low 

frequency region.  
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Figure 22. A three-dimensional plot 
representing the real part of ε′(ω) for 
sample A. The arrows mark the 
crystallization temperature (Tx =263 K), 
the melting point (Tm=293 K), and the 
principal relaxation process, before (I) and 
after (II) the crystallization. (Reproduced 
with permission from Ref. 186. Copyright 
2003, The American Physical Society.) 
  

Figure 23. Sample A before (unfilled boxes) 
and after (filled boxes) the crystallization 
compared with sample B (triangles), and 
literature data [195] (circles). In the 
supercooled phase all samples obey a VFT 
law (full lines), while the relaxation process in 
sample A above 263 K obeys an Arrhenius 
law (dash-dotted line). (Reproduced with 
permission from Ref. 186. Copyright 2003, 
The American Physical Society.)  

 

 

 The data presented in Fig.23 were analyzed as a set of isothermal spectra in the 

framework of (2.21) 

βατω
εεεε

))(1(
)(*

i
f s

+
−

+= ∞
∞

 
 

It is remarkable that in the liquid and supercooled phase glycerol exhibits unsymmetrical 

relaxation peak broadening (α ≈ 1, β ≈ 0.6) whereas in the case of process (II) the broadening 

is a rather symmetric one (0.6 ≤ α ≤ 0.7, β =1). The Arrhenius plot in Figure 23 shows that 

relaxation dynamics in the supercooled glycerol phase before crystallization (I) obey the VFT 

relationship while after crystallization (II) follow Arrhenius law. Note, that in the considered 

frequency and temperature landscape, another low frequency process related to the 

crystallization is observed. Unfortunately, it was not resolved properly in the mentioned study 

[186].  

The VFT behavior of supercooled glycerol is well known from studies of liquid and 

supercooled glycerol [3,186-190] while the Arrhenius dependence of dielectric relaxation 
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time is more relevant for crystals. For example, the temperature dependence of dielectric 

relaxation time of ice I also obeyes Arrhenius law with the activation energy about 

60 kJ⋅mol-1[198,199].  

 Therefore, the observed process (I) could be related to cooperative dynamics of 

glycerol in the supercooled phase while process (II) is most likely related to the crystalline 

phase of glycerol and is the result, similar to water, of the mobility of defects in the crystalline 

lattice [200]. The temperature dependence of the relaxation time for the dehydrated glycerol is 

compared in Figure 23 with those for the usual behavior of glycerol, which has absorbed 

some water from the atmosphere.  

In Figure 23, we compared temperature dependencies of fitted relaxation time for 

samples A and B and data recently published by Lunkenheimer and Loidl [195]. The fitting 

yields that the process (I) in the supercooled phase for sample A, the relaxation in sample B, 

and literature data [195], all obey the VFT law ( ){ }vvv TTDT −= /expmax ττ  where Tv is the 

Vogel-Fulcher temperature, τv is the pre-exponential factor, and D is the fragility parameter. 

From the data presented in Figure 23 one can see that values of the VFT temperature Tv and 

fragility D are very close for all the samples where D = 22±2 and Tv = 122±2 K, while the 

preexponential factors τv are remarkably different. For the anhydrous sample A, 

τv = 3.93×10-16 s, for sample B, τv = 2.3×10-16 s, while for the literature data [195] 

τv = 1.73×10-16 s. Taking into account the fact that sample A was specially protected from 

water absorption, it is strongly suspected that this significant  difference in τv is caused by the 

water absorbed from the atmosphere. This observation signifies that even very small water 

content can result in significantly different dynamics in the supercooled phase for the 

anhydrous glycerol and for the glycerol samples usually studied [186]. 

As mentioned above, the frequency dependence of complex dielectric permittivity 

( *ε ) of the main relaxation process of glycerol [17,186] can be described by the Cole-

Davidson (CD) empirical function (See (2.21) with α =1, 10 ≤< CDβ ). In that case τCD is the 

relaxation time which has non-Arrhenius type temperature dependence for glycerol (See 

Figure 23). Another well known possibility is to fit the BDS spectra of glycerol in time 

domain using the KWW relaxation function (2.23) φ(t) (See Figure 24). 
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Figure 24. The imaginary parts of the dielectric spectrum for anhydrous glycerol in the 
supercooled state at 196 K [186]. The dotted and dashed line show descriptions of the main 
relaxation process by CD [Eq. (21)] with CDτ = 2.61 s, ∆ε = 63.9 and CDβ  = 0.51) and KWW 
[Eq. (23)] with Kτ  = 1.23 s, ∆ε = 62.0 and Kβ  = 0.69) functions, respectively. (The half-
width of the loss curve were fixed for both CD and KWW functions.) (Reproduced with 
permission from Ref. 208. Copyright 2005, American Chemical Society.) 
 

 

 The CD function predicts the dielectric loss (ε”) of glycerol to follow the power law 

ε”~ CDf β towards the high frequencies ( maxff >> ), where fmax is the frequency corresponding 

to the dielectric loss peak.  However, the high frequency experimental data in Figure 24 

demonstrate a significant deviation from the expected asymptotic behavior both for CD and 

KWW functions.  The finding of ε” values larger than predicted by the spectral function of the 

main relaxation are known as the excess wing (EW). Although there is no unique 

interpretation of the EW, it is known that this phenomenon is a property of many glass-

forming systems [195,201-203]. Note that deviations from a power law slope for ε” were also 

observed for pure water [204-206].  These features were treated as an additional Debye type 

relaxation process without any relation to glass-forming properties. However, with given 

glass forming properties of water, they can be discussed as the EW feature as well. There is 

some discussion [201] that the EW is most probably a Johari-Goldstein (JG) [207] mode. 

However, there are still open questions because analysis of pressure and temperature effects 

leads to the conclusion that EW and JG modes “cannot be treated on the same footing” [202].  

The non-Arrhenius temperature dependence of the EW found recently [203] is in 

contradiction to the original idea of Johari and Goldstein who argued, “the Arrhenius plots in 

the secondary relaxation region are linear” [207].  Thus the relaxation mechanism of the EW 

is still unclear, and it would be helpful to study how the water concentration in glycerol 
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influences the relaxation dynamics of the mixture, since the EW could be related to the feature 

of H-bond networks of glycerol that are being affected by the presence of water. 

The typical results of recent BDS studies of glycerol-water mixtures of 75 mol% of 

glycerol at different temperatures are presented in Figure 25 [208].  Figure 26 shows that the 

temperature dependencies of the main relaxation process in the terms of ( )maxmax 2/1 fπτ =  for 

concentrations from 100 to 40 mol% of glycerol were well described by the VFT law.   

 
 

Figure 25. The imaginary parts of the 
dielectric spectra for a glycerol–water 
mixture (75 mol%) at various temperatures 
from 197 to 290 K with an interval of 3 K. 
(Reproduced with permission from Ref. 
208. Copyright 2005, American Chemical 
Society.) 
 

 

Figure 26. Temperature dependence of 
( )maxmax 2/1 fπτ =  for a glycerol sample and its 

mixtures with water. The solid curves show the 
description by the VFT model, where values of 
the Vogel–Fulcher temperature (Tv) are shown 
with the legend. The preexponential factor (τv) 
is almost independent with concentration: 
ln (τv) = –35.9 for 100 mol% of glycerol, –36.1 
for 95 to 65%, –36.2 for 60%, –36.3 for 60 to 
45% and –36.4 for 40 mol% of glycerol–water 
mixtures. D = 22.7 for all concentrations 
presented here. (Reproduced with permission 
from Ref. 208. Copyright 2005, American 
Chemical Society.) 

  

 

It is worth noting that value of D was the same for all concentrations presented in Figure 26 

and values of τv were also almost the same in this concentration range. 

Let us start the examination of the dynamics of glycerol-water mixtures with an 

inspection of the main dielectric loss peak ε”max = ε”(fmax) with fmax as the characteristic 

frequency that was observed in the considered experimental ranges for glycerol and its 

mixtures with water.  Figure 27 presents a so-called “master plot” that presents the normalized 

plots of ε”(f) / ε”max versus the dimensionless variable f / fmax.  Namely, each data point in the 

dielectric spectrum was normalized by only one point such as the loss peak.  It is remarkable 
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that for all temperatures, the dielectric spectra of glycerol traced the same single curve (Figure 

27a). This indicates that both the EW and low frequency contribution of dc-conductivity 

follow the same VFT temperature dependence of the main relaxation process (Figure 25).  In 

the case of glycerol-water mixtures for concentrations from 60 up to 95 mol% of glycerol 

(e.g., Figure 27b), the master plots are similar to those presented in Figure 27a for glycerol.  

These results demonstrate that the EW and the main dielectric relaxation process have the 

same dependency on the composition of the glycerol-water mixture over the comparatively 

wide range of concentrations: from 60 to 100 mol%. This observation indicates that the EW, 

the main relaxation process and dc-conductivity in these mixtures most probably have the 

same origin. 

Further decrease of glycerol content caused the universality in the master plot to 

disappear.  At 55 mol% or lower concentrations of glycerol, a different behavior of the main 

   

 
Figure 27. Master plots of the imaginary parts of the dielectric spectra for 100 mol% (a), 75 
mol% (b), and 35 mol% (c) of glycerol measured in the temperature intervals 202–292 K, 
197–290 K, and 176–221 K, respectively. The dashed line represents CD law with βCD = 
0.58. (Reproduced with permission from Ref. 208. Copyright 2005, American Chemical 
Society.) 

 

 

dielectric relaxation and the EW was observed (e.g., Figure 27c).  This region with small 

glycerol molar content has been investigated in detail by Sudo et al. [190] who ascribed the 

main and secondary relaxation processes to the relaxation dynamics of the so-called 

cooperative domains of glycerol and water, respectively. The consideration of the mesoscopic 

dynamics and glycerol and water glycerol-water mixtures results will be discussed in detail in 

later sections. 
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5 Cooperative dynamic and scaling phenomena in 

disordered systems 
 Following the general plan of our tutorial, we will discuss here a universal view of 

scaling which is widely employed in modern dielectric spectroscopy. We will show how this 

concept can be applied to the description of disordered materials and how these ideas can be 

useful in the determination of the topological parameters of these systems. 

 

 

5.1 Static percolation in porous materials, Fractal concept and 

porosity determination  
 In this section, we will consider in more detail the non-Debye dielectric response 

associated with percolation in porous disordered materials: silica glasses and porous silicon 

where the pores form topologically connected pore channels. The movement of charge 

carriers along the inner pore surface results in a transfer of the electric excitation within the 

channels along random paths [154]. Note that in the general case such transfers through the 

porous medium can occur even in the case of closed pores, which are topologically not 

connected one to another. However, the distance between the neighboring pores filled with 

the dielectric or conductive material should be small enough in order to provide “physical” 

pore coupling via the electric interaction.  

 It was shown that disordered porous media can been adequately described by the 

fractal concept, where the self–similar fractal geometry of the porous matrix and the 

corresponding paths of electric excitation govern the scaling properties of the DCF Ψ(t) (See 

Relationship (2.22)) [154,209]. In this regard we will use the theory of electronic energy 

transfer dynamics developed by Klafter, Blumen and Shlesinger [210,211], where a transfer 

of the excitation of a donor molecule to an acceptor molecule in various condensed media 

through many parallel channels was considered.  

 A detailed description of the relaxation mechanism associated with an excitation 

transfer based on a recursive (regular) fractal model was introduced earlier [47], where it was 

applied for the cooperative relaxation of ionic microemulsions at percolation. 

 According to this model, an elementary act of the excitation transfer along the length 

Lj is described by the microscopic relaxation function g(z/zj), where Lj is the "effective" 

length of a channel of the relaxation in the j-th stage of self-similarity. In this function, zj is a 

dimensional variable characterizing the j-th stage of the self-similarity of the fractal system 
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considered, z is the dimensionless time, z = t/τ, where the parameter τ is the minimal 

relaxation time needed for an excitation to hop from one excitation  center to its nearest 

neighbor. 

 The following assumption is invoked: zj = aLj, where a is a coefficient of 

proportionality. For each stage of the self-similarity j, the time of relaxation τj = τ zj is 

proportional to the length Lj. From fractal geometry [212,213] Lj can be expressed as 

  
j

j lkL = ,      (5.1) 

 

where l is the minimal  scale and k is a scaling factor (k > 1). We assume that the total number 

of activation centers located along the segment Lj also obeys the scaling law 

  
j

0j p n  n = ,      (5.2) 

 

where p is the scaling factor (p > 1), and n0 is the number of the nearest neighbors near the 

selected center (i.e., j = 0).  

 The macroscopic correlation function can be expressed as a product of the relaxation 

functions g(z/zj) for all stages of self-similarity of the fractal system considered [47,154] 

 

( ) ( )[ ] ( )[ ]Ψ z g z z g Zj
j

N n
j

j

N n pj
j

= =
= =

∏ ∏/
0 0

0

ξ
,    

(5.3) 

 

where Z = t/alτ; ξ = 1/k and N
k

L lN=
1

ln
ln( / ) . Here LN is the finite geometrical size of the 

fractal cluster and N refers to the last stage of self-similarity. 

 The estimations of the product (5.3) for various values of ξ < 1 and p > 1 are given in 

Ref.47. The results of the calculations may be written in the form of a modified Kohlrausch-

Williams-Wats (KWW) stretched-exponential relaxation law:  

 

( ) ( ) [ ]ZBZZ )()(exp0/ νν ν +Γ−=ΨΨ  ,    (5.4) 

 

where the parameters Γ(ν) and B(ν) are given by 
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Here 

( )ξν /1ln/ln p=      (5.7) 
 

with 0 < ν < 1, and for ε = ξN << 1. We note that the parameter Γ  depends on the relaxation 

function g and affects the macroscopic relaxation time τM  = τ alΓ -1/ν, and the term  B(ν)Z  in 

the exponent   corrects the KWW function at large times.  

The temporal boundaries of the applicability of (5.4) are determined by the expression:  

 

A n
g ln

t
al

ln
n a a

1 0

0 2 1
2 2

1 2
1
2 1 1

2 1 2
2

(
1

( / )( )
( / )( )

( )

/

−
+

<< <<
−

−








−ξ ν τ

ξ ν
ε ν    

 . 
(5.8) 

  

The parameters g , A1, a1, and a2 in (5.4)-(5.8) are related to the asymptotic properties of the 

elementary relaxation function g(y): 

 

g y a y a y( ) ...= − + +1 1 2
2 ,    for      y<<1 ,  (5.9) 

g y g A y A y( ) / / ...= + + +1 2
2 , for      y >> 1 .  (5.10) 

  

The relationship between the exponentν, ( ) 
 

 ν =
ln p
ln k

, and the fractal dimension Dp of the 

paths of excitation transfer may be derived from the proportionality and scaling relations by 

using an assumption that the fractal is isotropic and has spherical symmetry. The number of 

pores that are located along a segment of length Lj on the j-th step of the self-similarity 

is nj ~ pj. The total number of pores in the cluster is S ~ njd  ~ (pj)d, where d is the Euclidean 

dimension, (d = 3). The similarity index, η, which determines by how much the linear size of 

the fractal is enlarged at step j, is η ~ Lj ~ k j.  In this case, we obtain the simple relationship 

between ν and the fractal dimension Dp as 
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νη 3ln/ln3ln/ln === kjpjSDp .   (5.11) 

 

 Further we will focus our attention only on the time dependant behavior of the dipole 

correlation function Ψ(t) defined by (5.4), that is given by 
  

Ψ ( ) ( ) exp[ ( / ) ]t C t t≈ − τ ν
,    (5.12) 

 

where C(t) is the slow growing function of time. By taking into account (5.11) and ignoring 

the slow variation with time of C(t), we obtain the asymptotic stretched-exponential term  
 

Ψ ( ) ~ exp[ ( / ) ]/t t Dp− τ 3
          (5.13) 

 

that can be further fitted to the experimental correlation functions in order to determine the 

value of the fractal dimension of the paths of excitation transfer within the porous medium. If 

the fractal dimension of these paths coincides with the fractal dimension of the pore space, 

then it can be used in the asymptotic equations derived below for the porosity determination.  

