Казанский государственный университет

Сборник задач по газовой динамике

Учебное пособие

Часть 1. Одномерные течения

Казань 2005

Печатается по решению кафедры аэрогидромеханики Казанского государственного университета (протокол №7 от 02.02.05.)

Составители: доцент каф. аэрогидромеханики Казанского университета Е.И.Филатов, ст. Г.Н.Чукурумова. Рецензент: д.ф.-м.н., проф. В.В.Клоков

Сборник задач по газовой динамике. Часть 1. Одномерные течения: учебное пособие / Сост. Е.И.Филатов, Г.Н. Чукурумова. Казань: Казанский государственный университет. 2005. – 51 с.

Учебное пособие предназначено для использования студентами специальности «механика» при изучении курса «Газовая динамика»

©Казанский государственный университет. 2005 г.

1. ОДНОМЕРНЫЕ ИЗЭНТРОПИЧЕСКИЕ ТЕЧЕНИЯ ГАЗА

Основными параметрами, отражающими состояние газа, являются ∂ авление, плотность и температура газа. Размерность давления $\left\lceil \frac{H}{M^3} \right\rceil$,

плотности $\left[\frac{\kappa z}{M^3}\right]$, температуры $\left[paд\right]$. Давление часто выражают в технических и физических атмосферах.

1 техническая атмосфера = $9,80665 \cdot 10^4 \frac{H}{M^2} = 735,6$ мм.рт.ст. ,

1 физическая атмосфера = 1,013 · 10⁵ $\frac{H}{M^2}$ = 760 мм. рт.ст.

Между температурными шкалами Кельвина и Цельсия имеет место соотношение $T^{\circ}K = 273 + t^{\circ}C$.

При нормальном атмосферном давлении на уровне моря $\left(1{,}013\cdot10^5\,\frac{\it H}{\it M^2}\right)$ и температуре $288^\circ\it K$, плотность воздуха

$$\rho = 1,23 \, \frac{\kappa \mathcal{E}}{\mathcal{M}^3} \,,$$
 а удельный вес $\gamma = 12,07 \, \frac{\mathcal{H}}{\mathcal{M}^3} \,.$

Давление, плотность и температура идеального газа связаны между собой *уравнением состояния* (Клапейрона):

$$p = R \rho T \,, \tag{1}$$

где R - удельная газовая постоянная; $\mathbb{R} = \frac{\partial \mathcal{H}}{\kappa \epsilon \cdot \epsilon pa \partial}$.(для воздуха

$$R = 287,1 \frac{\partial \mathcal{H}}{\kappa z \cdot zpa\partial}$$

При отсутствии теплообмена газа с внешней средой и при отсутствии необратимых потерь механической энергии между параметрами газа существует следующая зависимость:

$$p = C\rho^k \tag{2}$$

- уравнение изэнтропической адиабаты или равносильные зависимости

$$\frac{p}{p_0} = \left(\frac{\rho}{\rho_0}\right)^k; \frac{p}{p_0} = \left(\frac{T}{T_0}\right)^{\frac{k}{k-1}}; \frac{\rho}{\rho_0} = \left(\frac{T}{T_0}\right)^{\frac{1}{k-1}} \tag{3}$$

Здесь C - постоянная, выражающаяся через параметры начального состояния газа, $k=\frac{c_p}{c_v}$ - показатель изэнтропической адиабаты, c_p -

теплоемкость при постоянном давлении, $c_{_{\!\scriptscriptstyle V}}$ - теплоемкость при постоянном объеме.

Для одноатомных газов k=1,66, для двухатомных (воздух) k=1,40, для многоатомных k=1,33.

