КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет географии и экологии

Основы работы в программе «TAS»

Учебно-методическое пособие

Казань Казанский государственный университет 2008

Печатается по решению учебно-методической комиссии факультета географии и экологии

Составитель: кандидат географических наук, К.А.Мальцев, С.В.Салун

Основы работы в программе TAS: Учебно-методическое пособие / К.А. Мальцев. – Казань: Казанский государственный университет им. В.И. Ульянова-Ленина, 2008. – 24 с.

Программное обеспечение «TAS» разработанное Dr. John Lindsay предназначено для пространственного анализа растровых моделей рельефа. Учебно-методическое пособие «Основы работы в программе Tas» рекомендовано для освоения данного ПО студентами специальности экология, а также специальности природопользование и может быть использовано для обеспечения курсов «Математические методы в ландшафтной экологии» и «Спецпрактикум». Также данное пособие может понадобиться студентам выше указанных специальностей при подготовке своих курсовых и дипломных проектов.

Оглавление.

Раздел 1. Импорт - экспорт данных, настройки, трансформация проекций и	Ν
систем координат, привязка фотографических данных	4
Раздел 2. Импорт и экспорт растровых и векторных данных	4
Раздел 3. Конвертация данных с произвольной системой	6
координат растровых карт	6
Раздел 4. Трансформация проекции	8
Раздел 5. Предобработка растровой модели рельефа	8
Раздел 6. Территориальный анализ.	15
Раздел 7. Гидрологический анализ водосборов	23
Раздел 8. Морфометрический анализ водосборов	25

Раздел 1. Импорт - экспорт данных, настройки, трансформация проекций и систем координат, привязка фотографических данных

Работа в системе TAS начинается с настройки рабочей директории. Эта процедура осуществляется в пункте меню «File» -> «Set Working Directory», а также дублируется нажатием на кнопку . После этого появляется диалоговое окно «Set Working Directory», которое предлагает задать рабочую директорию.

💫 System Settings	×
Display Settings: Default Image Palette:	Printer Settings:
grey.plt	Printer Name: Microsoft Office Document I Print Quality: High
Default Vector Palette:	Paper Tray: Default
lightblue.plt lightgray.plt mono_black.plt	# of Copies: 1 + Print grey-scale O Print colour
Workspace Colour:	Size: A4 Vinits: mm
Auto-scale images to 80 % of the screen's smallest dimension	Width: 209.99 Height: 296.99 Orientation: Portrait Landscape
Display resolution: 96 pixels/inch	Margins: Left: 0.5 Top: 0.5
 Always re-center images Display legend with image 	Right: 0.5 Bottom: 0.5
Keep dialog boxes open	OK Cancel

Рис.1.

Затем необходимо задать некоторые настройки, используя подпункт меню «System Settings» пункта главного меню «File». Здесь (рис.1) можно задать палитры по умолчанию для отображения растровой и векторной информации в соответствующих блоках «Display Image Palette» и «Display Vector Palette», а также настройки принтера в правой части окна. Более подробно описывать данное окно нет необходимости, так как все сильно похоже на стандартные, написанные под ОС Windows программы.

Раздел 2. Импорт и экспорт растровых и векторных данных

Импорт и экспорт растровых и векторных данных осуществляется через пункт главного меню «File» подпункт «Import/Export». В зависимости

от того, какие данные векторные или растровые нужно конвертировать выбираем подпункты третьего уровня «Vector» или «Raster» данного пункта главного меню (пример, File->Import/Export->Vector). В результате этих манипуляций получаем диалоговое окно, представленное на рисунке 2.

nput File Name:	Output File Name:	
Import Options:	Export Options:	Dperate in batch mode
O Idrisi binary format	O Idrisi binary format	
C Idrisi ASCII	C Idrisi ASCII	Vermont.grd
GRASS ASCII	GRASS ASCI	
O ArcView raster binary format	C ArcView raster binary format	
C ArcView raster ASCII format	ArcView raster ASCII format	
Surfer ASCII Grid	O ASCILXYZ	
O SRTM DEM	Input file must be floating point.	
O Device Independent Bitmap	Use 'Convert Data Type' if it is not.	I
C Ordnance Survey grid (ntf)		

Рис.2

В верхней левой строке «Input File Name» вводится имя исходного файла, а в строку «Output File Name» имя выходного файла. В блоках «Import Options» и «Export Options» можно задать те форматы данных, которые необходимо преобразовать.