 

 

5.1.1 Porous glasses 

The dielectric relaxation at percolation was analyzed in time domain since the theoretical 

relaxation model described above is formulated for the dipole correlation function Ψ(t). For 

this purpose the complex dielectric permittivity data were expressed in terms of the DCF 

using (2.14) and (2.25). Figure 28 shows typical examples of the DCF, obtained from the 

frequency dependence of the complex permittivity at the percolation temperature, 

corresponding to several porous glasses studied recently [153-156]. 

As mentioned earlier the typical three-dimensional plots of ε′ and ε″ versus frequency and 

temperature (see Figure 14) indicates the superposition of two processes (percolation and 

saddle-like) in the vicinity of the percolation. Therefore, in order to separate the long-time 

percolation process, the DCF was fitted as a sum of two functions.   

The KWW function (5.13) was used for fitting the percolation process and the product 

(2.25) of the power law and the stretched exponential function (as a more common 

representation of relaxation in time domain) was applied for the fitting of the additional short-

time process. 
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Figure 28. Semilog plot of the dipole correlation ψ (t) of all the samples studied at the 
temperature corresponding to percolation (□ sample A; ○ sample B; ∆ sample C; ∇ sample 
D; ◊ sample E; ×  sample F; ∗  sample G). The solid lines are the fitting curves of the sum of 
the KWW and the product of KWW and the power-law relaxation function. (Reproduced with 
permission from Ref. 2. Copyright 2002, Elsevier Science B.V.) 

 

 

The values obtained for Dp of different porous glasses are presented in the Table 1. The 

glasses studied differed in their preparation method, which affects the size of the pores, 

porosity and availability of second silica and ultra-porosity [153-156]. 

One can see that the fractal dimension of the excitation paths in sample A is close to unity. 

Topologically, this value of Dp corresponds to the propagation of the excitation along a linear 

path that may correspond to the presence of second silica within the pores of the sample A. 

Indeed, the silica gel creates a subsidiary tiny scale matrix with an enlarged number of 

hydration centers within the pores. Since these centers are distributed in the pore volume, the 

excitation transmits through the volume and is not related to the hydration centers located on 

the pore surface of the connective pores. Due to the large number of hydration centers, and 

the short distance between the neighboring centers, the path can be approximated by a line 

with a fractal dimension close to unity (See Figure 29a). 
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Table 1. The values of KWW exponent ν, fractal dimension Dp, porosity Φm obtained from 
the relative mass decrement (A, B, C and D glasses) and BETA (E, F and G glasses) 

measurements and average porosity pΦ  estimated from dielectric spectra for porous glasses 
samples. Source: Reproduced with permission from Ref. 2. Copyright 2002, Elsevier Science 
B.V. 

Sample ν Dp Φm pΦ  

A 0.33 0.99 0.38 0.33 

B 0.63 1.89 0.48 0.47 

C 0.44 1.31 0.38 0.37 

D 0.83 2.50 0.50 0.68 

E 0.65 1.96 0.27 0.49 

F 0.80 2.40 0.43 0.63 

G 0.73 2.20 0.26 0.56 

 

 

The fractal dimensions of the excitation paths in samples B, C, and E have values between 

1 and 2. In contrast with sample A, the silica gel in these samples has been leached out, i.e. 

water molecules are adsorbed on the inner pore surface (See the details of different porous 

glass preparations in ref.156). The values of Dp observed in samples B, C, and E can be 

explained in one of two ways. On one hand, the surface can be defractalized upon deposition 

of an adsorbed film of water, which results in the “smoothing” of the surface. On the other 

hand, the transfer of the excitation in these samples occurs along the inner pore surface from 

one hydration center to another. The distance between the centers is significantly larger than 

the small-scale details of the surface texture (See Figure 29b). Therefore, the fractal 

dimension observed is that of the chords connecting the hydration centers and should be less 

than 2, which is in agreement with the data obtained from the energy-transform measurements 

[214,215]. 

The fractal dimensions of the excitation paths in samples D, F, and G are in the range 

between 2 and 3. Thus, percolation of the charge carriers (protons) is also moving through the 

SiO2 matrix because of the availability of an ultra small porous structure that occurs after 

special chemical and temperature treatment of the initial glasses [156]. Note that the fractal 

dimensions discussed here are the fractal dimensions of the excitation transfer paths 

connecting the hydration centers located on the inner surface of the pores. Due to the low 

humidity, all of the water molecules absorbed by the materials are bound to these centers.  
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(a) 

 
 

(b) 

Figure 29. The schematic presentation of the percolation pass in porous glasses; (a) The glass 
whose porous are filled with second silica; (b) The porous glasses where the silica gel is 
leached out. 

 

 

The paths of the excitation transfer span along the fractal pore surface and “depict” the 

backbone of clusters formed by the pores on a scale that is larger than the characteristic 

distance between the hydration centers on the pore surface. Thus, a fractal dimension of the 

paths Dp approximates the real surface fractal dimension in the considered scale interval. For 

random porous structures, Dp can be also associated with the fractal dimension Dr of the 

porous space: Dp ≅ Dr. Therefore, the fractal dimension Dp can be used for porosity 

calculations in the framework of the fractal models of the porosity. 

The porosity Φp of a two-phase solid-pore system can be defined as the ratio of the volume 

of the empty space, Vp, to the whole volume, V, of a sample [166]: 

V
Vp

p =Φ
.                                                            

(5.14) 

 

  Disordered porous media have been adequately described by the fractal concept 

[154,216]. It was shown that if the pore space is determined by its fractal structure, the 

regular fractal model could be applied [154]. This implies that for the volume element of 

linear size Λ, the volume of the pore space is given in units of the characteristic pore size λ by 

( ) rD
gp GV λ/Λ= , where Dr is the regular fractal dimension of the porous space, Λ coincides 

with the upper limit and λ with the lower limit of the self-similarity. The constant Gg is a 
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geometric factor. Similarly, the volume of the whole sample is scaled as V = Gg (Λ/λ)
d
, where 

d is the Euclidean dimension (d=3). Hence, the formula for the macroscopic porosity in terms 

of the regular fractal model can be derived from (5.14), and is given by: 

 

rDd

p

−








Λ
=Φ

λ  
.                                                  

(5.15)  

 

In general, in order to include more types of porous media the random fractal model can be 

considered [2,154,216]. Randomness can be introduced in the fractal model of a porous 

medium by the assumption that the ratio of the scaling parameters ξ=λ/Λ is random in the 

interval [ξ0, 1], but the fractal dimension D in this interval is a determined constant. Hence, 

after statistical averaging (5.15) reads as 
 

( ) ( ) ξξξ
ξ

dwDrpp ∫ Φ=Φ
1

0

 , ,                                         (5.16) 

 

where ξ0 is the minimal value of the scaling parameter ξ and w(ξ)dξ  measures the probability 

to find some scaling parameter in the range from ξ  to ξ+dξ. 

For a percolating medium the generalized exponential pore-size distribution function of the 

scale for porous medium can be written as 
 

)exp(~)( ww b
waw ξξξ α −  .                                       (5.17) 

 

This function accounts for the mesoscale region and comprises most of the listed distribution 

functions [154]. It includes three empirical parameters, αw, βw, and aw. After ascertaining the 

relationships between these parameters and the properties of anomalous self-diffusion, fractal 

morphology, and polydispersity of the finite pore-size, physical significance can be assigned 

to these parameters in the framework of the percolation models [152]. 

On the length scale, which is larger than the pore sizes, the morphology of the glass porous 

space can be modeled as a random-packed assembly of clusters formed by pores connected to 

each other [203,217]. In order to find the macroscopic porosity in such systems we must 

assume that the pore structure has a fractal character in a rather narrow scale range. Hence, in 

the interval [ξ0, 1] the uniform distribution function, w(ξ) = w0, can be chosen as an 

approximation of the function derived by (5.16). The value of w0 is determined from the 
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normalization condition 1)(1
0

=∫ξ ξξ dw , and reads as 
0

0 1
1
ξ−

=w . In this approximation, by 

substituting this uniform distribution function into integral (5.16) and integrating it, we obtain 

the relationship for the average porosity as  

0

1
0
1

1
1

1
ξ

ξ
−

−
⋅

−+
=Φ

−+ rDd

r
p Dd .                                  

(5.18) 

 

  Taking into account that ξ0 << 1, and 1+d-Dγ >0 (since topologically Dγ < 3, and d = 3), 

we obtain a simple approximate relationship between the average porosity of a glass and the 

fractal dimension of the pore space, which reads 
 

r
p D4

1  
−

≈Φ
 .                                                   

(5.19) 

 

Note that in our approximation, due to the randomized character of the fractal medium the 

average porosity of the disordered porous glasses determined by (5.19) depends only on the 

fractal dimension Dr and does not exhibit any scaling behavior. In general, the magnitude of 

the fractal dimension may also depend on the length scale of a measurement extending from λ 

to over Λ, where the minimal scale λ and the maximal scale Λ are determined by the 

measurement technique. 

The results of the porosity calculation for different porous glasses using (5.19) together 

with the fractal dimension determined from dielectric measurements are shown in the last 

column of Table 1. These values can be compared with the porosity Φm determined from the 

relative mass decrement (A, B, C and D glasses) and BETA (E, F and G glasses) 

measurements shown in the same Table 1. Note that the values obtained from dielectric 

spectroscopy coincide with the porosity data obtained from the relative mass decrement 

method only for samples A, B and C. The porosity values for the other samples obtained 

through the dielectric measurements are significantly larger. This correlates with the 

availability of ultra small porous structures with penetrability for the smallest charge carriers 

(such as protons) [156]. Thus, in the case of a net of super small open pores, the dielectric 

response is more sensitive and accurate in the determination of real porosity than any other 

conventional method. 
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5.1.2 Porous silicon 

The detailed analysis of mid-temperature relaxation processes observed in porous silicon 

was provided recently by using a superposition of two Jonscher terms of the form, 
1

2
1

1 21 )()( −− + uu iBiB ωω [160]. The results of our fitting were in good agreement with those 

of Ben-Chorin et al. [163] that were discussed in terms of the transport of charged carriers at 

the different scales. The high frequency Jonscher exponent was associated with the typical 

size of the Si nano-crystallites, while the low-frequency (LF) exponent was assigned to the 

transport of charged carriers across a disordered fractal structure of porous silicon 

[160,161,218,219]. At the same time the mid temperature process II demonstrates several 

specific features that are similar to those observed in other porous systems discussed in the 

previous section [153-156]. The amplitude of this process essentially decreases when the 

frequency increases (Figure 17a). Furthermore, the maximum of the dielectric permittivity 

versus temperature has almost no temperature dependence. Finally, the low-frequency ac-

conductivity increases with the increase in temperature and has an S-shaped dependency 

(Figure 30), which is typical for percolation processes [143,154,161]. Thus, we will analyze  
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Figure 30. Temperature dependence of the 
low-frequency conductivity of the 20-µm 
sample (●), and the 30-µm sample (▲). 
(Reproduced with permission from Ref. 2. 
Copyright 2002, Elsevier Science B.V.) 

Figure 31. Semilog plot of the macroscopic 
correlation function of the 20-µm sample (●) 
and the 30-µm sample (▲) at the temperature 
corresponding to percolation. The solid lines 
correspond to the fitting of the experimental 
data by the KWW relaxation function. 
(Reproduced with permission from Ref. 2. 
Copyright 2002, Elsevier Science B.V.) 
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this process the same way we did for percolation in porous glasses (see section 5.1.1) [2,153-

159]. 

The experimental macroscopic DCF for PS samples with porous layers of 20 and 

30 µm, obtained by inverse Fourier transforms, are shown in Figure 31. The correlation 

functions then were fitted by KWW expression (2.24) with determination of the fractal 

dimension Dp of the percolation path. Applying the same routine to determine the porosity in 

other porous systems [154,156-161], the average porosity of the porous silicon was evaluated 

with the help of relationship (5.19). The results are presented in Table 2. The values of 

porosity determined from the dipole correlation function analysis are in good agreement with 

porosity values determined by weight loss measurements during PS preparation (before and 

after the anodization process). 

Thus, the non-Debye dielectric behavior in silica glasses and PS are similar. These systems 

exhibit an intermediate temperature percolation process that is associated with the transfer of 

the electric excitations through the random structures of fractal paths. It was shown that at the 

mesoscale range the fractal dimension of the complex material morphology (Dr for porous 

glasses and porous silicon) coincides with the fractal dimension Dp of the path structure. This 

value can be evaluated by the fitting of the experimental DCF to the stretched-exponential 

relaxation law (5.13). 

 
 
Table 2. The values of KWW exponent ν, fractal dimension Dp, porosity Φm obtained from 
relative mass decrement measurements and average porosity 

pΦ  estimated from dielectric 

spectra for porous silicon samples of 20 and 30 µm thickness [161]. Source: Reproduced with 
permission from Ref. 2. Copyright 2002, Elsevier Science B.V. 
 

Sample 
thickness 

ν Dp Φm pΦ  

20 µm 0.88 2.64 0.78 0.74 

30 µm 0.87 2.61 0.75 0.72 
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5.2 Dynamic percolation in ionic microemulsions  

5.2.1 Dipole correlation function for the percolation process 

A description of the percolation phenomenon in ionic microemulsions in terms of the 

macroscopic DCF will be carried out based on the static lattice site percolation (SLSP) model 

[152]. In this model the statistical ensemble of various size clusters is described by the 

distribution function  

( ) 







−⋅= Ω−

m
wm s

ssCssw exp,
.    

(5.20) 

Here Cw is the normalization constant, Ω is a scaling exponent of the probability density "per 

lattice site" that the site, chosen randomly, belongs to the s-cluster (a cluster that consist of s 

lattice sites). The value of sm is the cut-off cluster size that corresponds to the maximal cluster 

size. We note that the exponent Ω is related to the exponent τ of the commonly used cluster 

size distribution by the relationship Ω τ−= 1  [152,213,220]. Note that clusters having sizes 

in the interval of 1< s < sm are referred to as mesoscopic clusters. The scaling properties of the 

mesoscopic dipole correlation functions related to the s-cluster of the geometrical substrate 

can be utilized for establishing a link between the static lattice geometrical percolation model 

and the relaxation functions.  

We assumed that the mesoscopic relaxation function has a simple exponential form: 
 

[ ] [ ])(exp)(, szzszzg ss −=  .    (5.21) 

 

Here the dimensionless time 1ttz = is normalized by the characteristic relaxation time t1, the 

time required for a charge carrier to move the distance equal to the size of one droplet, which 

is associated with the size of the one cell in the lattice of the static site–percolation model. 

Similarly, we introduce the dimensionless time 1ttz ss =  where ts is the effective correlation 

time of the s-cluster, and the dimensionless time 1ttz mm = . The maximal correlation time tm 

is the effective correlation time corresponding to the maximal cluster sm. In terms of the 

random walker problem, it is the time required for a charge carrier to visit all the droplets of a 

maximal cluster sm. Thus, the macroscopic DCF may be obtained by the averaging procedure 
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( )[ ] ( )[ ] ( )dssswszzgszz msmm ,  ,,
1
∫
∞

=Ψ
.                                 

(5.22) 

In the framework of the SLSP model the relationship between the fractal dimension Ds of the 

maximal percolating cluster, the value of its size sm and the linear lattice size L is determined 

by the asymptotic scaling law [152,213,220]. 
 

D
msc

l
L 1

1= ,    (sm →∞  , D>0),   (5.23) 

 

where l is the linear size of the lattice cell and c1 is a coefficient of  proportionality.  

Let us assume that on the temporal scale at percolation there is a scaling relationship 

between the characteristic relaxation time 1/ ttz mm =  and the value of its size sm (similar to 

space scaling relationship (5.23), i.e. 
 

( )0  ,     ,2 >α∞→= α
mmm sscz  ,                     (5.24) 

 

where c2 is a constant. Additionally, we assume that the self-similarity on the temporal scales 

is maintained also for clusters of size s<sm , i.e. 
 