Теплоемкости воздуха при не слишком больших температурах:

$$c_{p} = 0.24 \frac{\kappa \kappa a n}{\kappa \epsilon \cdot \epsilon p a \partial} = 1003, 2 \frac{\partial \mathcal{H}}{\kappa \epsilon \cdot \epsilon p a \partial}$$
$$c_{v} = 0.173 \frac{\kappa \kappa a n}{\kappa \epsilon \cdot \epsilon p a \partial} = 716 \frac{\partial \mathcal{H}}{\kappa \epsilon \cdot \epsilon p a \partial}$$

Скорость звука может быть вычислена по формулам

$$a = \sqrt{\frac{kp}{\rho}}; a = \sqrt{kRT}; \tag{4}$$

$$a = 20,1\sqrt{T}$$
 при $k = 1,4$, $R = 287 \frac{\partial \mathcal{H}}{\kappa \varepsilon \cdot \epsilon pad}$. (5)

Важнейшими газодинамическим параметром является *число Маха* $M = \frac{V}{a}$ - отношение скорости движения газа к местной скорости звука в нем.

В расчете одномерных адиабатических течений идеального газа главную роль играет уравнение сохранения энергии (Бернулли):

$$\frac{V^2}{2} + i = i_0$$
, где \dot{l} - энтальпия; $\blacksquare \pm \frac{\partial \mathcal{H}}{\kappa z}$; (6)

$$i = \frac{a^2}{k - 1} = \frac{k}{k - 1} \frac{p}{\rho} = \frac{kRT}{k - 1},\tag{7}$$

 i_{0} - энтальпия газа в заторможенном состоянии; соответственно T_{0}, p_{0}, ρ_{0} - параметры торможения потока.

Полную энергию энергетически изолированного газа характеризует максимальная теоретическая скорость течения $V_{\scriptscriptstyle{\max}}$:

$$V_{\text{max}} = \sqrt{2i_0} = \sqrt{\frac{2kRT_0}{k-1}} \ . \tag{8}$$

Для изэнтропических процессов уравнение (6) может быть записано в эквивалентных формах:

$$\frac{T}{T_0} = 1 + \frac{k-1}{2}M^2; \quad \frac{p_0}{p} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}; \quad \frac{\rho}{\rho_0} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{1}{k-1}}. (9)$$

Первая из формул (9) пригодна для расчета и неизэнтропических адиабатических течений.

Если скорость движения газа и местная скорость звука в газе совпадают по величине, то обе скорости носят название *критических:* $V_{\kappa p} = a_{\kappa p}$. Критическая скорость звука (или критическая скорость) может быть выражена через параметры торможения газа. В частности,

$$a_{kp} = \sqrt{\frac{2kRT_0}{k+1}} \ . \tag{10}$$

Параметры газа, скорость движения которого равна по величине местной скорости звука в газе, называются *критическими параметрами*.

Критическим параметрам соответствует число M=1 . Из формул (9) вытекает:

$$T_{kp} = \frac{2}{k+1} T_0; p_{kp} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} p_0; \rho_{kp} = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \rho_0.$$
 (11)

При k = 1,4 имеем:

$$T_{kp} = 0.831T_0; p_{kp} = 0.528 p_0; \rho_{kp} = 0.636 \rho_0; a_{kp} = 18.3 \sqrt{T_0}$$
.

Уравнение энергии применяется также в одной из следующих форм:

$$\tau = \frac{T}{T_0} = 1 - \frac{k-1}{k+1}\lambda^2; \ \pi = \frac{p}{p_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{\frac{k}{k-1}}; \varepsilon = \frac{\rho}{\rho_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{\frac{1}{k-1}}, (12)$$

где $\lambda = \frac{V}{a_{kp}}$ - коэ ϕ фициент скорости, τ , π и ϵ - газодинамические

функции (см. табл. 4).

При решении многих задач пользоваться коэффициентом скорости λ удобнее, чем числом M . Между числом λ и числом M имеется следующая связь (табл.4) :

$$\lambda^2 = \frac{\frac{k+1}{2}M^2}{1 + \frac{k-1}{2}M^2} \,. \tag{13}$$

Практически важным примером течения газа, которое с хорошим приближением может считаться одномерным и изэнтропическим,