Система конвертации геоинформационной системы позволяет импортировать следующие растровые форматы: «GRASS ASCII File», «Idrisi Binary File», «Idrisi ASCII File», «ArcView Binary Raster Format», «ArcView ASCII Raster Format», «Surfer ASCII Grid», «SRTM Data», «Divice Independent Bitmap», «Ordnance Survey Grid(ntf)» в формат данной геоинформационной системы. Экспорт осуществляется в несколько меньшее количество форматов: «Idrisi Binary File», «Idrisi ASCII File», «ArcView Binary Raster Format», «ArcView ASCII Raster Format», «ASCII XYZ».

🔗 Import/Export Vector File	×					
Input Vector File:	Output Vector File Name:					
Import Options:	Export Options:					
Arc Shapefile	GRASS ASCII					
C GRASS ASCII	Idrisi ASCII (*.vxp)					
C Idrisi ASCII (*.vxp)	C XYZ (tab deliminated)					
C XYZ (tab, space or comma)						
OK Ca	incel I/E Raster					

Рис. 3

Система конвертации геоинформационной системы позволяет импортировать следующие векторные форматы: *.shp файлы системы ArcView; ASCII файлы GRASS; *.vxp файлы в кодировке ASCII системы Idrisi; XYZ с разделителями (tab, space, comma). Экспорт осуществляется в несколько меньшее количество форматов: ASCII файлы GRASS; *.vxp файлы в кодировке ASCII системы Idrisi; XYZ с разделителями (tab, space, comma) (рис.3). Доступ к импорту и экспорту возможен также с панели инструментов в верхней части интерфейса через кнопку

Раздел 3. Конвертация данных с произвольной системой

координат растровых карт.

Система TAS позволяет трансформировать системы координат векторных и растровых моделей. Осуществляется это через пункт главного меню «**Pre-processing**» подпункт «**Coordinate System Transformations**». В результате этих действий появляется диалоговое окно (рис.4).

🖀 Coordinate System Transformations 💦 👔	<								
Input:									
File Type: Haster Image									
File Name:									
Ellipsoid: WGS 84									
a 6378137 a 6356752.314									
Output:									
Desired Grid Resolution (approx.) : m									
Background Value: 0									
Resampling Method: Bilinear									
Projection Information:									
Current Projection: Latitude/Longitude									
Zone:									
Desired Projection: UTM									
OK Cancel									

Рис.4

В первой строке «File Type» задается тип данных, которые необходимо трансформировать (векторные или растровые). Вторая строка «File Name» – это имя файла, данные из которого необходимо конвертировать. Третий пункт «Ellipsoid» определяет, какой эллипсоид использует система координат исходных данных. В блоке «Output» в первой строке задается информация, как будет сохранен результирующий файл. В строке ввода «Desired Grid Resolution (approx)» указывается в метрах разрешение в новой растровой модели. В строке «Background Value» вводится значение для узлов, где вычисление значения невозможно. В строке «Resampling Method» представлены два метода расчета значений в узлах сетки новой растровой модели: «Bilinear» - билинейная интерполяция; «Nearest Neighboor» – метод ближайшего соседа. В последнем блоке «Projection Information» указывается, в какой проекции («Current Projection») представлена исходная информация, а в строке («Desired Projection») задается требуемая проекция.