( ) αscszs 2=   ,         (s<sm)                                           (5.25) 

Taking into account relationships (5.24) and (5.25), over the long time interval 1>>z  the 

integration of (5.22) may be performed asymptotically by the saddle-point method [135]. The 

main term of the asymptotic expansion can be obtained as the product of the power and 

stretched exponential universal relaxation laws [38]:  
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 , (5.26)  

where           KCC w= ,   ( ) )1(2
)1(2

)1(
2

α+
Ω−+α

α
α+α

π
= msK  ,  and   

( ) ( )α+−Ω=µ 1212  ,   ( )α+=ν 11 ,   ( ) ( )αα α
α

+⋅= +
− 11msQ . (5.27) 
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Thus, theoretically obtained asymptotic behavior (5.26) concurs with the 

phenomenological power-stretched exponential law (5.25). Using (5.27), it is possible to 

ascertain the relationship between the structural parameters α, Ω, sm and the set of fitting 

phenomenological parameters ν, µ, mz as follows: 

( ) α
αα

α
αν

µ
ν

α
+

+⋅







=+=Ω−=

1
1

2

11,
2
1,11

c
zs m

m

. 
 (5.28) 

The set of structural parameters obtained by fitting and by using relationship (5.28) 

allows us to reconstruct the cluster size distribution function w(s,sm) and to treat the dynamic 

percolation in ionic microemulsions in terms of the classical  static percolation model. 

 

 

5.2.2 Dynamic hyperscaling relationship 

The values of the exponents D,Ω  and α in the distribution function (5.20) and scaling 

laws (5.23)-(5.25) depend on the Euclidean dimension d of the system and satisfy 

hyperscaling relationships (HSR). The HSRs may be different in the different models 

describing the various systems [221-225]. 

For instance, in the case of the SLSP model, a HSR may be obtained by taking into 

account both the self-similarity of the percolating cluster and the scale invariance of the 

cluster size distribution function (5.20).  By utilizing the renormalization procedure [213], in 

which the size L of the lattice changes to a new size Lc with a scaling coefficient b= Lc /L, the 

relationship between the distribution function of the original lattice and the lattice with the 

adjusted size can be presented as   ( ) ( )m
Dd

m sswbssw ~,~, Ω−= , where Dss −= ~ and D
mm ss −= ~ . 

The scale invariance condition 1=Ω− Ddb , leads to the following static HSR 
  

D
d

=Ω
     

(5.29) 

 

which is also valid for a hyperlattice with d>3. 

For the dynamic case, the percolation problem can be considered in hyperspace, where 

a temporal coordinate is introduced complementary to the Euclidean spatial coordinates. 

Using this approach we shall obtain the scaling relationships in the case of dynamic 

percolation and derive the dynamic HSR.  
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Let us consider a 2D square lattice OABC (see Figure 32), where in microemulsion 

droplets occupy a number of sites. A selected separate charge carrier hosted by the droplet 

starts its motion from a position on the side OA at t=0, and under the combined diffusion-

hopping transport mechanism moves within the lattice OABC. It is understood that owing to 

this transport mechanism the trajectory of the individual carrier on the lattice OABC may be 

very intricate, and can even include loops. An example of such trajectories on the lattice 

OABC is shown in Figure 33.  

One way to determine the characteristics of these trajectories is by solving a transport 

equation with different probabilities of hopping of the charge carrier and the corresponding 

parameters of the diffusion of the host droplet. Another way, which we shall use here, is based 

on a visualization of the equivalent static cluster structure. This approach allows us to 

interpret the dynamic percolation process in terms of the static percolation.  

 

 
Figure 32. The visualization of dynamic percolation. A set of the realization of the occupied 
sites in the two-dimensional lattice over time with fixed time increments. 
 

 

 In the static percolation model the trajectory of the charge carrier is passes through a 

real and visual percolation cluster. While the real cluster in the dynamic percolation is 

invisible, the charge carrier trajectory can be drawn. In order to visualize the real cluster in the 

case of dynamic percolation let us assume that the site of trajectory intersections belongs to 

the equivalent static percolation cluster (ESPC). One must bear in mind that each site in the 

ESPC may be occupied several times. However, in the static percolation model each site may 

be occupied only once. In order to exclude the multi-occupation effect we must increase the 

dimension of the lattice. 
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Figure 33. The charge carrier trajectories in the hyperlattice and the new scale LH/l of the 
equivalent lattice formation. 
  

 

A three-dimensional hyperlattice in the hyperspace formed by the spatial and temporal 

coordinates corresponds to the two-dimensional square lattice of size L, complemented by the 

time axis (see Figure 33). We use non-dimensional spatial coordinates ( lxx =
_

 and lyy /
_

= ), 

which are normalized by the droplet size l. In turn, the non-dimensional temporal coordinate 

( 1/ ttz = ) is normalized by the characteristic time t1, which is the time needed for a charge 

carrier to move the distance equal to the size of one droplet. Thus the linear non-dimensional 

size of the hyperlattice along the two spatial axes is L/l, and the non-dimensional size of the 

hyperlattice along the temporal axis is 1ttz mm = . The characteristic time tm corresponds to 

the time needed for a charge carrier to visit all the droplets in the maximal cluster sm [150].  

Note that the classic SLSP model for a square lattice ABCO would provide a 

percolation trajectory connecting opposite sites OA and CB (see Figure 32). On the other 

hand, for visualization of dynamic percolation we shall consider an effective three-

dimensional static representation of a percolation trajectory connecting ribs OA and ED 

spaced distance LH (see Figure 33). Such a consideration allows us to return to the lattice 

OEDA, with the initial dimension d=2, which is non-square and characterized by the two 

dimensionless sizes LH/l and L/l. The new lattice size of the system can be determined from 

the rectangular triangle OEQ by 
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( ) ( )2
1

2 ttlLlL mH += ,    (5.30) 

 

where LH >L. A projection of the three dimensional trajectory on the non-square plane lattice 

OADE is shown in Figure 33 by the dotted line. According to the conventional static site 

percolation model which always deals with square, cubic, and multidimensional one-scale 

lattices, the maximal scale LH/l needs to be chosen in our case as the new scale of a square 

lattice (see Figure 33). A transformation from the initial lattice with scale size L/l to the lattice 

with the new scale size LH/l may be performed by a renormalization procedure. By the 

substitution of scaling relationships (5.23) and (5.24) into (5.30) the expansion coefficient bH  

for dynamic percolation can be presented as 
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In the case of dynamic percolation the renormalization condition 1=Ω− Dd
Hb  may be fulfilled 

under the conventional condition 0=Ω− Dd  and under an additional requirement bH=const, 

because sm→∞. This is equivalent to the condition consts D
m =









α
−α

112
 and leads to the 

relationship 01 =α− D . 

 Thus, the dynamic HSR is expressed in the form of a system of two equations: 
 

0=⋅Ω− Dd  ,     (5.32) 

01 =⋅− Dα  .     (5.33) 

 

A peculiarity of the dynamic case is the additional equation (5.33) which must be combined 

with the static HSR (5.32). After simple transformation, the solution of the system can be 

presented in the following way: 
 

α⋅=Ω d  .      (5.34) 

 

One must bear in mind that the parameter α describes the scaling law (5.24) for the temporal 

variable and is equal to the inverse dynamic fractal dimension dD/1=α . Thus, the dynamic 

HSR (5.34) can be rewritten as  
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dD
d

=Ω
                          

(5.35) 

 

and formally coincides with the HSR (5.29) for the static site percolation model.  

Note that the dynamic fractal dimension obtained on the basis of the temporal scaling 

law should not necessarily have a value equal to that of the static percolation. We shall show 

here that in order to establish a relationship between the static and dynamic fractal dimensions 

we must go beyond relationships (5.32) and (5.33) for the scaling exponents.  

 

  

5.2.3 Relationship between the static and dynamic fractal dimensions 

Let us consider the hyperlattice anisotropy coefficient ΘH as the ratio of the 

hyperlattice temporal to the spatial scale 
  

( )
( )lL

ttm
H /

/ 1=Θ
.                                                       

(5.36) 

 

Taking into account (5.30) and the scaling laws (5.23), (5.24), it is easy to show that when 

sm→∞ the validity of the renormalization procedure is similar to the condition that the 

extension coefficient bH must be a constant,  
   

consts D
mH =⋅Θ=Θ









⋅
−

α
α 11

 ,              (5.37) 
 

where 12 cc=Θ . In the case of dynamic percolation an additional equation (5.33) leads to the 

relationship constH =Θ=Θ . In general, Θ≠1 and the hyperlattice is non-cubic as far as the 

value of the coefficient Θ depends on the type of dynamics in the complex system. 

The validity of (5.37) can be easily proven by an assumption of the existence of the 

parameter Θ dependency on the fractal dimension D. The derivation of both parts of (5.37) 

with respect to a variable D leads to the differential equation 
 

2m D
dDsd ln−=

Θ
Θ

 .      
(5.38) 

 

In order to establish the relationship between the static and dynamic fractal dimensions, the 

initial conditions of the classical static percolation model must be considered for the solution 
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of differential equation (5.38) which can be written as Θ=Θs=1 for D=Ds. Here the notation 

“s” corresponds to the static percolation model and the condition Θs=1 is fulfilled for an 

isotropic cubic "hyperlattice". The solution of (5.38) with the above-mentioned initial 

conditions may be written as 
  

( )sm 1/D1/Ds −=Θ lnln   .                                              (5.39) 

 

Taking into account that for dynamic percolation D=1/α=Dd we can easily obtain the 

relationship between the dynamic and static fractal dimensions, to wit,  

 

m
d

d
s

s
D

DD

log
log1 Θ

−
=

  .     

(5.40) 

 

Note that as is usual for scaling laws, the fractal dimensions Dd=1/α and Ds do not 

depend individually on the coefficients c1 and c2 entered in the scaling relationships (5.23), 

(5.24), respectively. However, as follows from (5.40) the relation between Dd and Ds depend 

on the ratio Θ=c2/c1. 

In the case of the real experimental set-up, L=2·103 [86], and l=5·10-9 [143], the non-

dimensional lattice size is equal to L/l=4·105.  

 

 
Figure 34. The temperature dependence of the static Ds (∆) fractal dimensions and the 
product 3ν  (●). At the percolation threshold temperature (Tp=26.5°C) Ds= 3ν. (Reproduced 
with permission from Ref. 2. Copyright 2002, Elsevier Science B.V.) 
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Figure 34 shows the temperature dependencies of the static fractal dimensions of the 

maximal cluster. Note that at percolation temperature the value of the static fractal dimension 

Ds is extremely close to the classical value 2.53 for a three-dimensional lattice in the static 

site percolation model [152]. Moreover, the temperature dependence of the stretch parameter 

ν (see Figure 34) confirms the validity of our previous result (See (5.11)) ν 3=sD  obtained 

for the regular fractal model of the percolation cluster [47]. 

Thus, the non-Debye dielectric behavior in silica glasses, PS and AOT microemulsions, has 

similar properties. These systems exhibit an intermediate temperature percolation process that 

is associated with the transfer of the electric excitations through the random structures of 

fractal paths. It was shown that at the mesoscale range the fractal dimension of the complex 

material morphology (Dr for porous glasses and Ds for microemulsions) coincides with the 

fractal dimension Dp of the path structure. This value can be evaluated by the fitting of the 

experimental DCF to the stretched-exponential relaxation law (2.23). 

 

 

5.3 Percolation as part of "Strange Kinetic" Phenomena 

As shown above, the dielectric percolation phenomena in different systems such as ionic 

microemulsions, porous silicon, and porous glasses can actually be analyzed in the framework 

of one universal approach based on the idea of electric excitation transport through the fractal 

network clusters due to charge carriers’ motion. This model describes the growth of the fractal 

pre-percolation clusters. Nevertheless, the model is applicable only to one particular 

phenomenon and does not address any basic theories of "strange kinetic" behavior [2]. 

Obviously, "strange kinetics" is a very wide class of phenomena, which cannot be covered by 

the limited number of existing models, and has several distinctive features. Most famous 

among these characteristics is the power-law (or stretched exponent) asymptotic with a 

fractional exponent for the dipole correlation function in time domain (see (2.23)-(2.25)). 

Another property of the percolation as part of a "strange kinetic" is that this class of 

phenomena is inherent to many-particle cooperative systems. Such complex matter cannot be 

considered as a simple sum of elementary units but rather should be regarded as a whole 

system due to the interactions between the elementary components. In a wide sense the word 

"interaction" represents not only the interaction with some kind of physical far-ranging field 

(say an electromagnetic field) but can also mean a geometrical (or even a quantum) constraint, 

or other type of coupling.  
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Since percolation is a property of macroscopic many-particle systems it can be analyzed in 

terms of statistical mechanics. The basic idea of statistical mechanics is the relaxation of the 

perturbed system to the equilibrium state. In general the distribution function ρ(p,q; t) of a 

statistical ensemble depends on the generalized coordinates q, momentum p and time t. 

However, in the equilibrium state it does not depend explicitly on time [226-230] and obeys 

the equation 

0) ;,(
 

=
∂
∂ t
t

qpρ  .     (5.41) 

 

The evolution of the distribution function to the equilibrium state is governed by the so-called 

Liouville equation (evolution equation) 
 

( ) ( )ti ,,qpρ −=
∂

∂ L
t

tq,p,ρ
,                                       

(5.42) 

 

where L is the Liouville operator. Thus, by virtue of (5.42) the evolution operator L 

determines the dynamical properties of the statistical system. The specific form of this 

operator is dependent on the Hamiltonian function H [226-230] as 
 

{ }gHig ,−=L ,                                                    (5.43) 

 

where {H, g} are  the Poisson brackets. In the classical statistical mechanics 
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(5.44) 

 

In quantum mechanics the functions H, g become operators Ĥ and ĝ , and }ˆ,ˆ{ gH  obtains the 

commutator form ( )HggH
ih

gH ˆ ˆˆ ˆ2}ˆ,ˆ{ −=
π , where h is the Plank constant. 

Therefore, the consistent study of many-particle system dynamics should start by 

establishing the H and then solving the evolution equation (5.42). Unfortunately, examples of 

such calculations are very rare and are only valid for limited classes of model systems (such 

as the Ising model) since these are quite extended calculations. In particular, to the best of our 

knowledge, the relaxation patterns (2.23)-(2.25) are as yet not being derived this way. In this 

section, we consider the problem from a different side. We will assume that (2.23)-(2.25) are 
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given and try to guess what statistical properties leads to the "strange kinetic" behavior. Let us 

first examine the equilibrium state (5.41), whose formal solution gives 
 

    constt =) ;,( qpρ .                                                  (5.45) 
 

Recently the new concept of fractional time evolution was introduced [45]. In addition to 

the usual equilibrium state (5.45), this concept leads to the possibility of the existence of an 

equilibrium state with power-law long time behavior. In this case the infinitesimal generator 

of time evolution is proportional to the Riemann-Liouville fractional differential 

operator ν
tD0 . By definition of the Riemann-Liouville fractional differentiation operator 

[231,232] 

 

( )[ ] ( )[ ] 10,1
00 ≤<= − ννν thD

dt
dthD tt

,                                 

(5.46) 

where 

( )[ ] ( ) ( ) ( )∫ ≤<′′′−= −−
t

t tdtgtttgD
0

1
0 10,1 ν

ν
νν

Γ
   (5.47) 

is the Riemann-Liouville fractional integration operator and dyyy∫
∞

− −=Γ
0

1 )exp()( νν  is the 

Gamma-function. Obviously, the derivation of order υ should be dependent on the properties 

of the cooperative system; although there is no clear understanding for the time being how υ 

depends on these properties. 

Nevertheless, let us call the "fractional equilibrium state" the state of the statistical system 

that under the condition of time independence obeys the following: 
 

0) ;,(0 =tDt qpρυ
 .                                                        (5.48) 

 

We will discuss this state in relation to the recent approaches of the anomalous diffusion 

theory [31]. It is well known [226-230] that by virtue of the divergent form of Poisson 

brackets (5.44) the evolution of the distribution function ρ(p,q;t) can be regarded as the flow 

of a fluid in the phase space. In this interpretation the Liouville equation (5.42) becomes 

analogous to the continuity equation for a fluid 
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=+

∂
∂ vρρ

t ,                                                     
(5.49) 

 

where distribution function ρ is interpreted as the density of a fluid and v is its local velocity. 