является расчетное его истечение из резервуара через сопло, когда давление на срезе сопла равно давлению во внешней среде, внутри сопла нет скачков уплотнения и в минимальном сечении сопла скорость газа равна скорости звука. При подсчете секундного расхода газа через сопло удобно пользоваться функцией q(M) - npuведенным ceкундным pacxodom:

$$q = \frac{\rho V}{\rho_{kp} a_{kp}} = \frac{F_{kp}}{F},\tag{14}$$

где F_{kp} - площадь критического сечения сопла, F - площадь сечения, в котором достигается скорость V :

$$q = \left(\frac{k+1}{2}\right)^{\frac{k+1}{2(k-1)}} M \left(1 + \frac{k-1}{2} M^2\right)^{\frac{k+1}{2(k-1)}}$$
или $q = \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \lambda \left(1 - \frac{k-1}{k+1} \lambda^2\right)^{\frac{1}{k-1}}.(15)$

Значения q(M) и $q(\lambda)$ приведены в табл.4.

При истечении газа через сужающееся (конфузорное) сопло *секундный весовой расход* рассчитывается по формуле:

$$G_{t} = B_{G} \frac{p_{0}}{\sqrt{T_{0}}} Fq \left(\frac{p_{a}}{p_{0}}\right)$$
, если $\frac{p_{a}}{p_{0}} > \frac{p_{\kappa p}}{p_{0}}$ и $G_{t} = B_{G} \frac{p_{0}}{\sqrt{T_{0}}} F$, если $\frac{p_{a}}{p_{0}} \leq \frac{p_{\kappa p}}{p_{0}}$. (16)

В формулах (16) F - площадь выходного сечения сопла; p_a -

давление во внешней среде, постоянная $B_G = \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}} \frac{g}{\sqrt{R}}$; $B_G = 0,4$

при
$$k=1.4$$
; $R=287\frac{\partial \mathcal{H}}{\kappa z \cdot zpa\partial}$; $g=9.8\frac{\mathcal{M}}{ce\kappa^2}$.

В некоторых задачах весовой секундный расход вычисляется по формуле:

$$G_{\scriptscriptstyle t}=B_{\scriptscriptstyle G}\,rac{p}{\sqrt{T_{\scriptscriptstyle 0}}}\,Fy(\lambda)$$
 ,где газодинамическая функция $y(\lambda)=rac{q(\lambda)}{\pi(\lambda)}$ (см. табл.).

 $\it Maccoвый \, ceкундный \, pacxod \, m_{\scriptscriptstyle t} = {G_{\scriptscriptstyle t} \over g}$, причем если брать давление в ${H \over M^2}$,

где
$$B_m = \sqrt{\frac{k}{R} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}$$
; $B_m = 0.0405$ при $k = 1.4$ и $R = 287 \frac{\partial \mathcal{H}}{\kappa \varepsilon \cdot \varepsilon pad}$.

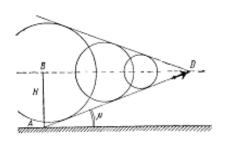


Рис. 1

 $1.\Pi$ остроить положения звуковой волны в момент времени $t=1,2,3ce\kappa$ от ее возникновения для случаев, когда звук распространяется в среде, движущейся со скоростью: а)

$$V = 0$$
, 6) $V = \frac{a}{2}$, b) $V = a$, Γ)

V = 2a

(a - скорость звука). Определить положение огибающей звуковых волн.

- 2. Звук работы двигателя зарегистрирован через 2,15 $ce\kappa$ после пролета самолета над пунктом регистрации. Определить скорость полета, если высота $H = 1\kappa M$ (рис.1).
- 3. Определить максимальную скорость потока воздуха, при которой воздух можно рассматривать как несжимаемую жидкость, если допустимо пренебрегать изменениями его плотности до 1%. Параметры торможения стандартные на уровне моря.
- 4. На высоте $H = 11000 \, \text{м}$ самолет достиг скорости $300 \, \frac{\text{м}}{\text{cek}}$. С

какой скоростью происходит полет: с дозвуковой или со сверхзвуковой?

5. До и после изэнтропического сжатия в некотором объеме

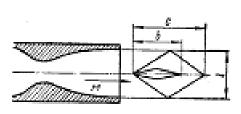


Рис. 2

воздуха произведены измерения скорости звука. Определить порядок изменения плотности воздуха, если скорость звука возросла на 3%.