Раздел 4. Трансформация проекции

Осуществляется трансформация через пункт меню «**Pre-processing**» подпункт «**Dutum Transformation**». После выбора этого пункта меню появляется окно, представленное на рисунке 5. Данный интерфейс позволяет перевести данные, координаты которых представлены долготой и широтой (Lattitude/Longitude) или универсальной системой координат Меркатора (UTM) в одну из региональных систем координат, набор которых представлен в правой части окна.

💫 Datum Transformation	×
Input: File Type: Raster Image	Datum Information: Current Datum: WGS 84
File Name:	Ellipsoid: WGS 84 Region: Global
Zone: IN Elevation Units: Meters O Centimeters O Decimeters	Desired Datum: NAD 27
O Feet O None Output File Name:	Region: Canadian Mean Caribbean Mean Central American Mean OK Cancel

Рис.5

Раздел 5. Предобработка растровой модели рельефа.

В данном разделе будут рассмотрены функции, которые реализованы в пункте меню «**Pre-processing**» и направлены главным образом на верификацию (ЦМВ) с гидрологической точки зрения. Это необходимо, например, для автоматического построения гидрографической сети.

Первый подпункт этого меню «Interpolation», реализует один метод интерполяции и построение TIN моделей.

Пункт «**Remove Depression**» предназначен для удаления локальных бессточных западин различными методами. Первый метод, расположенный в подпункте меню «**Fill Single-Pixel Pits**», удаляет локальные бессточные понижения размером в один пиксель. Удаление происходит путем изменения высоты этого узла на самую маленькую высоту 8 соседних узлов.

Подпункт меню «Fill All Depressions» заполняет все локальные топографические понижения до низшей отметки их границы. После выбора этого пункта меню появляется диалоговое окно (рис.6). Первая строчка

«Input DEM» – это исходная ЦМВ, вторая строка «Output DEM Name» - это результирующая ЦМВ. В блоке «Elevation Units» задаются единицы, в которых измеряется высота. В блоке «Options» можно задать какую методику нужно использовать для заполнения локальных депрессий. Методика, реализованная в первом пункте более эффективна, чем вторая методика. При заполнении локальных западин образуются абсолютно плоские поверхности, по которым вода в теории никуда не должна течь. Для устранения этого эффекта предусмотрен переключатель «Enforce drainage on flats». При его включении эта плоская поверхность незначительно наклоняется, что позволяет избежать областей с нулевым градиентом.

Remove Topographic Depressions
Input DEM:
Output DEM Name:
Elevation Units:
Meters C Centimeters
C Decimeters C Feet
Options:
Filling Method:
Planchon and Darboux (Recommended)
C Jenson and Domingue
Enforce drainage on flats
OK Cancel

Рис. 6

Подпункт меню «Selective Depression Filling» позволяет заполнять только локальные западины, удовлетворяющие определенным условиям. После выбора данного пункта меню появляется окно, представленное на рисунке 7.

В верхнем левом углу в строках «Input Image» и «Output Image name» вводятся имена исходной растровой модели и результирующей. Блок «Filters» позволяет конструировать относительно сложные условия отбора депрессий для заполнения. Отбор может осуществляться по следующему набору критериев, характеризующих депрессию: количество узлов депрессии – «# of Cell»; «Area» - площадь; «Max Depth» - максимальная глубина; «Avg Depth» - средняя глубина; «Volume» - объем; «Elevation» - высота. Пример условия отбора можно увидеть на рисунке 7. После задания имен исходной и результирующей моделей необходимо нажать на кнопку «Continue» - TAS начнет поиск локальных депрессий на исходной модели и расчет параметров каждой депрессии. Эти расчеты могут занять от нескольких секунд до нескольких часов, все очень сильно зависит от размера файла исходной модели. Параметры каждой модели отображаются в таблице диалогового окна справа. Данная таблица позволяет оценить, какие же депрессии присутствуют на данной территории, а также помогает решить какие нужно убрать для дальнейшего анализа, а какие оставить. После анализа таблицы в блоке «Filters» задается условие и нажимается кнопка «Ок», которая появляется на месте кнопки «Continue». В результате будут заполнены только те депрессии, которые удовлетворяли условию. Результирующая модель будет записана в файл, который указан в строке «Output Image Name».