Let us extend this analogy. The continuity equation accompanied by the relationship between 

the gradient of the fluid density and its flux (Darcy's law for the liquid flow or Fourier's law 

for heat flow for instance) [233,234] 
 

v )(grad ϑρρ −=                                                       (5.50) 
 

gives 

ρϑρ
∆=

∂
∂  

 
 
t ,                                                     

(5.51) 

 

where ϑ is the appropriate constant that characterizes permeability of the space and ∆ is the 

Laplace differential operator. From a mathematical point of view (5.51) is analogous to the 

diffusion equation where ρ is regarded as the density of diffusing particles and ϑ is 

proportional to the appropriate diffusion coefficient. 

It is well known that the diffusion equation can be obtained in two ways. The first is based 

on the equation of continuity and the relationship between the fluid density gradient of its flux 

(5.49-5.51). The second way is the probabilistic approach developed from the theory of 

Brownian motion [31,226,227,235]. This approach does not appeal to the local differential 

equations like (5.49) and (5.50), but considers the probability of jumps between the sites of 

some lattice. There is an extension of this approach for the case when the lengths of the jumps 

as well as the waiting times between jumps are random. This is the so-called continuous time 

random walk (CTRW) scheme [31,236-238]. By applying different probability distribution 

functions for waiting time and jump length one can obtain different types of diffusion patterns 

[31]. In particular, if the characteristic waiting time diverges because of a long-tailed waiting 

time probability distribution function (proportional to t -(1+υ)), but the jump length variance is 

still kept finite, then diffusion (5.51) obtains a fractional derivation [31] instead of the first 

derivation in time on its left hand side. 
 

ρϑρ υ
υ ∆=  0 tD .                                                    (5.52) 

 

Here the parameter ϑυ has a physical meaning similar to ϑ in (5.51), but with different a 

physical dimension. In the general case a term proportional to ρ(t=0) should be added to the 
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right hand side of (5.52) but by choosing the appropriate initial conditions it can be 

subtracted. Thus, we will not discuss this term. 

Let us reiterate that diffusion defined by (5.51) can be derived using the Brownian motion 

approach and a continuity equation. Moreover, one can imply that (5.52), a generalization of 

(5.51), can be derived not only in the framework of the CTRW scheme but also by using some 

analogy of the continuity equation as well. The difference between (5.51) and (5.52) is only in 

time derivation. Thus, the analogy of continuity (5.49) that corresponds to the anomalous 

diffusion (5.52) is 

0) (div0 =+ υ
υ ρρ vtD .                                            (5.53) 

 

Let us call it the "anomalous continuity equation". There are two main features that 

distinguish this equation from (5.49). The first is that (5.53) becomes non-local in time by 

virtue of the convolution form of the fractional derivation operator υ
tD0 . Second, in spite of 

the different physical dimension [m⋅s-υ], the quantity vυ has a physical meaning similar to the 

local velocity v. 

Let us return back to the Liouville equation that can be regarded as a continuity equation. 

There is a possibility to establish an evolution equation not only in the usual form (5.42) but 

also based on the anomalous continuity (5.53) 
  

);,() ;,(0 tρLitDt qpqp −=ρυ
.                                       (5.54) 

 

This equation implies an equilibrium state in the form (5.48).  

Thus, the fractional equilibrium state (5.48) can be considered a consequence of the 

anomalous transport of phase points in the phase space that results in the anomalous 

continuity (5.53). Note that the usual form of evolution (5.42) is a direct consequence of the 

canonical Hamiltonian form of microscopic motion equations. Thus, the evolution of (5.54) 

implies that the microscopic equations of motion are not canonical. The actual form of these 

equations has not yet been investigated. However, there is great suspicion that in this case 

dissipative effects on the microscopic level become important. 

If we assume factorization of time dependency in the distribution function then the formal 

solution of (5.48) is 
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where t ≥ τf,  ρf(p,q;τf) and τf depend on the initial conditions. Obviously, the assumption 

about factorization of time dependency for the distribution function is not universal. However, 

this type of factorization is justified when the equilibrium and non-equilibrium (in the 

ordinary sense) parts of distribution function ρ(p,q;t) are orthogonal to each other in the phase 

space [230]. 

The interpretation of any distribution function as a probability density function in the phase 

space leads to the requirement 

1
!

 ),( 3 =∫∫ NhN
ddt; qpqpρ

 ,                                          
(5.56) 

 

where 3N is the number of degrees of freedom. This normalization is based on the uncertainty 

relation that establishes the minimal phase cell as dpk dqk ≥ h. Substitution of the solution 

(5.55) in (5.56) gives  
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where qpqp ddff∫∫=Ξ );,( τρ  is a constant. Thus from (5.57) one can get 
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which for υ < 1 indicates a decrease in the number of  degrees of freedom. 

From one point of view, (5.58) can be interpreted as a manifestation of the non-canonical 

nature of the microscopic motion equation and supports the idea of an impact of dissipative 

effects on the microscopic level (for time scale t < τf). From another point of view (5.58) can 

be related to the "coarse graining" of the phase volume minimal cells. The concept of 

fractional evolution is the result of consequent acting of the averaging operator [45]. Each 

application of the averaging operator is equal to the loss of information regarding the short 

time mobility and is closely associated with the renormalization approach ideas [239]. 

A simple example of this "coarse graining" is that of two masses in the viscous media 

connected by a spring. The spring here represents an interaction between the microscopic 
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particles while viscosity reflects the dissipative effects. Now let us discuss the situation when 

one mass is exposed by some mechanical perturbation with a wide spectrum (say the δ-

impulse of force). In the beginning the motions of the masses are almost independent of each 

other. The viscosity effect then leads to a decay of the high frequency modes of mobility and 

the motions of masses become more and more correlated. At the initial times, one should 

observe the motion of two centers of gravity while at the longer time interval it is enough to 

know the position of the joint center of gravity. Thus, the "coarse graining" effect leads to a 

reduction in the number of degrees of freedom [240]. 

The reduction of degrees of freedom can also be regarded as the transition from the non-

correlated state to the state with long-range space correlations, and can be accompanied by 

phase transition. This is the reason the renormalization approach was used initially to describe 

phase transition phenomena [226,228,239]. The theory of the phase transitions investigates 

the dependency of macroscopic physical quantities (like sample magnetization or polarization 

vectors) on the external parameter (like external fields or temperature) values. The changes of 

the degrees of freedom are the result of competition between external perturbations (say 

temperature) and internal interactions. 

In contrast to phase transitions in the fractional equilibrium state (5.46) the statistical 

system loses degrees of freedom during evolution in time. The degrees of freedom, 

independent at the short time limit, become dependent later due to the interactions (in the 

wide sense coupling, constraint etc.) and dissipative effects. The distribution function for the 

fractional equilibrium state (5.55) can be utilized to calculate the macroscopic dipole 

correlation function (2.22). The statistical averaging designated <....> in (2.22) is performed 

over the equilibrium ensemble (in the usual sense) with a distribution function that does not 

depend explicitly on time. If we regard the evolution of the DCF as a fractional equilibrium 

state (5.46), then by using properties of statistical averaging and the Liouville operator 

[229,230] we can transfer time dependence of the dynamic variable M(t) to time dependence 

of the distribution function ρf(p,q;t). Thus, instead of >< )()0( tMM in (2.22) we use 

f>< )0()0( MM , where subscript f means that statistical averaging was performed with 

distribution function (5.55). In this case one will get 
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(5.59) 

 

Thus, one can regard the power law dependence of relaxation function (2.24) as a result of the 

fractional equilibrium state (5.48). 

In order to understand the stretched exponential behavior of DCF (2.23) let us discuss 

Gibb's phase exponent )t;,(lnG qpρη −= . This quantity plays a special role in statistical 

mechanics and relates to the entropy of the system. If Gibb's exponent obeys fractional 

evolution equation 

00 =GtD ην
,                                                        (5.60) 

 

then the distribution function is  
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where ρη(p,q;0) and τη depend on the initial conditions. A calculation analogous to (5.59) 

shows that this distribution function leads to the KWW dependency of the DCF. Thus, in the 

framework of the fractional time evolution concept the power-law time dependence of the 

relaxation function behavior (2.24) and the stretched exponential relaxation (2.23) can be 

regarded as two different realizations: the fractal equilibrium state of the distribution function 

and the fractal evolution of Gibb's phase exponent. 

A similar ideology can also be the basis of the relaxation pattern (2.24) when these two 

different types of fractal evolution simultaneously coexist for two subspaces ( p f , q f ) and 

( p η , q η ) of the total statistical system phase space ( p, q ). In this case the total distribution 

function ρ fη (p,q;t) is the product of two statistically independent distribution functions 

ρf( p f , q f ;t) and ρη( p η , q η ;t) 
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(5.62) 

that can be related to the relaxation pattern (2.24). 
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The relaxation law (5.62) has been observed in the case of dynamic percolation in ionic 

micro-emulsions (see section 5.2). Below the percolation threshold, the relaxation process is 

provided by two types of mobility: mobility of the pre-percolation clusters and mobility of the 

charge carriers inside these clusters. The first type of mobility is governed by the power-law 

(2.23) while the second type exhibits stretched exponential behavior (2.22) [152]. Thus, there 

are two subspaces of degrees of freedom: the first is related to the mobility of pre-percolation 

clusters as a whole and the second reflects the mobility inside the clusters. Approaching the 

percolation threshold pre-percolation clusters grow and become an infinite (or very large for a 

real finite size system) percolation cluster at the threshold. At this point mobility of the cluster 

is impossible, as first subspaces of degrees of freedom disappear and the relaxation function 

obtains the stretched exponential pattern (2.22). Far from the percolation, one finds the 

opposite situation. The pre-percolation clusters are small, second subspace degrees of freedom 

are not yet developed and the relaxation function obeys the power-law (2.23). 

In this section we made an attempt to interpret our main results in static and dynamic 

percolation in terms of statistical mechanics and to find the link to several other approaches 

and models that have describe different aspects of "strange kinetic" phenomena. Obviously, 

the arguments represented in this section are not rigorous. They are hints rather than the 

proofs. Nevertheless, our attempts to find a unified ideology can result in a deeper 

understanding of the statistical background of “strange kinetics” and to draw the following 

general picture. 

 As we have discussed above, the non-canonical nature of the motion on the microscopic 

level can be considered as the initial basis of “strange kinetics“. In general, this non-canonical 

motion of one elementary microscopic unit reflects the cooperativity due to the different kinds 

of interaction in the statistical many particles ensembles. Such interactions, which are specific 

for each complex system, lead to energy dissipation and can be reduced to the integral term 

associated with the memory effect in the different kinds of evolution equations. For any 

processes, which display scaling properties (such as percolation, or phase transition), the non-

canonical motion can be described in terms of the fractional Liouville equation (5.54). 

According to the integral representation of the fractional derivation by (5.46) and (5.47) the 

scaling properties are contained in the kernel of the convolution integral. As was shown the 

fractional Liouville equation can be considered as the base equation for different approaches 

and models (percolation, anomalous diffusion, damping oscillations, renormalization 

approach, etc).  
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5.4 Universal scaling behavior in H-bonding networks 

 The properties of H-bonded liquids were already reviewed earlier in section 4.4. Here 

we would like to continue the consideration of these samples this time with regard to their 

universal scaling behavior. We have separated this discussion into two parts, which consider 

two different kinds of glycerol-water mixtures. 

5.4.1 Glycerol-rich mixtures 

The analyses of the master plots presented in Figure 27 in the glycerol rich region showed that 

the use of known phenomenological relations and their superposition for the simultaneous 

fitting of the EW, the main process and dc-conductivity provide satisfactory results only with 

a significant number of fitting parameters. Therefore, we propose a new phenomenological 

function with a lesser number of fitting parameters as follows: 
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 ,    
(5.63) 

 

where τεσ /∆= B  is the dc-conductivity, B is a constant, β is a parameter describing 

asymmetrical relaxation peak broadening (similar to βCD), and A and q are parameters to 

describe the EW, respectively [208].  For glycerol-water mixtures in the present temperature- 

and concentration-range: 

γβ +−= 1q  ,     (5.64) 

  

where γ is equal to 0.08 for the entire range of the observed concentrations.  The nature of this 

parameter is not clear yet.  Figure 35 shows a good fitting of both real and imaginary parts of 

the raw dielectric spectra using relationship (5.63).   

 Moreover this fitting shows that in the considered temperature-frequency landscape 

only the temperature dependence of ( )Tεε ∆=∆  and ( )Tττ =  are observed, while the other 

parameters B, β, A, and q are not temperature dependent. Thus, the proposed 

phenomenological model (5.63) as a modification of the CD function (2.21) with a 

conductivity term could be successfully applied for simultaneous fitting of dc-conductivity, 

the main process and the EW presented in the master plots (see Figure 27). At the same time, 

parameters β, A and q have a concentration dependence where A and β decrease with a 

decrease of glycerol content (Figure 36), while parameter q increases according to (5.64). 
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Figure 35. A typical fitting result by the 
function (114) for the dielectric spectrum 
(75 mol% at 224 K, both real and imaginary 
parts are shown) where parameters β and A 
were fixed to be the same values obtained in 
the master plot of 75 mol% of glycerol (see 
Fig. 27b) with τ = 25 μs and ∆ε = 64.1. 
(Reproduced with permission from Ref. 208. 
Copyright 2005, American Chemical 
Society.) 

Figure 36. Water concentration dependence 
of the shape parameters (β, filled box; A, 
unfilled circle) in (114) obtained by curve 
fittings of the master plots. (Reproduced with 
permission from Ref. 208. Copyright 2005, 
American Chemical Society.) 

 

 

Note, that the parameters A and q can be associated with some characteristic mesoscopic 

relaxation time τ0 as follows:  

( ) ( )qqA 0ωτωτ =   ,  qA
1

0/
−

=ττ .    (5.65) 

 

Since the parameters A and q of the master plot are not dependent on temperature, the ratio 

τ/τ0 becomes independent of temperature as well, i.e. the scale τ0 follows the same VFT law 

as the main relaxation time τ (Figure 37).   

 Temperature dependencies of τ0 that were obtained by (5.63) and (5.64) and 

representation by the VFT model (full lines) where D and Tv have the same values as those for 

τmax presented in Fig.26 as well as in the legend (100 to 60 mol%).  The pre-exponential 

factor such as ln (τv 0) is shown in the legend. 
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Figure 37. Temperature dependence of τ0 obtained by (114) and (115) and representation by 
the VFT model (full lines) where D and Tv are the same values as those for τmax  presented in 
Fig. 26 as well as in the legend (100 to 60 mol%). The preexponential factor such as ln(τv0) is 
shown with the legend.  
  

 

In this context, the value τ0 should be associated with the minimal cooperative relaxation time 

that reflects the EW dynamics and keeps the same VFT temperature law as for the main 

relaxation time τ and τmax (see Figure 26).  At the same time, the ratio τ / τ0 is strongly 

dependent on concentration (Figure 38).  The increase of the ratio τ / τ0 with the increase of 

water content indicates that the EW of glycerol is eroded by water molecules much faster than 

the main relaxation process.  In order to clarify such a mechanism, let us assume that the EW 

is the result of some fast short-range cooperative dynamics which can be associated with the 

so-called “cage level” [183]. This means that for anhydrous glycerol at the mesoscopic scale 

we are considering only the glycerol-glycerol interaction.  In the case of glycerol-water 

mixtures in the range of the master plot universality, the EW is caused mostly by two kinds of 

interactions: glycerol-glycerol and glycerol-water interactions.  It is manifested by the 

decreasing of τ0 due to fast mobility of water molecules contributing to the cooperative 

dynamics at the “cage level”.  However, the glycerol-glycerol molecular interactions remain 

the dominant relaxation mechanism at the scale of the whole H-bond network.  A simplified 

picture of interaction for the 60 mol% of glycerol in water where the master plot universality 

is still observed could be presented as follows. It is well known [241] that in the liquid phase 

three OH groups of a glycerol molecule may be involved in approximately ng ≅ 6 hydrogen 

bonds with neighboring molecules, while a water molecule may establish nw = 4 hydrogen 

bonds.  The critical mole fraction where glycerol H-bonds are balanced with water H-bonds, 

may be roughly estimated as ( ) mol% 40/%100 =+⋅= gww nnnx . However, water-water 
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interactions may still appear at higher concentrations of glycerol because of density 

fluctuations, as is suggested by the breakdown of the universality only at 55 mol%.  Most 

probably the mechanism of the observed universality is related to the H-bond dynamic 

structures of the glycerol-water mixture.  In this case the EW is a projection of a short-range 

fast dynamic of H-bond structures, the main relaxation process results from a larger scale of 

H-bond clusters and dc-conductivity relates to the transfer of charge carriers through the 

percolated H-bond network.   