6. В двух полетах на высоте $H = 12 \kappa M$ махметр показывал число Маха полета M = 2,1. В первом полете температура воздуха

отличалась от стандартной на $+15^{\circ}$, а в другом — на -15° . Найти разницу истинных воздушных скоростей в полетах.

- 7. Найти соотношение между шириной сверхзвуковой струи $\it l$, длиной модели тонкого тела $\it b$ и числом $\it M$ потока (рис.2), при котором будет корректной продувка модели. Условие корректности опыта. $\it b < c$.
- 8. Средняя по длине ЖРД температура продуктов сгорания $T_{cp}=2000\,^{\circ}\,K$. Через какой промежуток времени $\Delta\,t$ малое изменение в подаче топлива скажется на тяге двигателя, если длина двигателя от форсунок до среза сопла $L=1500\,\rm MM$, скорость истечения $V_{ucm}=2500\,\frac{\rm M}{ce\kappa}$. Считать, что k=1,2; $R=294,3\,\frac{\partial {\rm MC}}{\kappa z \cdot zpa\partial}$.
- 9. Найти собственную акустическую частоту колебаний газового столба в камере сгорания ПВРД, длина которой L=1,5 $_{M}$, если показатель адиабаты для продуктов горения k=1,35; газовая постоянная R=289,4; средняя температура газов $T_{cp}=500$ $_{C}$ K.
- 10. В потоке воздуха без ударных волн махметр показывает в одной точке угол Маха $\mu_1=27,7^\circ$, в другой $\mu_2=35,8^\circ$. Каково соотношение между статическими давлениями в этих точках?
- 11. По теневому фотоснимку обтекания иглы сверхзвуковым потоком воздуха измерен угол β = 28 $^{\circ}$ между поверхностью слабой

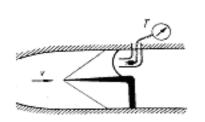


Рис. 3

конической волны и направлением невозмущенного потока (рис.3). Термопара, открытая навстречу потоку, показывает температуру $289^{\circ}K$. Найти скорость потока.

12. Температура движущегося газа $t = -169^{\circ}C$. Найти величину составляющей скорости газа, нормальной к линии Маха.

13.Найти скорость звука, числа M и λ для струи воздуха, вытекающей

из баллона со скоростью, равной половине максимальной теоретической скорости истечения. Температура в котле $127\,^{\circ}C$.

14. Какие параметры (давление, температура) должен иметь воздух в форкамере сверхзвуковой трубы, чтобы при расчетном расширении он вытекал в атмосферу со скоростью $800\frac{M}{ce\kappa}$ при

 $t = -70^{\circ} C$? Каково при этом будет соотношение между плотностью воздуха в струи и плотностью при нормальных условиях?

Примечание. Здесь имеется в виду простейшая труба с соплом, отрытым в атмосферу.

- 15. Какую максимальную скорость воздуха можно получить в сверхзвуковой трубе без подогрева, если учесть, что воздух сжижается при $T = 78^{\circ} K$?
- 16. Какой подогрев воздуха в баллоне при давлении $p_0=20$ ата надо обеспечить, чтобы получить при расчетном истечении в атмосферу скорость $700\frac{M}{ce\kappa}$?
- 17. По трубе, диаметр которой увеличивается от $d_1=1cM$ до $d_2=1,8cM$, течет поток воздуха, имеющий в первом сечении скорость $V_1=400\frac{M}{ce\kappa}$, давление $p_1=0,84ama$ и температуру $t_1=20^{\circ}C$. Найти соотношение между числами Рейнольдса по диаметру трубки во втором и первом сечениях.

Vказание: коэффициент вязкости вычислить по формуле $\frac{\mu_2}{\mu_1} = \left(\frac{T_2}{T_1}\right)^n$, где n=0.76.