Selective Depression Removal									
Input Image:		Value:	0		Sor	t based on:	Area	•	Сору
rel_tas		Dep ID	# of Cells	Area	Max Depth	Avg Depth	Volume	Elevation	Fill Status
	0	1373	0	0	0	0	0	0	No
Output Image Name:	1	1042	0	0	0	0	0	0	No
[sel_dep	2	469	0	0	0	0	0	0	No
Filters:	3	336	0	0	0	0	0	0	No
Fill a depression if:	4	555	1	0.99783	0.04849	0.04849	483.8698	109.6845	N
Área 💌 🔪 30	5	1091	1	0.99783	0.01181	0.01181	117.8462	160.5194	N
	6	1096	1	0.99783	0.03008	0.03008	300.1729	70.82087	N
AND V Avg Depth V V 3	7	558	1	0.99783	0.26675	0.26675	2661.74	130.0064	N
	8	559	1	0.99783	0.35263	0.35263	3518.638	120.3752	N
	9	846	1	0.99783	0.00772	0.00772	77.04157	161.0827	N
	10	381	1	0.99783	0.02672	0.02672	266.6004	180.9277	N
• •	11	1192	1	0.99783	0.2263	0.2263	2258.11	122.7245	N
	12	1095	1	0.99783	0.0665	0.0665	663.5319	160.5045	N
	13	561	1	0.99783	0.25571	0.25571	2551.583	122.5411	N
Update Fill Status	14	1194	1	0.99783	0.05283	0.05283	527.1105	160.6665	N
Note: multiple filters are applied sequentially based on result of all previous filters.	15	1195	1	0.99783	0.08735	0.08735	871.5898	119.2532	N
Cantinua I Cancel I	16	562	1	0.99783	0.01314	0.01314	131.0925	140.2573	No
		4							Þ

Рис.7

Следующий подпункт меню «Breach all Depression» позволяет в отличие от предыдущих пунктов меню не заполнить депрессии, а изменить ЦМВ таким образом, что появляется дренаж. Суть этой процедуры заключается в понижении значений в узлах сетки ЦМВ до уровня минимального значения узла в депрессии на протяжении от этого узла до узла, расположенного на границе депрессии и имеющего минимальную отметку, а затем от него до ближайшей узла за депрессией с меньшим, чем дно депрессии значением. При нажатии на этот пункт меню появляется диалоговое окно (рис.8). В первых двух строках «Input DEM» и «Output **DEM Name**» хранятся имена файлов исходной и результирующей модели. В блоке «**Elevation Units**» можно задать единицы измерения высоты ЦМВ. В блоке «**Options**» можно задать метод обработки ЦМВ. При выборе «**Regular breaching**» дренируются все депрессии. Метод занимает больше времени. Второй метод быстрее, так как не происходит поиска минимальной отметки каждой депрессии водосборной площади и места стока депрессии. Однако быстрый метод довольно сильно изменяет ЦМВ в силу использования предварительного заполнения депрессии по методу Planchon и Darboux. Здесь также есть возможность усилить дренаж на плоских территориях включив свойство «**Enforce drainage on flats**»

💫 Depression Breaching	×
Input DEM:	
- Output DEM Name:	
- Elevation Linits	
Meters Centimeters	
C Decimeters C Feet	
- Options:	
 Regular breaching (slower but less impact) 	
 Fast breaching (faster but greater impact) 	
Enforce drainage on flats	
OK Cancel	

Рис. 8

В **«Constrained Breaching**» подпункте меню реализована комбинированная методика, включающая как заполнение депрессий, так и разрушение их плотин. При этом разрушаются только плотины, имеющие ширину не более двух узлов регулярной сетки. То есть, если в самом низком водосбора месте депрессии сделать шаг размером В два узла перпендикулярно границе бассейна, мы найдем узел сетки со значением меньшим, чем отметка дна депрессии мы разрушаем плотину (делаем «Breaching»). Все остальные депрессии заполняются. После выбора данного пункта меню появляется диалоговое окно, в котором необходимо задать имена входного и выходного файлов.