 

  
Figure 38. Water concentration dependence 
of the ratio of characteristic times (τ / τ0) 
obtained by (16). (Reproduced with 
permission from Ref. 208. Copyright 2005, 
American Chemical Society.) 

Figure 39. Water content dependence of 
the normalized conductivity on the master 
plots (117), where σm ~ 1.6 × 10-16 sSm-1.  
Note that our data of densitymeasurements 
for glycerol–water mixtures at 288 K were 
used to obtain water content, Wwater, 
[gram/liter] from the mole fractions. 
(Reproduced with permission from Ref. 
208. Copyright 2005, American Chemical 
Society.) 

 

 

Figure 39 shows water content dependence of normalized conductivity on the master-

plots evaluated by  

σ
ε
πτ

σ "
max

max2
=m

 .     
(5.66) 

 

The nature of charge carriers is not clear yet and there could be two possibilities: ionic 

impurities or H-bond network defects (so-called orientation and ionic defects) similar to those 

considered in the conduction and relaxation of ice [242,243].  Conductivity behavior due to 

ionic impurities is expected to increase linearly with the impurities concentration per unit 

volume, and the impurities would be proportional to water content.  However, the normalized 

conductivity did not show such a linear behavior (Figure 39), although some tendency of 

increase with water content can be observed.  This increase of the normalized conductivity 
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does not immediately contradict the concept of defect-conductivity, because the number of 

defects can also be increased by increasing water content.  At the least, diffusion of ions 

should also be accompanied by breaking or changing of H-bond networks around the ion 

molecule.  Such rearrangements of H-bond networks around ions can affect the EW and may 

influence the main relaxation process on a cluster level.  Thus, the existence of universality is 

most likely based on the presence of an H-bond network and its defect structure.   

Moreover, the experimental data through dc-conductivity, the main process and the EW 

could be described by the new phenomenological function (5.63).  If concentration remains 

the same, only two variable parameters, ∆ε and τ, with a set of constants, can describe the 

whole temperature dependence of spectra.  The universality in the master plots of dielectric 

spectra for glycerol and glycerol-water mixtures is related to the same origin of elementary 

molecular processes that is most probably a “defect” formation and its percolation in an H-

bond network.   

 

 

5.4.2 Water-rich mixtures 

 Such universal dielectric behavior disappeared at higher water concentrations (lower 

than 60 mol% of glycerol) due to the appearance of water-water interaction coexisting with 

the glycerol-glycerol and glycerol-water interactions in the glycerol domains.  These water-

water interactions were also observed recently by Sudo et al. [190].  Therefore, we can 

assume that H-bond networks in water rich mixtures are not homogeneous on a mesoscopic 

level, although the detailed features of such heterogeneous structures are not fully known.  

With increasing of amounts of water, the water pools grow in size, which lead to their 

freezing at low temperatures.  In the case of H-bonding liquid mixtures, however, dynamical 

and structural properties in frozen states have not yet been extensively studied.  The BDS and 

differential scanning calorimetry (DSC) measurements of glycerol-water mixtures in the high 

water concentration range and temperature intervals including the water-frozen state were 

reported recently [244].  

Let us consider the dynamics of glycerol-water mixtures in terms of the characteristic 

time ( )maxmax 2/1 fπτ =  and temperature dependences of the main relaxation process. In the 

glycerol rich region (100-40 mol%), as mentioned in Section 4.4 and as shown in Figure 40, 

maxτ  is well described by the VFT law with the same value of fragility (D = 22.7) and almost 

the same values of pre-exponent factor ( vτln = –35.9 to –36.4). 
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Figure 40. (a) Temperature dependence of τmax for the main relaxation process of glycerol–
water mixtures in 100 to 25 mol%. (b) Temperature dependence of τmax for 20 mol% (filled 
box represents main relaxation process; filled diamond represents relaxation process due to 
ice; filled circle represents relaxation process due to interfacial water). The solid curves are the 
same as the curves shown in (a) for 100 and 40 mol% as well as the dashed lines for 35, 30, 
and 25 mol%. (c) Temperature dependence of τmax for water-rich mixtures. The filled and 
unfilled symbols show the main relaxation process and the relaxation process due to interfacial 
water, respectively (box, 20 mol%; circle, 15 mol% triangle, 10 mol%; diamond, 5 mol%). 
Temperature dependence of τmax for the relaxation process due to ice are also shown (plus, 20 
mol%; cross, 15 mol% asterisk, 10 mol%; vertical bar, 5 mol%), and the unfilled stars show 
the experimental results for bulk ice [244]. (Reproduced with permission from Ref. 244. 
Copyright 2005, American Chemical Society.) 

 

 

The plots in Figure 40a represent the experimental data, for glycerol-water mixtures, 

where the glycerol concentration is systematically changed with the steps of 5 mol%, and the 

solid lines show the fitting results according to the VFT law.  The results indicate that the 

relaxation mechanisms and H-bond networks for the glycerol-rich mixtures are similar to 

those of pure glycerol. Below 40 mol% of glycerol and at lower temperatures (below  
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~230 K), the temperature dependence of the maxτ  was continuously changed from VFT to 

Arrhenius shape, as shown in Figure 40a (dashed lines). Our analyses and comparison with 

the literature [190] shows that maxτ  temperature behavior in the water-rich region can depend 

on the temperature history, although no differences were found in glycerol-rich regions above 

Tg (here Tg is the glass transition temperature). These results may indicate that mesoscopic 

structures of H-bond networks in glycerol-rich regions are quite homogeneous. In contrast, in 

water-rich regions, such mixtures have a more complicated dynamic behavior. Glycerol 

molecules cannot provide all water molecules with H-bond networks, and correspondingly the 

system forms so-called glycerol and water cooperative domains, respectively. Dynamic 

structures of such domains can depend on the temperature hysteresis.  The critical molar 

fraction (xg) would then relate to the number of H-bonds of glycerol and would be 

approximately 40 mol% as it was shown above (See Section 5.4.1). 

The existence of this critical concentration of 40 mol% of glycerol is well supported 

by the results obtained from further study of the water-rich region. Figure 40b shows the 

temperature dependence of maxτ  for 20 mol% of glycerol. At lower temperatures, maxτ  

demonstrates a behavior similar to that of higher glycerol concentrations.  However, when the 

temperature was increased and approached T = 206 K, a crystallization of the extra water 

occurred and maxτ  increased up to nearly the same vales as that of 35 mol% of glycerol.  After 

the crystallization, two additional Arrhenius type relaxation processes were observed (Figure 

41 shows the typical dielectric spectra of before- and after- the crystallization).  One of these 

relaxation processes is due to the presence of ice cores, since the relaxation time and its 

activation energy (~ 77 kJ / mol) is similar to the well known values for bulk ice which were 

reported by Auty and Cole [245] (Figure 40c).  Another relaxation process may relate to the 

presence of some interfacial water between the ice core and the mesoscopic glycerol- water 

domain. The glycerol concentration of this domain was enriched up to the critical 

concentration ~40 mol% by the freezing of the extra water that was free from the glycerol H-

bond networks.   

In the cases of 15-, 10-, and 5- mol% of glycerol-water mixtures, the ice cores have 

already been formed during the quenching down to the starting temperature of the BDS 

measurements and maxτ  of the main relaxation process for all these mixtures shows values that 

are similar to those of 35 or 40 mol% glycerol-water mixtures (see Figure 40c).  Furthermore, 

the two additional relaxation processes (due to ice and interfacial water) also traced the same 
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Figure 41. Typical dielectric spectra of 20 mol% of glycerol—water mixtures at (a) 185 K 
(supercooled state) and (b) 218 K (frozen state), where solid and dashed curves show the real 
and imaginary parts of complex dielectric permittivity. Each relaxation process in the frozen 
state was fitted by (114) and by Cole–Cole and Debye relaxation functions, respectively, in 
order to separate the main process, the process due to interfacial water, and the process due to 
ice. (Reproduced with permission from Ref. 244. Copyright 2005, American Chemical 
Society.) 

 

 

lines, respectively.  It is worth noting that the activation energy of ~33 kJ/mol of the 

relaxation process resulting from interfacial water is similar to the reported values ~28 kJ/mol 

for bound water on protein-surfaces in aqueous solutions [246] and ~30-40 kJ/mol for surface 

water on porous glasses, depending on the porous glass preparation [256]. The relaxation time 

for this interfacial water is ~100 times larger than that for the bound water reported in protein 

solutions [246]. In the case of bound water in protein solutions, this interfacial water is 

surrounded by fast-mobile water molecules from the solvent. In the case of the water-rich 

glycerol-water mixtures the interfacial water molecules would be confined between two slow 

regions such as the ice and glycerol-water domains, therefore, mobility of the interfacial water 

in water-glycerol mixtures would be highly restricted. 

The glass transition temperature (Tg), which is defined as the temperature where the 

relaxation time is 100 sec [247,248], was evaluated for glycerol-water mixtures using 
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Figure 42. (a) Glycerol concentration 
dependence of the glass-transition 
temperature obtained by DSC 
measurements (filled box represnts 
supercooled state, unfilled box represents 
frozen state) and by BDS data (filled circle) 
(b) Typical raw data of DSC measurements 
(10 mol% of glycerol), where the glass 
transition and a broad melting behavior 
were observed. (Reproduced with 
permission from Ref. 244. Copyright 2005, 
American Chemical Society.) 

Figure 43. Glycerol concentration dependence 
of dc-conductivity (filled box represents 
supercooled state at 209 K, filled circle 
represents frozen state at 209 K, open box 
represents supercooled state at 212 K, open 
circle represents frozen state at 212 K, filled 
diamond represents supercooled state at 215 K, 
and filled triangle represents frozen state at 215 
K). (Reproduced with permission from Ref. 
244. Copyright 2005, American Chemical 
Society.) 

 

 

temperature dependencies of maxτ  for the main dielectric relaxation process (See Figure 40a).  

As shown in Figure 42a, the glass transition temperatures (Tg) obtained by DSC 

measurements were in good agreement with BDS data. It is worth pointing out that Tg for 2.5-

, 10-, and 15- mol% of glycerol-water mixtures in the frozen state all have the same values as 

the Tg for 40 mol% of the glycerol-water mixture. This result indicates that the glass 

transition observed in frozen state results from the mesoscopic glycerol-water domains of 40 

mol% glycerol. Moreover, even simple dc-conductivity data obtained by BDS at particular 

temperatures show concentration independent behaviors in the frozen state, and the values are 

close to that of 40- or 35- mol% of glycerol (Figure 43).  Note that these results support the 

hypothesis that the mechanism of dc-conductivity in a supercooled state is most likely that of 

defect translocation as discussed recently [208], possible because the increase of ionic 

impurities did not affect the frozen state as shown in Figure 43.   

 In order to estimate the ratio between the amounts of water in the mesoscopic 

glycerol-water domains, interfacial water and ice in glycerol-water mixtures, one can use the 

melting-enthalpy ∆H obtained from DSC data. Note that in this specific case, the total 
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melting-enthalpy (∆H) was obtained by integration of the transition heat capacity (∆CP) over 

the broad melting temperature interval: 
 

( )( )∫∫ −=∆=∆
2

1

2

1
)

T

T pbaselinePP

T

T P dTCCdTCH
,    

(5.67) 

 

where T1 is the starting temperature of the broad melting (223 K for 10 mol% glycerol, see 

Fig. 42b),  T2 is the temperature of the phase transition, and CP(base line) is the extrapolated heat 

capacitance base line in the same temperature interval [226].  Thus, amount of ice below the 

starting temperature of the broad melting was estimated by the ratio (∆H / ∆H0) where ∆H0 is 

the melting-enthalpy of bulk ice [249]. Using the known total amount of water and the critical 

40 mol% concentration, we can estimate that in the 10 mol% of the glycerol-water mixture, 

for example, we have approximately 50 mol% of ice, 15 mol% of water in the mesoscopic 

domains, and 25 mol% of interfacial water. This estimation using DSC data also shows the 

presence of a significant amount of interfacial water in the frozen state of glycerol-water 

mixtures. 

According to this fact the existence of three water states:  water in glycerol H-bond 

networks (H2O(GW)), water in ice structure (H2O(ice)) and the interfacial water (H2O(interface) ) 

can be considered. Let us discuss a possible kinetic mechanism of the broad melting behavior. 

The relations between the three states of water can be described by 
 

(ice)2)(interface2(GW)2 OH              OH              OH ,    (5.68) 

 

 

where k1, k2, k3, and k4 are the reaction rates (e.g., the reaction velocity from H2O(GW) to 

H2O(interface) is described by v1 = k1 [H2O(GW)], where [H2O(GW)] is the mole concentration of 

H2O(GW) ).  If the system is in an equilibrium state, apparently [H2O(interface)] does not change. 

Therefore it can be described as ( )[ ] ( )[ ] ( ) ( )[ ]interface232ice24GW21 OHOHOH kkkk +=+ . Let us 

consider one particular concentration of glycerol-water mixture in the water-rich region. Due 

to the critical concentration of the 40 mol%, it is reasonable to assume that [H2O(GW)] is not 

dependent on temperature, and it is clear that the total mole concentration of water (Ctotal) is 

constant. Therefore, the concentration of H2O(interface) can be described by 

( )[ ] ( )[ ]ice2interface2 OHOH −= totalC .  Thus, one can obtain: 

 

k1 k3 

k2 k4 
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It is reasonable to assume that 21 kk ≅ because the water exchange in both directions between 

[H2O(GW)] and [H2O(interface)] are caused by the same rearrangement of mesoscopic structures 

of H-bond networks of the glycerol-water mixture.  In other words, both k1 and k2 are related 

to the relaxation time of the mesoscopic glycerol-water domain.  Furthermore, it is clear that 

the probability of a water molecule to return back to the interface from the ice core is much 

smaller than in the reverse direction and hence 43 kk >> .  Thus, finally we can obtain 
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where C is a constant.  Taking into account that the total water amount is a constant value the 

relation (5.70) shows that any increase of the ratio k2/k3 leads to a decrease of ice core and an 

increase of H2O(interface). It clarifies the broad melting behavior of the glycerol-water mixture 

shown by DSC measurements, and explains why τmax does not follow the 40 mol% curve at 

higher temperatures (Figure 40c).  In this temperature region, a faster replacement between 

H2O(GW) and H2O(interface) allows the mixture to retain more water in the supercooled phase 

than the expected amount based on the critical concentration of 40 mol%.  

 Hence, we can assume the following physical picture of dynamic and structural 

behavior of water-glycerol mixtures in the considered frequency-temperature landscapes for 

different concentrations of components (See Figure 44). As one can see, for high 

concentrations of glycerol including pure dehydrated glycerol, the universality evident in the 

master plots of temperature and concentration is related to the same origin of the elementary 

molecular process. It is most likely the result of a "defect" formation and its resultant 

percolation though the H-bond network.   

The proposed new dielectric function (See (5.63)) can describe the whole spectra (dc 

conductivity, the main process and the excess wing) using only two free variables and a set of 

universal parameters.  
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Figure 44. A schematic model of glycerol–water H-bonding liquids in different concentration 
of components. 
 