- 18. В сверхзвуковой трубе без подогрева с открытой рабочей частью моделируется обтекание натурного объекта, предназначенного для полета на высоте $H=30\kappa M$ со скоростью $V_{_{\!H}}=3000\,\frac{\kappa M}{uac}$. Характерный линейный размер натуры $l_{_{\!H}}=5 M$. Допустимый максимальный размер модели $l_{_{\!M}}=0,2 M$. Какое давление в форкамере трубы обеспечивает правильное моделирование по числам M? Какова при этом будет скорость потока воздуха в рабочей части? Как обеспечить Моделирование по числам M и Re?
- 19. Статическое давление в закрытой рабочей части дозвуковой трубы, в сечении свободным от модели, равно нормальному атмосферному. Давление торможения в потоке $p_0=1,57\,ama$, температура торможения $T_0=288^\circ K$. Какое минимальное число Рейнольдса при этом может быть достигнуто по диаметру миделя осесимметричной модели,

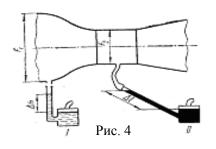
скорости и плотности невозмущенного потока, если диаметр рабочей части трубы D = 2 M ?

- 20. Сравнить секундные расходы и скорости истечения воздуха из баллона (в начальный момент), которые можно получить при расчетном расширении воздуха до атмосферного давления: 1) в случае, когда в баллоне $t_{10} = 15^{\circ}C$; $p_{01} = 10$ атма; 2) в случае изохорического подогрева воздуха до $t_{01} = 450^{\circ}C$ от тех же начальных параметров. Критические сечения сопел в обоих случаях одинаковые.
- 21. Решить предыдущую задачу, считая, что перед истечением воздух нагревается изобарически.
- 22. Найти порядок величины объемно секундного расхода воздуха при закритическом истечении через сопло с площадью критического сечения $F_{\kappa\rho}=0.1 M^2$, если термометр, помещенный в поток, показывает $15^{\circ}C$.

Примечание. Термометр, помещенный в поток газа, показывает температуру, весьма близкую к температуре торможения.

- 23. Воздух течет по трубе переменного сечения. Число Маха в первом сечении трубы $M_1\!=\!1$, а во втором сечении $M_2\!=\!2$. Каково соотношение между скоростями воздуха в первом и втором сечениях?
- 24. Как изменится кинетическая энергия единицы объема воздуха при движении по расширяющейся трубе с увеличением числа M от $M_1 = 1$ до $M_2 = 2$? Объяснить результат.
- 25. Найти соотношение мощностей, необходимых для работы аэродинамической трубы на одном и том же числе M, если рабочим газом служит: 1) воздух; 2) фреон, при одном и том же давлении (для фреона $k_\phi=1,12$; $\rho_\phi=4,18$ ρ_e). Мощность, необходимая для работы трубы, пропорциональна величине ρ V^3 .
- 26. В аэродинамической трубе больших дозвуковых скоростей установлены два манометра (рис.4): I спиртовый, вертикальный, измеряющий разность между давлениями в форкамере и в рабочем помещении, и II ртутный, с наклоном трубки 30 градусов, измеряющий разность давлений в рабочей части трубы и в помещении.

Найти скорость потока, скорость звука, температуру и плотность воздуха в рабочей части, если первом манометре $\Delta h = 280\,\text{мм}$, а во втором - $\Delta l = 692\,\text{мm}$. Температура в форкамере $t = 17^{\circ}C$, давление в



рабочем помещении $p_a=98066 \, \frac{\mu}{M^2} \, .$ Степень поджатия $\frac{F_1}{F_2}=5 \, .$ Потери не учитывать.

27. К трубке Пито, помещенной в дозвуковой поток воздуха, присоединены два U-образных ртутных манометра (рис.5). Разность уровней в манометре I:

 $\Delta h_1 = 142$ мм, в манометре $\Pi: \Delta h_2 = 62$ мм. Неподвижный термометр, омываемый потоком, показывает $20^{\circ}C$. Найти скорость потока; $p_{\circ} > p_{\infty} > p$.

- 28. При каком показании Δh ртутного U-образного манометра, присоединенного к трубке полного напора (рис.6), свободная струя воздуха течет при числе M=0.5?
- 29. Найти форму труб, в которых (при одномерной постановке задачи): а) скорость потока растет линейно вдоль оси: V=nx, б) температура падает линейно вдоль оси: $T=T_0-mx$, массовый секундный расход m, считать заданным
- 30. Вывести уравнение, определяющее закон повышения давления по длине дозвукового конического диффузора.
- 31. Вывести уравнение обвода r(x) изоградиентного дозвукового диффузора ВРД.