В подпункте меню «Impact Reduction Approach» также реализована комбинированная методика, включающая как заполнение депрессий, так и разрушение их плотин. Первое, что делает данный алгоритм – это делает две

копии ЦМВ. На одной копии заполняются все депрессии, а на другой разрушаются все плотины. Затем для каждой депрессии рассчитывается показатель, на основе которого принимается решение о заполнении депрессии или разрушении ее плотины. Таким критерием является степень изменения ЦМВ, обозначим его через «S». Для расчета этого критерия необходимо вычислить количество изменяемых узлов сетки при заполнении данной депрессии (а) и при разрушении ее плотины (а1), также нужно вычислить среднее по модулю значение, на которое были изменены узлы сетки входящие в депрессию при ее заполнении (b) и при разрушении плотины (b1). Если S больше или равно 1, то у депрессии разрушается плотина (выполняется «**Breaching**»), иначе выполняется заполнение.

$$S = 1/2(a/a1 + b/b1)$$
(1)

При выборе данного пункта меню появляется диалоговое окно, которое показано на рисунке 9. Первые две строчки служат для ввода имен входного и выходного файлов. В блоке «Elevation Units» определяются единицы измерения высоты в узлах регулярной сетки. В блоке «Options» пользователь может задать, что использовать в качестве критерия число измененных узлов сетки - «Number of modified cells» или среднее по модулю значение - «Mean absolute elevation difference».

💫 Impact Reduction Approach 🛛 🔀
-Input DEM:
Output DEM Name:
Elevation Units:
Meters C Centimeters
O Decimeters O Feet
Options:
Minimize based on the following criteria:
Number of modified cells
Mean absolute elevation difference
Enforce drainage on flats
OK Cancel

Рис. 9

Следующий пункт меню «**Remove spikes**» реализует методику удаления пиков размером в один узел сетки. Если в ближайших 8 соседних узлах нет значения больше или равного значению текущего узла, то значению текущего узла присваивается наибольшее значение из 8 соседних узлов. При выборе этого пункта меню появляется диалоговое окно, в котором нужно задать имена входного и выходного файлов.

Пункт меню «**Round Values**» округляет значения в узлах регулярной сетки до целого значения. При выборе данного пункта меню появляется диалоговое окно, в котором нужно задать имена входного и выходного файлов.

Пункт меню «Change Pixel Value» дает возможность пользователю значение узле сетки соответствии изменить В каждом В С его представлениями. После нажатия на данный пункт меню появляется диалоговое окно (рис.10). В верхней части диалогового окна представлены две строки ввода: в первой отображается значение текущего узла сетки, а во второй отображается название файла ЦМВ. Задать файл ЦМВ можно расположенные в узлах ЦМВ в сетку таблицы, которая расположена ниже. После корректирования всех необходимых значений нужно нажать на кнопку «Save» для сохранения результатов работы в тот же файл.