 

 Below 40 mol% of glycerol-water domains appear.  This critical concentration is 

related to the numbers of H-Bonds of glycerol and of water respectively.  DSC studies also 

confirm the same critical concentration.  In water-rich mixtures, some water is frozen and as a 

result three relaxation processes where observed. These were related to ice like structures, 

interfacial bound-water and glycerol-water mixtures in the mesoscopic domains, where the 

concentration remains at 40 mol%.   

 Thus, concluding this section, we can summarize that H-bond liquids can be regarded 

as a model systems which reproduce many basic features of liquid glass forming materials. 

The reasoning behind this is that the interaction between their constituents provides 

cooperative properties of the system as a whole. In particular glycerol-water mixture, 

depending on their composition, may exhibit a variety of relaxation properties: from 

properties of homogeneous solutions to those of binary mixtures. 
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5.5 Liquid-like behavior in doped ferroelectric crystals 

In the previous section we considered in detail the behavior of liquid glass forming 

substances. However, such liquid-like behavior can be also inherent to the dielectric 

properties of crystalline samples. 

Now let us discuss such behavior as was recently observed in doped ferroelectric 

crystals in the paraelectric phase (See Section 4.3). As Process B was observed only in crystal 

#1 (see Figure 18) it must be attributed to the presence of the Cu impurities embedded at 

random in the KTN crystal. The Arrhenius nature of the process at elevated temperatures 

above 354 K indicates normal relaxation of the independent Cu+ ions [179]. These ions are 

significantly smaller than the K+ sites in which they reside (The radii of the Cu+ and the K+ 

ions are 0.77 Ǻ and 1.52 Ǻ respectively [250]), leading to off-center displacements. The Cu+ 

ions can therefore hop between the eight symmetrical minima of their potential wells. Indeed, 

the energy of activation of eVE B
a 37.0=  corresponds to the activation energies for the 

hopping of transition metal ion impurities in KTaO3 [251].  

VFT behavior has been noted in crystal systems with a dipole glass phase [176].  

However the VFT behavior in crystal #1 is related to the relaxation of the Cu+ ions in the 

paraelectric phase and is more akin to relaxations in glass forming liquids [179]. The 

formulism of Adam and Gibbs [63] (A&G) has been successfully applied to such systems. 

According to the A & G theory, this behavior originates from the cooperative rearrangement 

of some clusters. It is well established that in KTN crystals in the paraelectric phase the Nb+5 

ions are displaced from the center of inversion of the unit cells [172]. These displacements 

form dipolar clusters with a correlation length that increases as the system is cooled towards 

the ferroelectric phase transition. We propose that the cooperative relaxation observed at 

T<354 K is produced by the interaction between such dipolar clusters that form around the 

relaxing Cu+ ions, and that act as the rearranging clusters in the A & G model. Adopting the 

formalism of A & G [63] the minimum cluster size z, is related to the rate of relaxation P(T,z) 

by 







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Tk
zzTP

B

µexp),(  .                                             (5.71) 

 

VFT behavior is obtained by equating 
VFTTT

Tz
−

=  and noting that VFTE=∆µ  [65]. Fitting 

the VFT model to the experimental results of τB in the paraelectric phase gives TVFT=228 and 
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Δμ=0.02 eV.  Identifying the temperature at which τB deviates from the Arrhenius model with 

the onset of cooperativity yields a minimum cluster size given by 
  

8.2=
−

=
kx

x

TT
Tz  .     (5.72) 

 

This coincides well with an estimation of the minimum size of the dipolar cluster formed 

around nearest neighbors Nb+5 ion given by [ ] [ ] 63.238.0 115 ≈= −−+Nb . At elevated 

temperatures (T>354 K), the Nb+5 ions hop at random between equivalent minima of their 

potential wells within their site in the unit cell.  As the phase transition is approached these 

ions form a dipolar cluster around the Cu+ ions that are randomly distributed far apart from 

each other.  These clusters are at first of a minimum size containing only the Nb+5 ions that 

are closest to the Cu+ ion.  As the phase transition is approached further the cluster size 

around the Cu+ ion grows accordingly.  These represent the rearranging clusters of the A & G 

theory. 

 An independent assessment of the validity of the A & G interpretation to the Cu+ 

induced relaxation (Process B) was provided by direct estimation of the configurational 

entropy at the ferroelectric phase transition. The phase transition is dominated by a shift in the 

position of the Nb5+ ion in relation to the lattice.  The coupling between the Cu+ ions and the 

Nb5+ polar clusters, evident in the paraelectric phase, will further contribute to the 

configuational entropy of the phase transition.  

 It is well known that the configurational entropy can be evaluated from the heat 

capacitance of the crystal, derived from DSC measurements, by the integral 
 

( ) ( )[ ] )(ln)(ln
2
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T

T
ppC ∫ −=∆  ,   (5.73) 

 

where T1 is the onset and T2 is the completion of the phase transition, and CP(baseline) is the 

extrapolated baseline heat capacitance in the temperature interval [226].  The results for the 

pure KTN crystal (#2) and the Cu-doped KTN crystal (#1) are presented in Figure 45. The 

resulting difference was found to be ΔS= 0.79×10-3Jg-1. Normalized to the Cu+ -ion content 

we have per Cu+ -ion   ΔSCu = 2.068×10-21J ≈ 0.013 eV.  This result is in a good agreement 

with Δμ = 0.02 eV derived from fitting the VFT model to τB(T), given the spatial variation of 

the Cu concentration in the crystal. 
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Figure 45. The configurational entropies of the ferroelectric phase transition for crystals #1 
(Δ) and #2 (+). The difference in entropy between the two crystals, ΔS, is 0.79 ×10-3 Jg-1 and 
this is assigned to the Cu+ dopants. The DSC measurements were made with the cooling and 
heating rates 5 K/min in an interval ranging from 373 K to 220 K using a DSC 2920 
calorimeter (TA Instruments) [179]. (Reproduced with permission from Ref. 179. Copyright 
2004, The American Physical Society.) 
 

 

At the onset of the ferroelectric phase transition the Cu+ ions are frozen and no longer 

constitute the seed of the relaxation process. In this respect the ferroelectric phase transition 

“quenches” the glass-forming liquid. Below the phase transition temperature, the dipolar 

clusters surrounding the Nb5+ ions merge to yield the spontaneous polarization of the (now 

ferroelectric) crystal, and due to the strong crystal field, the off-center potential minima of the 

Cu+ ions are no longer symmetrical. 

 Thus, one may summarize the physical picture of the relaxation dynamics in KTN 

crystal doped with Cu+-ions in the following way: In the paraelectric phase, as the 

ferroelectric phase transition is approached, the Nb5+ ions form dipolar clusters around the 

randomly distributed Cu+ impurity ions. The interaction between these clusters gives rise to a 

cooperative behavior according to the AG theory of glass-forming liquids. At the ferroelectric 

phase transition the cooperative relaxation of the Cu+ -ions is effectively “frozen.” 
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5.6 Relaxation Kinetics of Confined Systems 

It was already mentioned in Section 2.3 of this paper that kinetics associated with 

relaxation parameters measured by dielectric spectroscopy can provide significant information 

about the substance under study. Even without the quantitative data, having only qualitative 

information, one can, for example, identify a glassy material by non liner VFT relaxation time 

dependence. In this section we will discuss another type of relaxation kinetics which is 

associated with confined systems and we will illustrate this type using some experimental 

examples. 

 

5.6.1 Model of relaxation kinetics for confined systems 

The model we utilize here, was first introduced to describe the relaxation properties of water 

adsorbed on the inner surfaces of porous glasses [155] and which was then reviewed in [78]. 

The main idea of this model is that the relaxation kinetics in this case is provided in this case 

by a process that must satisfy two statistically independent conditions. Thus, if one assigns the 

probability 1p  to satisfy the first condition and 2p  to satisfy the second condition, then the 

probability p  for a relaxation act to occur in such a system is 
 

21 ppp = .                                                            (5.74) 

 

Let us discuss a system, which consists of a number of particles where their relaxation is 

provided by the reorientations (a jump or another type of transition) of particles between two 

local equilibrium states. In the spirit of the Arrhenius model (2.26), the first requirement for 

the relaxation is that the particles have enough energy to overcome the potential barrier aE  

between the states of local equilibrium for the elementary constituents of the system under 

consideration. Thus, 
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The essential idea of the new model is that 2p  is the probability that there will be enough free 

volume, fv , in the vicinity of a relaxing particle with its own volume, 0v , to allow 

reorientation [69,70,78,155]. In other words we imply that in order to participate in a 

relaxation a particle must have a ‘defect’ in its vicinity. Then, 
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In itself this probability represents a kind of constraint for the entire relaxation process and 

slows down the relaxation. Combining (5.73)-(5.76) and taking into account the relationship 

p/1~τ  the following expression can be obtained: 
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As mentioned earlier in Section 2.3 it is usually assumed that free volume grows with 

increasing temperature. This idea reflects thermal expansion, i.e. if the number of relaxing 

particles in the system is kept constant, then the thermal expansion leads to an increase of free 

volume with temperature growth. However, this assumption may be wrong for the case of the 

confined system where the total volume is kept constant, but the number of relaxing particles 

varies. In our case we implied earlier that the microscopic act of relaxation is conditional to 

the presence of a defect in the vicinity of the relaxing particle. As a first approximation one 

may assume that the number of defects, n, obeys the Boltzmann law )/exp(0 TkEnn Bb−= . 

Then, the free volume per relaxing particle, nVf /=ν , where V is the total volume of the 

system. Thus, instead of (5.77) one immediately obtains [78,155] 
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where bE  is the energy to enable an inert particle to participate in relaxation (or alternatively 

the energy required to form a so-called “defect”), VnvC /00=  is a confinement factor, and 0n  

is the maximal possible number of defects in the considered system. In contrast to all other 

kinetics models (5.78) exhibits a non-monotonic temperature dependency since it is related to 

two processes of a different natures: the Arrhenius term reflecting the activated character of 

the relaxation process, and the exponential term reflecting a decrease of free volume per 

relaxing particle with temperature growth. This second term is a consequence of constant 

volume constraint and the implication that the number of relaxing particles obeys Boltzmann 

law. If the total volume of the system V is sufficiently large and the maximum possible 

concentration of relaxing particles is sufficiently small 00 /1/ vVn << , then the free volume 
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arguments become irrelevant and relaxation kinetics maintain Arrhenius form. However, in 

the case of a constraint, when the volume of a system is small and 00 /1/ vVn ≈ , an increase of 

temperature leads to a significant decrease of free volume and slows down the relaxation. As 

we will show, this situation usually occurs for “small” systems where relaxing particles 

become able to participate in relaxation due to the formation of some “defects” in the ordered 

structure of the system. In this case 0n  could be regarded as the maximum possible defect 

concentration. Therefore, confinement provides a comparatively large concentration of 

defects Vn /0  since for such a system the confining geometry affects comparatively larger 

amount of system constituents. 

 

 

5.6.2 Dielectric relaxation of confined water 

It is known [52] that the dielectric relaxation of water is due to the reorientation of 

water molecules that have a permanent dipole moment ( m C 106 30−⋅ or 1.8 D). It is also 

known that in bulk water and ice water molecules are embedded in the network structure of 

hydrogen bonds. Thus, the reorientation of a water molecule leading to the dielectric 

relaxation may occur only in the vicinity of a defect in the hydrogen bonds network structure. 

This mechanism fits perfectly to the relaxation model described in the section above. Thus, 

one may expect that a confined water sample could exhibit the non-monotonous relaxation 

kinetics predicted by (5.78). In this case, aE  could be regarded as the activation energy of 

reorientation of a water molecule, and bE  as the defect formation energy. Here we discuss the 

dielectric relaxation of water confined in porous glasses [153,155]. The main features of this 

relaxation were already described in Section 4.2.1 of this tutorial. In Figure 14 one can clearly 

see the non-monotonous saddle-like process (Process II) which will be discussed here. Similar 

non-monotonous relaxation behavior was also observed for water confined in zeolites 

[252,253]. 

 Figure 46 shows three curves corresponding to the three different porous glasses 

samples A, B and C that differ in their structure (average pore diameter) and chemical 

treatment [153]. The fitting curves presented in these figures show that the model (5.78) is in 

good agreement with the experimental data. 
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Figure 46. Temperature dependency of the dielectric relaxation time of water confined in 
porous glasses [153,155]. Symbols represent experimental data. Full lines correspond to the 
best fit according to Eq. (129). Sample A (cycles) 5.027ln 0 ±−=τ , kJ/mol 146 ±=aE , 

kJ/mol 133±=bE , 44 1091027 ×±×=C . Sample B (boxes) 5.033ln 0 ±−=τ , 
kJ/mol 153±=aE , kJ/mol 129 ±=bE , 44 102107 ×±×=C . Sample C (triangles) 

3.026ln 0 ±−=τ , kJ/mol 138 ±=aE , kJ/mol 132 ±=bE , 44 1031012 ×±×=C . (Reproduced 
with permission from Ref. 78. Copyright 2004, The American Physical Society.) 
 

 

The fitted values of aE  and bE  for all the samples are in fair agreement with the energies 

attributed to the water molecules reorientation and defect formation for the bulk ice I, that are 

evaluated as 55.5 kJ/mol and 32.9 kJ/mol, respectively [78]. This fact leads to the conclusion 

that most probably the water confined in small pores is quite immobile and represents a kind 

of ice-like structure. For the further discussion more detailed information about the samples 

should be recalled. For example, let us discuss the relationship between the pore network 

structure and fitted activation energies aE  and bE . The pore diameters of samples A and B are 

nearly the same (~50 nm), while the chemical treatment of these samples is different. Glass B 

was obtained from Glass A via an additional immersion in KOH solution. Sample C has pores 

with an average diameter of 300 nm and, as in the case of sample A, was not especially 

purified with KOH [153,155]. 

 It follows from the fit presented in Figure 46 that bE  energies for all porous glass 

samples are about the same value of 33 kJ/mol. However, for sample B the value of bE  is 

about 10% less than those for samples A and C. This fact can most likely be explained by the 

additional chemical treatment of sample B with KOH, which removes the silica gel from the 

inner surfaces of the pore networks. It is reasonable to assume that the defects generally form 
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at the water interfaces, and only then penetrates into the water layer. Thus, it seems that the 

KOH treatment decreases the interaction between the water and inner pore surfaces and, 

consequently, decreases the defect formation energy bE .  

 

5.6.3 Dielectric relaxation in doped ferroelectric crystal 

 As discussed in Section 5.5, the appearance of the "saddle-like" relaxation process in 

KTN:Cu crystal is linked to two facts: (i) it appears only in the Cu doped crystals, and (ii) its 

appearance coincides with the onset of the ferroelectric phase transition.  

 We propose that following the onset of the phase transition the small Cu+ ions 

residing in the large K+ sites, are shifted to an off-center position and produce a distortion in 

the neighboring unit cells. This gives part of each of these unit cells the latitude to behave as a 

relaxing dipole. In a pure (copper free) crystal these dipoles are closely interlaced with the 

complementary part of their respective unit cells, and hence do not have the latitude to 

reorient. For this reason, the relaxation process that is linked with these dipoles is not 

observed in the pure KTN crystal. 

 In order to derive the temperature dependence of the relaxation time associated with 

this process we shall consider a one-dimensional model in which the Cu+ ions reside in an 

asymmetric double potential well as illustrated qualitatively in Figure 47.  

 At a given temperature, the Cu+ ions are distributed between two states: "high" and 

"low".  If [Cu+] is the molar concentration of the Cu+ ions in the crystal, then according to 

Boltzman statistics, the concentrations of the Cu+ ions in their respective states are given by 
 

( )TkECuCu BbH /exp][][ −⋅= ++ ,     (5.79) 

( )[ ]TkECuCu BbL /exp1][][ −−⋅= ++ ,     (5.80) 

 

where [Cu+]H and [Cu+]L are the molar concentration of the Cu+ ions in the "high" and "low" 

states respectively.  