Примечание. Изоградиентные диффузоры (те, для которых $\frac{dp}{dx} = const$) отличаются от конических более высокими коэффициентами восстановления давления.

32. Сопло Лаваля работает в докритическом режиме. В минимальном сечении сопла давление $p_1=0,8ama$. В среде, куда происходит истечение, давление $p_a=1,0ama$. Площади минимального и выходного сечений сопла равны $0,1m^2$ и $0,15\,m^2$ соответственно. Определить безразмерные скорости в минимальном и выходном сечениях сопла.

- 33. Воздух истекает из баллона в атмосферу через конфузорное сопло с диаметром выходного сечения $3c_M$. В котле температура $t=127\,^{\circ}C$ и давление $p_0=10$ атма. Найти массовый секундный расход воздуха через сопло.
- 34. Найти площади входного и выходного сечений F_1 и F_2 дозвукового диффузора ВРД для полета при числе $\lambda_1=0,8$ на высоте H=2000~m, если: 1) максимальный секундный расход воздуха через диффузор $m_i=200\frac{\kappa \mathcal{E}}{ce\kappa}$; 2) на выходе из диффузора безразмерная скорость не должна превышать $\lambda_2=0,2$; 3) потерями полного давления пренебречь.
- 35. Подобрать площадь критического сечения сверхзвукового сопла, обеспечивающую секундный расход воздуха $m_i=1$ $\frac{\kappa c}{ce\kappa}$, если истечение расчетное, давление торможения $p_0=5$ ama, температура торможения $t_0=15^{\circ}C$.
- 36. Вычислить массовый секундный расход воздуха через сопло Лаваля при следующих условиях: 1) площадь выходного сечения сопла $F_{_{\theta bb X}} = 10 c M^2$; 2) давление торможения $p_0 = 1,3 ama$; 3) температура торможения $T_0 = 288^\circ K$; 4) давление во внешней среде $p_a = 1,03 ama$.
- 37. Задано соотношение площадей выходного и минимального сечений сопла $\frac{F_1}{F_{\text{мин}}} = 2$ (рис.7). При каких соотношениях давлений $\frac{p_a}{p_0}$ можно применить для расчета массового секундного расхода воздуха

через сопло формулу

$$m_{t} = 0.0405 \frac{p_{0}}{\sqrt{T_{0}}} \cdot F_{MuH} = ?$$

38. Как изменится массовый секундный расход воздуха через сопло, если в условиях предыдущей задачи принять внешнее давление $p_a = 0.98 p_0$?

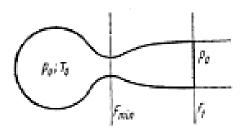


Рис. 7

39. Оценить порядок объема баллонов au_{σ} , необходимых для обеспечения работы в течении минимум $25 ce\kappa$ сверхзвуковой трубы с открытой рабочей частью, на M_1 = 1,5; M_2 = 2,0; M_3 = 2,5. Площадь выходного сечения у всех сопел $F_{\rm ebx}$ = 0,009 ${\rm M}^2$. Начальное давление в баллонах $p_{\sigma H}$ = 150 ama.

Считать для упрощения: 1) на пуск и остановку трубы уходит 5сек (с полным расходом); 2) расширение воздуха в баллонах—изотермическое, при $T_0 = 290^\circ K$; 3) минимальное давление в баллонах $p_{\sigma.k}$ связано с p_0 (давлением в форкамере) соотношением $p_{\sigma.k} = \frac{p_{0i}}{n}$, где p_0 отражает потери полного давления между баллонами и форкамерой.