🍂 Data G	irid													
Value:	107.	.192 r	el br				Open	Save	Close					
	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058
/88	167.6333	165.2961	162.6254	159.8434	156.8891	153.517	149.8001	146.2584	143.0796	141.1329	140.9966	143.5124	147.1573	151.5257
789	166.7599	164.559	162.0463	159.3062	156.4157	153.1975	149.6779	146.3482	143.0642	141.158	140.9946	143.0797	146.2165	150.216
790	165.197	163.3547	160.8901	158.3079	155.459	152.3483	149.1195	146.0938	143.027	141.0818	140.6957	142.1856	144.696	148.0888
791	162.6622	160.8866	158.6924	156.206	153.6501	150.885	148.0679	145.3946	142.4511	140.7539	140.1514	141.1647	142.81	145.5811
792	159.5128	157.4881	155.4159	153.0913	150.9736	148.6941	146.5167	144.2648	141.5386	140.0809	139.3546	139.7758	140.7139	142.797
793	156.1854	153.5939	151.2748	149.3325	147.8302	146.0753	144.3917	142.6213	140.1932	138.9418	138.0363	138.1476	138.6535	140.0612
794	153.1696	149.9912	147.5014	145.7765	144.7771	143.4743	142.1	140.532	138.5814	137.3815	136.4809	136.3827	136.5993	137.5548
795	150.1657	146.575	144.0678	142.5496	141.8898	140.9732	139.7752	138.3916	136.7545	135.7215	134.9669	134.7771	134.876	135.5948
796	147.4564	144.1117	142	140.4535	139.7921	138.765	137.5636	136.1037	134.9563	134.1174	133.6527	133.608	133.8944	134.6829
797	142.1981	139.065	137.127	136.2688	136.0811	135.5224	134.8653	134.0168	133.3499	132.888	132.6947	132.94	133.4951	134.345
798	136.3932	134.0817	133.1637	133.0111	133.2481	133.0792	132.3358	132.3378	132.3398	132.4029	132.7131	133.281	134.0166	134.9096
799	130.4189	129.1725	129.0849	129.8724	130.9019	132.3338	133.085	133.4434	133.7391	134.0209	134.4396	134.9445	135.4616	136.1621
800	126.6496	126.1805	126.7049	128.2859	130.2145	132.1018	133.5942	134.6829	135.3918	135.8673	136.3549	136.7944	137.1752	137.5794
801	123.4767	123.1289	123.2499	124.9373	126.763	129.6286	132.3333	134.7811	136.3078	137.4056	138.1826	138.5538	138.619	138.7638
802	122.6749	123.2251	123.9275	125.0837	126.8215	129.3537	132.15	134.7612	136.8453	138.5161	139.6959	140.1773	140.1557	140.095
803	123.2565	123.9516	124.4187	125.5211	127.0164	129.3834	132.296	135.3658	137.8501	139.731	140.9732	141.4878	141.5916	141.5034
804	123.514	124.2125	125.2486	126.5004	127.8513	129.7429	132.3488	135.1224	137.6815	139.7553	141.2928	142.1911	142.5933	142.8043
805	123.5817	124.6008	126.0368	127.5285	129.0402	130.9021	133.2605	135.7092	138.2155	140.288	142.1235	143.2268	143.887	144.3049
806	123.7339	125.8551	128.4228	130.9362	133.1793	135.0949	136.9726	138.703	140.2992	141.9375	143.4316	144.574	145.3794	145.9688
807	125.108	127.7727	130.961	134.0956	136.807	138.8153	140.3765	141.7609	142.9905	144.0602	145.203	146.1159	147.0185	147.6608
808	126.3704	129.3084	132.7229	136.4024	139.2224	141.4223	142.8959	144.1095	145.1864	146.1399	146.9757	147.8532	148.6456	149.4056
809	127.7851	130.7266	134.1926	137.939	141.0377	143.2285	144.8102	146.0618	147.0832	148.0194	148.8801	149.6076	150.3363	151.0302
810	128.9967	131.6261	134.8356	138.5492	141.9198	144.4393	146.1646	147.6814	148.9001	149.842	150.6383	151.3993	152.0413	152.6881

Рис. 10

🂫 Pixel Aggregation 🔀
Input Image:
Output Image Name:
Output Options:
 Pixel Aggregation
Sub-grid Variability (BMS)
C Spatial Pattern of Sub-grid Variability
Reduction Factor: 2
OK Cancel

Рис. 11

Пункт меню «Pixel Aggregation» реализует методику сокращения детальности исходной ЦМВ. По сути, происходит объединение узлов нескольких ЦМВ в один. После отработки этой процедуры количество столбцов и строк растровой модели рельефа сокращается на п, где п-«Reduction Factor» (рис.11). Значение, которое записывается в новый узел регулярной сетки, может вычисляться по - разному: 1)если выбрать пункт «Pixel Aggregation» в блоке «Output Options», то будет рассчитано среднее значение, 2) если выбрать пункт «Sub-grid Variability (RMS)» то в новом узле растровой модели будет рассчитано среднеквадратичное отклонение, 3) при условии что выбран третий пункт итоговая растровая модель будет иметь те же параметры, которые были у исходной модели, а в ее узлах будут записаны отклонения текущего узла от среднего значения.