As the crystal is cooled below the phase transition temperature, the relaxation time 

decreases until it reaches a minimum, after which it follows an Arrhenius law. It is therefore 

reasonable to assume that the minimum point coincides with the temperature at which the 

great majority of the Cu+ ions are at the "low" state. From this point onwards, as the crystal 

continues to be cooled, all the dipoles that are available to participate in the process are 

relaxing, yielding an Arrhenius relaxation time. 
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Figure 47. A schematic representation of the double-well potential of the Cu+ ions. In the 
ferroelectric phase, local fields distort it and it becomes asymmetrical. (Reproduced with 
permission from Ref. 257. Copyright 2005, Elsevier Science B.V.) 
 

 

Based on this argumentation we claim that (vo/vf) in equation (5.76) is inversely proportional 

to the number of Cu+ ions that are in the low state such that 

 

( )TkE BbCep /
2 exp −−=  .    (5.81) 

 

This leads to the saddle-like behavior of the relaxation time as described in equation (5.78). 

The fitting of (5.78)) to the experimental data of the ferroelectric phase is presented in Figure 

21. As can be seen, in the temperature range 230K to 290K the model fits the experimental 

data very well, yielding: τo
B=1.5±0.7⋅10-9 sec., Ea=0.12±0.01 eV, and Eb=0.34±0.12 eV.  A 

comparison of  Eb to the energetic barrier separating equivalent sites for Cu+ ions in the 

paraelectric phase, ΔE=0.37±0.01 eV [179], strongly indicates that  the Cu+ ions assume the 

role of the defect.  

 In summary, we maintain that while the free volume concept is an intuitively natural 

concept for liquids confined in a host matrix, it is not an obvious model for ionic/covalent 

crystals.  Saddle-like relaxation is not a universal feature of all crystals. Hence, Vf, the free 

volume necessary for the relaxation to occur cannot be attributed to the presence of any defect 

that causes an irregularity in the crystal structure. In the special case of KTN:Cu crystal, the 

Cu+ ion has an effective ionic radius that is smaller than to that of the original occupant of its 

site (K+), while having the same ionization state.  Below the ferroelectric phase transition 

temperature the Cu+ ions are shifted to an off-center position in their respective sites.  This 

allows some of the constituents of the original KTN unit cells in the vicinity of the Cu+ ions to 

assume the behavior of relaxing dipoles. As the number of these dipoles is constrained by the 

number of Cu+ ions that are frozen in the off-centre position, this yields a saddle- like 
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relaxation process. The question remaining is what is the relaxing dipole? A number of 

authors have noted dynamic relaxation of the octahedra in various perovskites and related 

structures [254-256]. In general the relaxation is Arrhenius in nature with energies of 

activation ranging between 0.05 eV to 0.24 eV. The soft mode phonon is dominated by the 

oxygen octahedra and its interaction with the Nb ion. As noted above, there is a strong 

coupling of the Cu+ ions to the soft mode phonon.  Given that the activation energy of the 

Arrhenius tail of the saddle is in the range noted it is not unreasonable to assign dynamic 

relaxations of the octahedra as the relaxing dipole [257].   

 

 

5.6.4 Possible modifications of the model 

 All the examples described above show that confinement in different cases may be 

responsible for non-monotonous relaxation kinetics and can lead to a saddle-like dependence 

of relaxation time versus temperature. However, this is not the only possible reason for non-

monotonous kinetics. For instance, work [258] devoted to the dielectric study of an 

antiferromagnetic crystal, discusses a model based on the idea of screening particles. Starting 

from the Arrhenius equation and implying that the Arrhenius activation energy has linear 

dependency on the concentration of screening charge carriers, the authors of [258] also 

obtained an expression that can lead to non-monotonic relaxation kinetics under certain 

conditions. However, the experimental data discussed in that work does not show clear 

saddle-like behavior of relaxation time temperature dependence. The authors of [258] do not 

even discuss such a possibility.  

 At the same time, model (5.78) is also open to modifications. This model is based on 

the assumptions (5.75) and (5.76) regarding temperature dependencies for the probabilities 1p  

and 2p . Assuming, instead of the Arrhenius law (2.26), a cooperative term of the VFT (2.28) 

type for 1p , the temperature dependence of the relaxation time is obtained in the form 
  









−+

−
=


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



Tk

EC
TT

TD
B

b

k

k exp ln
0τ

τ

,
    (5.82) 

 

where the first term of the VFT type on the right hand side of Eq. (5.78) could express the idea 

of cooperative behavior in accordance with the Adam-Gibbs model [63]. 
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5.6.4.1 Confined glassy water 

The experimental data for water confined in the porous glass sample C that was 

discussed previously (see Figure 46) is well fitted with (5.82) as presented in Figure 48.  

 

Figure 48. Temperature dependence of dielectric relaxation time for water confined in sample 
C. The data were measured under different conditions and contain a different amount of 
water: Unfilled circles correspond to the data presented early in Fig. 46; filled circles 
represent the experiment with reduced water content [78]. Full line is the best fit according to 
(133): 5.08.17ln 0 ±−=τ , kJ/mol  139 ±=bE , K 7124 ±=kT , 210 ±=D , 55 103109 ×±×=C . 
The dashed line was simulated from (133) for the same 0lnτ , bE , kT  and D , but with C 
divided by a factor 1.8 (explanation in the text). (Reproduced with permission from Ref. 78. 
Copyright 2004, The American Physical Society.) 

 

 

Compared to the other samples, this porous glass has the largest pore diameter and humidity 

[153,156]. Therefore, it is reasonable to assume that the cooperative relaxation properties, 

described by the VFT term, should be more pronounced for this sample. It is worth noting that 

the fitted value of the Kauzmann temperature K 7124 ±=kT  (see caption for Figure 48). 

From kT , using the empirical rule kg TT   2.11.1~ ÷  [14], the estimation K 145~gT  of the 

water glass transition temperature could be obtained. This value is in fair agreement with 

usual estimations of gT  for water that are expressed by interval K 6130 ±≈gT  [259,260]. The 

fitted value of fragility 210 ±=D  is close to the estimations of this parameter 8≈D  that 

have been derived from the diffusivity data for the amorphous solid water in work [260]. 

These findings may also support the idea that the porous glass samples treated in the 

preceding discussion dealt with a kind of non-crystalline state of water. The most probable 

reason for this is that the pore walls provide the necessary confinement. Note that in the 
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porous glasses, the glassy properties of water can be observed at comparatively high 

temperatures such as room temperature, whereas the usually quite low temperatures and 

special treatment [259,260] are required to obtain glassy water. However, further 

investigations are required to support these experimental findings.  

 

 

5.6.5 Relationships between the static properties and dynamics 

 Let us now consider the relationship between the data obtained from the kinetics to the 

amplitude of this process. The data for water confined in porous Glass C can be discussed in 

terms of equilibrium properties of the considered relaxation processes obtained in the two 

different experiments [78]. The two experimental runs presented in Figure 49 are quite similar 

at low temperatures. However, in the high temperature range, they exhibit a remarkable 

difference from each other. 

In Figure 49, the temperature dependencies of the so-called dielectric strength ε∆  for 

these experiments are presented. The dielectric strength is the difference between the high and 

low frequency limits of the real part of the complex dielectric permittivity of the process 

under consideration. This quantity reflects the concentration of dipole moments dn  in a 

sample and, in its simplest approximation, is in linear proportion to the concentration 

 
Figure 49. Temperature dependence of the dielectric strength ε∆  for sample C. Symbols 
represent experimental data corresponding to the relaxation times presented in Fig. 48: 
unfilled circles correspond to the data presented early in Fig. 46; filled circles represent the 
experiment with reduced water content [78]. The lines mark values of the averaged dielectric 
strength avε∆  for these experiments. (Reproduced with permission from Ref. 78. Copyright 
2004, The American Physical Society.) 
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dn~ε∆  [6,7], i.e. the dielectric strength is proportional to the water content. Thus, the two 

experimental runs presented in Figure 49, as well as the data in Figure 48, correspond to the 

two different amounts of water in sample C. 

 Recall that the pre-exponential factor VnvC /00= , where 0n  is the maximum possible 

number of defects. This number is proportional to the water content and ε∆~~~ 0 dnnC . 

The dielectric strength ε∆ for these runs is almost constant (the variations of ε∆  are about 

5% of the averaged value for both runs). By comparing the averaged values of ε∆  for these 

runs the difference in water content between these experiments has been estimated to be 1.8 

times (see Figure 49). The pre-exponential factors C for these two runs should also be 

different by the same factor. The comparison in Figure 48 shows that this is indeed so. 

 Finally we can conclude that confinement could be responsible for the non-monotonic 

relaxation kinetics and could provide a specific saddle-like temperature dependency of 

relaxation time. The experimental examples discussed show that this type of kinetics may be 

inherent to systems of completely different natures: confined liquids, ferroelectric crystals, 

and it was even demonstrated recently macromolecular folding kinetics [78]. In each case, the 

specific interpretation of the parameters of model (5.78) depends on the discussed 

experimental situation. We are far from the opinion that confinement is the only reason for 

non-monotonic relaxation kinetics. However, for all the examples discussed in this paper, the 

non-monotonic dependence of the relaxation time on temperature has the same origin, that is, 

confinement either in real or configurational space. 

 

 

5.7  Dielectric Spectrum Broadening in disordered materials   

In the previous sections, we presented several examples of the non-exponential dielectric 

response in time domain. We also discussed the dielectric response in H-bonding networks 

and liquid like behavior in doped ferroelectric crystals. The models we presented in time 

domain enable us to determine some of the topological properties of the investigated complex 

systems. We also observed that frequency representation has its own advantages. In particular, 

the non-dissipative part of the system response to an external perturbation and the dissipative 

part are clearly separated in frequency domain as the real and imaginary part of the complex 

permittivity, while in time domain these effects are "mixed" together in the relaxation 

function. The separation of the response itself and the dissipative effects in time domain is not 

obvious, although it is possible to do in principle by using the appropriate integral transform. 
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In spite of the existence of a single mapping between the time and frequency domain by the 

Laplace transform, the separation in frequency representation may at times be more 

convenient for analysis of the dynamic processes in complex systems. 

In Section 2.2 we classified several types of non-Debye relaxation and mentioned a few 

particular approaches which were developed in order to explain the origins of these relaxation 

patterns. Below we will discuss a model that considers one particular case of such non-

exponential relaxation.  

 

5.7.1 Symmetric Relaxation peak broadening in complex systems 

As mentioned in Section 2.2, the dielectric response in frequency domain for most 

complex systems cannot be described by a simple Debye expression (2.17) with a single 

dielectric relaxation time. In a most general way this dielectric behavior can be described by 

the phenomenological Havriliak-Negami (HN) formula (2.21). 

Usually, the exponents α and β are referred to as measures of symmetrical and 

unsymmetrical relaxation peak broadening. These names are a consequence of the fact that 

the imaginary part of the complex susceptibility for the HN dielectric permittivity shows 

power-law asymptotic forms Im{ε*(ω)} ~ ωα and αβωωε −~)}(*{Im  in the low- and high-

frequency limits, respectively.  

The experimental data shows that α and β are strictly dependent on temperature, structure, 

composition, pressure and other controlled physical parameters [87,261-265].  

In this section we will consider the specific case of the HN formula β = 1, 0 < α < 1, 

corresponding to symmetric relaxation peak broadening or to the so-called Cole-Cole (CC) 

law [16]. The complex dielectric permittivity ε*(ω) for the CC process is represented in the 

frequency domain as 

αωτ
εε

εωε
)(1

)(*
i

i s
+

−
+= ∞

∞   .                                             (5.83) 

 

In order to explain the non-Debye response (5.83) it is possible to use the memory function 

approach [22, 23, 31, 266-268]. Thus, the normalized dipole correlation function Ψ(t) (2.22) 

corresponding to a non-exponential dielectric relaxation process obeys the equation 

∫ ′′Ψ′−−=
Ψ t

tdtttm
dt

td

0
 )()()(   ,                                      (5.84) 
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where m(t) is the memory function, and t is the time variable. The specific form of the 

memory function is dependent on the features of relaxation. 

 After Laplace transform (2.15), in virtue of the convolution form, Eq. (5.84) reads as 
 

)()( 1)( pFpMppF −=−   ,                                          (5.85) 
 

where F(p) and M(p) are Laplace images of Ψ(t) and m(t). Combining (5.85) with (5.83) and 

taking into account the relationship between the complex susceptibility and the correlation 

function, (2.14), one can obtain the Laplace image of the memory function for the CC process 

in the form 
αατ −−= 1)( ppM   .                                                 (5.86) 

 

Since 0 < α < 1 the exponent in Eq.(5.86) 1-α > 0. The mathematical implication is that M(p) 

(5.86) is a multi-sheet function of complex variable p. In order to represent this function in the 

time domain one should to select the Schlicht domain using supplementary physical 

explanations [135]. These computational constraints can be avoided by using the Riemann-

Liouville fractional differential operator α−1
0 tD (see definitions (5.46) (5.47)). Thus, one can 

easily see that the Laplace image of )]([1
0 tDt Ψ−α  is 
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(5.87) 

 

Taking (5.87) into account we can rewrite Eq. (5.84) with the memory function (5.86) as 

follows 

)]([)( 1
0 tD

dt
td

t Ψ−=
Ψ −− αατ   .                                             (5.88) 

 

Note that the relationship between the complex susceptibility and correlation function 

(2.14), together with Eq. (5.83) leads directly to the requirement that C=0. 

Equation (5.88) was already discussed elsewhere [22, 23, 31] as a phenomenological 

representation of the dynamic equation for the CC law. Thus, Eq. (5.88) shows that since the 

fractional differentiation and integration operators have a convolution form it can be regarded 
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as a consequence of the memory effect. A comprehensive discussion of the memory function 

(5.86) properties is presented in [22, 23]. Accordingly, Eq. (5.88) holds for some cooperative 

domain and describes the relaxation of an ensemble of microscopic units. Each unit has its 

own microscopic memory function mδ(t), which describes the interaction between this unit 

and the surroundings (interaction with the statistical reservoir). The main idea of such an 

interaction was introduced in [22, 23] and suggests that mδ(t) ~ ∑ −
i

i tt )(δ  (see Figure 50).  

 
 

Figure 50. Schematic picture of mδ(t) 
dependence. ti are the time moments of the 
interaction that construct in time a fractal 
Cantor set with dimension 63.0

3ln
2ln

≅=fd . 

(Reproduced with permission from Ref. 2. 
Copyright 2002, Elsevier Science B.V.) 

Figure 51. Schematic presentation which 
illustrates averaging of m(t) over an 
ensemble of microscopic units. Curve 1 
corresponds to the cooperative ensemble of 
a single microscopic unit with ti distributed 
by the Cantor set. Curve 2 represents the 
ensemble of 3 units of the same type, Curve 
3 represents 10 units. Curve 4 corresponds 
to 1000 units in the ensemble. The latter 
exhibits the power-law behavior 

3ln/2ln~)( ttI . (Reproduced with permission 
from Ref. 2. Copyright 2002, Elsevier 
Science B.V.) 

 

 

This term reflects the interrupted interaction between the relaxing unit and its neighbors. 

The time moments ti (the time position of the delta functions) are the moments of the 

interaction. The sequence of ti, constructs a fractal set (the Cantor set for example) with a 

fractal dimension 0 < df ≤ 1. This statement is related to the idea that cooperative behavior 

provides some ordering and long lasting scaling. Following these assumptions the memory 

function m(t) for a cooperative domain can be obtained as a result of averaging over the 

ensemble of mδ(t) (see Figure 51, where for more convenient representation ∫=
t

dttmtI
0

')'()(  
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is plotted instead of m(t)). The requirements of measure conservation in the interval [0, 1/ζ] 

and conservation of the fractal dimension df for all mδ(t) give this averaging as 

.   ~)(

and
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2/1
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d

-duu
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−
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                                      (5.89) 

 

Thus, the memory function (5.86) is a cooperative one and the CC behavior appears on the 

macroscopic level after averaging over the ensemble of microscopic dipole active units. 