- 40. Из баллона объемом $\tau=1$ $_{M^3}$ воздух вытекает в атмосферу через конфузорное сопло с площадью $F_{_{6bx}}=0.5c$ $_{M^2}$. Сколько времени будет продолжаться истечение с постоянным секундным объемным расходом, если начальное давление в баллоне $p_{0n}=100$ атма и процесс понижения давления можно считать изотермическим при температуре $288^{\circ}K$?
- 41. Воздух истекает адиабатически в атмосферу из баллона через конфузорное сопло. Процесс расширения воздуха в баллоне тоже адиабатический. Составить уравнение, отражающее зависимость весового секундного расхода от времени для закритического режима истечения и по условиям задачи 40 найти время закритического истечения.
- 42. Воздух вытекает из камеры через конфузорное сопло. Давление в камере $p_0=1,89ama$, давление во внешней среде $p_a=1ama$. Как изменится реактивная сила R, испытываемая камерой, если камеру и сопло погрузить в воду на глубину 7.7 M, при сохранении прежнего давления в камере?

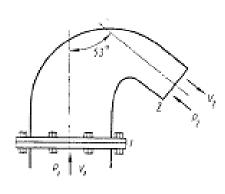


Рис. 8

43. По трубе (рис. 8) выбрасывается в атмосферу воздух с поворотом потока на 127°. В сечении 1 статическое $p_1 = 1,3ama$, давление выходном сечении 2 давление $p_2 = 1.0ama$. Плошаль первого сечения $F_1 = 1M^2$, площадь выходного сечения $F_2 = 0.5 M^2$. Температура торможения воздуха $T_0 = 289^{\circ} K$.

Пренебрегая

потерями, определить R – результирующую силу потока, действующую воздуховод между сечениями I и 2, и R_{pas} – суммарную разрывающую силу, действующую на болты крепления воздуховода к фланцу.

44. ЖРД при расчетном истечении должен дать на уровне земли тягу P=50 т. В камере сгорания $T_0=2700^\circ K$, давление $p_0=30$ ата , k=1,25; $R=344\frac{\partial\mathscr{H}}{\kappa\varepsilon\cdot\varepsilon pa\partial}$. Найти скорость истечения V_r , удельную тягу

 $P_{y\partial}$,весовой секундный расход G_t , размеры сопла (угол конусности 24 град).

45. Какую максимальную температуру должна выдерживать обшивка корпуса ракеты при полете в стратосфере со скоростью $V = 3816 \, \frac{\kappa M}{vac}$?

46. Зарегистрированный рекорд скорости полета самолета 1956г., достигнутый на высоте 11600 м, составляет $1882 \frac{\kappa M}{uac}$. Определить температуру обшивки крыла самолета, пользуясь понятием коэффициента восстановления температуры. Ввиду малой толщины крыльев считать местное число Маха равным числу Маха полета.

47.Найти динамическую добавку давления в носовой точке фюзеляжа самолета, летящего при M=0,7 на уровне земли. Определить ϵ - ошибку, которая получится, если определять $p_{\scriptscriptstyle \partial u H}$ без учета сжимаемости воздуха.

48. Дать приближенную оценку относительному приращению скорости в точке крыла, где относительное уменьшение давления составляет 10%. Крыло обтекается потоком при $M_{\odot} = 0.6$ (рис.9).

Указание: использовать линеаризованное уравнение Бернулли.

49. Рассмотреть аналогию между одномерным течением газа и

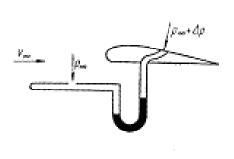


Рис. 9

потоком жидкости горизонтальному каналу, форма поперечного сечения которого задана соотношением $y = f(x)z^{1,5}$. Здесь f(x) – функция, характеризующая изменение поперечного площади канала вдоль его оси: z. вертикальная, у - горизонтальная координаты.

1. Определить, какому газу соответствует рассматриваемая аналогия. 2.

Установить соответствие между плотностью, давлением, температурой газа, местной и критической скоростью звука в газе и местным уровнем жидкости в канале.

50. Газогидравлическая аналогия (см. предыдущую задачу), осуществленная в канале с сечением прямоугольной формы, позволяет найти параметры одномерного течения, так называемого гипотетического газа, показатель изэнтропы которого $k_{\mathit{cun}} = 2$. В некотором сечении канала гипотетический газ имеет число Маха $M_{\mathit{cun}} = 3$. Найти число Маха одномерного течения воздуха, в соответствующем сечении газовода.