Comparing (5.86) and (5.89) one can establish that fd=α . This result once again highlights 

the fact that in this model the fractal properties on a microscopic level induce the power-law 

behavior of memory functions (5.86), (5.89) and CC permittivity (5.83) on a macroscopic 

level.  

By definition [213, 220], the fractional dimension is given by 
 

)ln(
)ln(

ζ
α Nd f ==   .                                                       (5.90) 

 

Here the scaling parameter ζ is the dimensionless time interval size and N is the number of 

delta functions (relaxation acts) in that interval. However, a characteristic time constant of the 

CC process is the relaxation timeτ. Thus, the scaling parameter ζ and the relaxation time 

should be proportional to each other  
 

0τ
τζ =   .                                                                (5.91) 

 

The constant minimal τ0 is the cutoff time of the scaling in time. 

In the general case, different physical conditions can determine the fractal properties of the 

microscopic memory function mδ(t) and, consequently, the power-law time dependence of the 

macroscopic memory function (5.89). However, there is a computer simulation proof [269] 

that an anomalous relaxation on a fractal structure exhibits CC behavior. Therefore, one may 

assume that the memory function (5.89) has its origin in the geometrical self-similarity of the 

investigated system. Thus, the scaling parameter N is actually the number of points where the 

relaxing units are interacting with the statistical reservoir (i.e. by the ergodic assumption - the 
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number of relaxation acts on a microscopic level for a cooperative domain). The assumption 

of geometrical self-similarity of the considered system suggests that this number is 
  

Gd

R
RGN 








=

0
   .                                                (5.92) 

 

Here, dG is a spatial fractal dimension of the point set where relaxing units are interacting 

with the surroundings. R is the size of a sample volume section where movement of one 

relaxing unit occurs. R0 is the cutoff size of the scaling in the space or the size of the 

cooperative domain. G is a geometrical coefficient about unity, which depends on the shape 

of the system heterogeneity. For example, the well-known two-dimensional recurrent fractal 

Sierpinski carpet has ≈= )3ln(/)8ln(Gd 1.89, ≈= 4/3G 0.43 [213]. 

The relaxation process may be accompanied by a diffusion act. Consequently, the mean 

relaxation time for such kinds of disordered systems is the time during which the relaxing 

microscopic structural unit would move a distance R. The Einstein-Smoluchowski theory 

[226,235] gives the relationship between τ and R as 
  

τDdR E22 =   ,                                                       (5.93) 
 

where D is the diffusion coefficient and dE is the Euclidean dimension. Thus, combining the 

relationships (5.90)-(5.93) one can obtain the relationship between the Cole-Cole parameter α 

and the mean relaxation time τ in the form 
 

)/ln(
)ln(

2 0ττ
τω

α sGd
=   ,                                                  (5.94) 

 

where 2
0

22
R
DGd Gd/

Es =ω  is the characteristic frequency of the diffusion process. This 

equation establishes the relationship between the CC exponent α, the relaxation time τ, the 

geometrical properties (fractal dimension dG), and the diffusion coefficient (through ωs). 
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5.7.2 Polymer-water mixtures 

The first mention of the α(τ) dependencies was in the experimental work [265]. The 

dielectric relaxation data of water in the mixtures of seven water-soluble polymers was 

presented there. It was found that in all these solutions relaxation of water obeys the CC law, 

while the bulk water exhibits the well-known Debye-like pattern [270,271]. Another 

observation was that α is dependent not only on the concentration of solute but also on the 

hydrophilic (or hydrophobic) properties of the polymer. The seven polymers were: 

poly(vinylpyrrolidone) (PVP; weight average molecular weight (Mw) = 10,000), 

poly(ethylene glycol) (PEG; Mw = 8,000), poly(ethylene imine) (PEI; Mw = 500,000), 

poly(acrylic acid) (PAA; Mw = 5,000), poly(vinyl methyl ether) (PVME; Mw = 90,000), 

poly(allylamine) (PAlA; Mw = 10,000), and poly(vinyl alcohol) (PVA; Mw = 77,000). These 

polymers were mixed with different ratios (up to 50% of polymer in solution) to water and 

measured at a constant room temperature (25°C ) [265]. 

We would like to sketch a recent application [46] of model (5.94) to these systems. In 

Figure 52 the experimental dependencies of CC exponent α versus τ together with the fitting 

curve are presented. The values of the fitting parameters are listed in Table 3. 

 

Table 3. The space fractional dimension dG, the cutoff time of the scaling in the time domain 
τ0, the characteristic frequency sω  and estimated self-diffusion coefficient for the polymer 
water mixturesb. 

Sample dG τ0 [ps] ω s × 10-11 [Hz] D× 109 [m2s-1] 

PVA 1.56±0.09 7.18±0.74 1.47±0.21 3.31 

PAlAb 1.43 6.46 1.74 3.92 

PAA 1.12±0.17 6.34±0.83 2.08±0.68 4.68 

PEI 1.33±0.02 4.89±0.45 2.67±0.40 6.01 

PEG 1.54±0.04 4.45±0.74 2.78±0.63 6.26 

PVME 1.38±0.10 3.58±1.23 4.24±2.47 9.54 

PVP 1.00±0.01 0.79±0.11 127±34 286 
 

bFor the sample PAlA there are only three experimental points. For this reason it is impossible to 
determine the mean square deviation value and consequently the confidence intervals for the fitting 
parameters. Source: (Reproduced with permission from Ref. 46. Copyright 2002, American Institute 
of Physics. 
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It is well known [54,270] that the macroscopic dielectric relaxation time of bulk water (8.27ps 

at 25°C) is about ten times greater than the microscopic relaxation time of a single water 

molecule, which is about one hydrogen bond lifetime [206,272-274] (about 0.7 ps). This fact 

follows from the associative structure of bulk water where the macroscopic relaxation time 

reflects the cooperative relaxation process in some cluster of water molecules.  

  In the framework of the model presented above the microscopic relaxation time of 

water molecule is equal to the cut off time of the scaling in time domain τ0.  

 

 
Figure 52. Cole–Cole exponent α  versus relaxation time τ  for PVA (●), PAlA (▲), PAA (■), 
PEI (♦), PEG (○), PVME ( ∆ ), and PVP (□) samples. The curves correspond to the model 
described in this section. The filled symbols correspond to the hydrophilic polymers and the 
open symbols correspond to the hydrophobic samples. (Reproduced with permission from 
Ref. 2. Copyright 2002, Elsevier Science B.V.) 
 

 

For the most hydrophilic polymer, PVA, the strong interaction between the polymer and the 

water molecule results in the greatest value of microscopic relaxation time τ0 , only 10% less 

than the macroscopic relaxation time of the bulk water. The most hydrophobic polymer, PVP, 

has the smallest value of a single water molecule microscopic relaxation time, which is almost 

equal to the microscopic relaxation time of bulk water (see Table 3). Therefore, weakening 

the hydrophilic properties (or intensifying the hydrophobic properties) results in a decreasing 

of interaction between the water and the polymer and consequently in the decrease of τ0. 

The interaction between the water and the polymer occurs in the vicinity of the polymer 

chains and only the water molecules situated in this interface are affected by the interaction. 

The space fractal dimension dG in this case is the dimension of the macromolecule chain. If a 

polymer chain is stretched as a line, then its dimension is 1. In any other conformation, the 
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wrinkled polymer chain has a larger space fractal dimension, which falls into the interval 

1 < dG < 2. Thus, it is possible to argue that the value of the fractal dimension is a measure of 

polymer chain meandering. Straighter (probably more rigid) polymer chains have dG values 

close to 1. More wrinkled polymer (probably more flexible) chains have dG values close to 2 

(see Table 3). 

The presence of a polymer in the water affects not only the relaxation but the diffusion of 

the solvent as well. For an estimation of the diffusion coefficient, we can use the following 

expression 

E

s
d
RD

2

2
0ω

≅   ,                                                      (5.95) 

 

which is directly derived from the definition of the characteristic frequency ωs. It was 

assumed in this last expression that the geometrical factor G=1. In our case the scaling cut-off 

size in space is equal to the diameter of a water molecule ≈0R 3 Å [52]. The Euclidean 

dimension of the space where diffusion occurs is the nearest integer number greater than the 

fractal dimension. Thus, dE = 2. The results of this estimation are in Table 3. The diffusion 

coefficient for bulk water [52] at 25°C is 2.57⋅10-9 m2s-1. The presence of a polymer in the 

water prevents clusterization of water and relieves the diffusion. However, the strong 

interaction between polymer and water for hydrophilic samples slows down the diffusion. The 

competition between these two effects leads to the clear tendency of the diffusion coefficient 

to increase with an increase of  hydrophility (see Table 3). 

Note that the polymer affects only water molecules situated in the vicinity of the polymer 

chains. Thus, the estimated diffusion coefficient corresponds only to these water molecules 

and is not dependent on the polymer concentration. The averaged self-diffusion coefficient 

estimated for the entire polymer-water mixture should be different depending on the polymer 

concentration. 
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5.7.3 Micro-composite material 

Another example of an application of Eq. (5.94) is on micro-composite polymer materials. 

We have performed dielectric measurements of the glass transition relaxation process in a 

Nylon 6,6 sample quenched in amorphous (QN), a crystalline nylon 6,6 sample (CN) and a 

micro-composite sample (MCN), which is the same crystalline nylon 6,6 but with 

incorporated kevlar fibers [275,276]. 

The quantitative analysis of the dielectric spectra of the glass-transition process was carried 

out by fitting the isothermal dielectric loss data according to the HN law (2.21).  It was found 

from the fitting that β=1 for the glass-transition process in all of the samples measured. The 

glass-transition relaxation process in these systems is due to the motion of a polymer chain 

that is accompanied by a diffusion act. In general, the diffusion of a polymer chain is more 

complex than the Brownian model for diffusion [277,278]. However, in all the models the 

dependence of <R2> on time t is linear in the time scales associated with a monomeric link 

and in the time scale associated with the mobility of the entire chain. For this particular 

example, Eq. (5.93) describes the mobility of the polymer groups at the microscopic levels, 

i.e. at the scale of a monomeric link. 

The experimental α versus τ dependencies for these samples, together with the fitting 

curves, are shown in Figure 53. Note that in contrast with the previous example these data are 

obtained at a constant sample composition. In this case, variations of parameters α and τ are 

induced by temperature variation. As mentioned above, the exponents α as well as the 

relaxation time τ are the functions of the different experimentally controlled parameters. The 

same parameters can affect the structure or the diffusion simultaneously. In particular, both α 

and τ are functions of temperature.  

Thus, the temperature dependence of the diffusion coefficient in (5.93) should be 

considered. Let us consider the temperature dependence of the diffusion coefficient D 
  

)T(KDD 0=   ,                                                     (5.96) 

 

where K(T) is a dimensionless function that represents the temperature dependence of the 

diffusion coefficient. D0 is the appropriate constant with dimensions [m2s-1]. An increase of 

the diffusion 
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Figure 53. The dependence of α versus relaxation time τ  for QN (●), CN (▲), and MCN (♦) 
samples. The curves correspond to the model described in this section. (Reproduced with 
permission from Ref. 2. Copyright 2002, Elsevier Science B.V.) 
 

 

coefficient with increasing temperature also signifies an increase of the characteristic spatial 

scale R0 (cut-off size of the scaling in the space). Let us assume that 2
0R  is proportional to the 

diffusion coefficient D and obeys the Einstein Smoluchowski theory 
 

maxE τDdR  22
0 =   ,                                         (5.97) 

 

where τmax is the long-time limit of the scaling. Thus, combining together (5.96) and (5.97) 

with (5.91)-(5.93) we can obtain the relationship between the CC exponent α and relaxation 

time τ in a form similar to (5.94) 

)/ln(
)ln(

2 0

0
ττ

τω
α Gd

=   ,                                   (5.98) 

 

with substitution of ωs by 
max

d/ GG
τ

ω
2

0 = . The latter relationship shows that under assumption 

(5.97) the temperature dependence of the diffusion coefficient does not change the form of the 

α  versus τ  relationship. 

The average length of a nylon 6,6 polymer chain is about 50-100 µm (each polymer chain 

contains about 105 groups while the length of a polymer group rg is about 10 Å). This length 

is comparable to the thickness of a sample 120-140 µm [275]. Thus, the movement of the 

chains is most likely occurring in the plane of the sample. This fact correlates with the values 
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of the space fractional dimension dG. For all of the samples dG ∈ (1, 2) (see Table 4). 

Thereby, the Euclidean dimension of the space in which chain movement occurs is dE = 2. 

 

Table 4. The space fractional dimension dG, the cutoff time of the scaling in the time domain 
τ0 and the characteristic frequency 0ω for quenched polymer (QN), crystalline (CN) and 
micro-composite samples (MCN). Source: Reproduced with permission from Ref. 2. 
Copyright 2002, Sage Publications. 

Sample dG τ0 [ms] ω 0 [kHz] 

QN 1.12±0.01 1.1±0.1 5.9±0.3 

CN 1.20±0.05 5.8±4.4 9.7±1.9 

MCN 1.04±0.02 1.5±0.4 8.1±0.7 
 

 

Although there is no unambiguous data for the mesoscale structure of the samples under 

investigation at this time, nevertheless it is possible to estimate the order of magnitude of 

some physically significant quantities from the cutoff time τ0 and characteristic frequency ω0 

values. Despite the fact that ω0 and ωs have different physical significance, for the estimation 

one can neglect the temperature dependence of the diffusion coefficient and assume that 

≈2
0R 10-16 m2 ( 0R  is the cube root of the volume occupied by one polymer chain), ≈G 1. 

Then, the self-diffusion coefficient evaluated by expression (5.15) falls into the interval 10-14 

to 10-13 m2s-1, which is typical for such polymer materials [279-281]. 

The cutoff time τ0 is related to the size of the cooperative domain lc by 0
2 4 τ Dlc = . Thus, 

in the two-dimensional case one can estimate the number of polymer groups, ng in the 

cooperative region as ≈= 22 / gcg rln 102, which is in fair agreement with the results obtained 

in the paper [282]. 

One can also see from Table 4 that the presence of either the crystalline phase or the kevlar 

fibers in a sample leads to an increase of the cutoff time τ0, indicating a slowdown of the 

relaxation process. Their presence also leads to an increase of the ω0 value as well. This is a 

manifestation of a decreasing mobile polymer chain length. 

Concluding this section we can summarize as follows: the model of symmetric relaxation 

peak broadening presented here is not universal. However, it was illustrated through two 

examples that this model can describe some common features of relaxations of this type. 

Thought, not a universal model, it, nevertheless, provides the relationship between 
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microscopic parameters of experimental samples and properties of experimentally measured 

macroscopic correlation functions. Thus, we hope that it may be useful in other cases where a 

dielectric relaxation of the Cole-Cole type is present. 
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6 Summary 
In conclusion, we would like to recapitulate the main goals of this tutorial. We 

demonstrated the effectiveness of dielectric spectroscopy as a tool for investigating complex 

materials. The unique capabilities of DS allowed us to investigate materials in a broad time 

scale range, to identify general relaxation phenomena and to discover new ones for the studied 

complex systems, independent of the particularity of the material. DS makes it possible to 

cover extremely wide continuous ranges of experimentally controlled parameters, a feature 

that no other existing spectroscopic method today can offer. Moreover, this method, once 

again as compared to the conventional radio spectroscopic techniques such as electron 

paramagnetic or nuclear magnetic resonance, is much simpler in terms of hardware 

realization. We also presented current state-of-the-art applications of DS including the 

resolution of some of the critical issues related to hardware and modern data treatment 

procedures, which make possible the recent achievements of this method. Last, but not least, 

in this tutorial we discussed some contemporary ideas that are currently employed by the 

dielectric community. In this regard the DS studies of different complex materials presented 

in this tutorial demonstrate the capability to generate new knowledge about the cooperative 

dynamics in quite different complex structures [283-286]. It was shown that despite the 

morphological differences of the systems studied, the most general feature of the relaxation 

processes observed by DS is the Non-Debye Dielectric Response, which is a consequence of 

the cooperative dynamics and confinement that also lead to Non-Arrhenius kinetics.  
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