Следующий пункт меню «Crop to Sub-Region» позволяет вырезать часть растровой модели по границам другой модели. В строке «Input Image» задается исходная модель, которая будет обрезаться. В строке «Sub-Region Image» задается модель, по границам которой будет произведена обрезка, а в строке «Output Image Name» задается имя файла с выходной моделью.

Пункт меню «Crop to Object» производит вырезание по границе описывающего прямоугольника указанного объекта. После выбора данного пункта меню появляется диалоговое окно, которое представлено на рисунке 12. В первой строке блока «Object File» задается растровая модель с номинальными значениями. В строке «Object ID value» задается значение того объекта, по границам которого будет произведено вырезание. В строке «File to Crop» задается имя файла растровой модели, из которого будет вырезаться информация.

🔗 Crop To Object 🔀	
Object File:	
Object ID value:	
(cropping is based on object boundaries)	
File to Crop:	
leave blank if you want to crop the object file	
Options:	
Buffer size (grid cells):	
Output File Name:	
OK Cancel	

Рис. 12

Раздел 6. Территориальный анализ.

Широкий спектр задач территориального анализа реализованы в пункте меню «**Terrain analysis**». Здесь можно найти реализацию расчетов морфометрических коэффициентов, эрозионного потенциала рельефа, построение гидрографической сети, порядков потоков, границ водосбора и т.д.

Группа «**Primary Terrain Analysis**» объединяет пункты меню, которые реализуют расчет первичных характеристик рельефа. Эта большая группа методов разделена на подгруппы: 1 «**Surface Derivative**» - показатели, основанные на вычислении производной от поверхности; 2 «**Local Neighborhood**» – ряд показателей, для анализа которых используется локальное окружение узла растровой модели; 3 «**Extended Neighborhood**» - ряд показателей, используется не только локальное окружение узла растровой модели.

Подгруппа «Surface Derivative» включает расчет семи морфометрических показателей, вычисления которых рассчитаны на атрибутах узлов растровой модели в локальной окрестности 3*3: «Maximum Downward Slope» рассчитывается между текущим узлом сетки и самым

низшим узлом из локальной окрестности 3*3; «Slope» - уклон; «Aspect» - экспозиция; «Shaded relief» -расчет карты аналитической отмывки; «Plan curvature» - плановая кривизна; «Profile Curvature» - профильная кривизна; «Tangential curvature» - тангенциальная кривизна.

После нажатия на любой из этих пунктов появляется диалоговое окно, представленное ниже (рис.13). В строках «Input DEM Name», «Output Image Name» необходимо задать имена файлов исходной и результирующей растровых моделей. В блоке «Output» можно выбрать, какую величину мы будем рассчитывать. Блок «Options» предназначен для определения величины измерения уклона («Degree» - градусы или «Percent» - проценты).

🔗 Common Terrain Attributes	×
Input DEM Name:	Output Image Name:
Output: Slope O Plan curvature (deg/m) Aspect (deg.) O Profile curvature (deg/m) Shaded relief O Tangential curvature (deg/m) Surface curvature index	Slope measured in: Degrees Percent Angle of sun above horizon: 45 deg. Window (kernel) size: 3 cells OK Cancel

Здесь в строке «Angle of sun above horizon» также можно задать угол источника света над модельной поверхностью для расчета аналитической отмывки. Строка «Window (kernel) size» отвечает за определение размера окна при вычислении «Surface curvature index».

Рассмотрим второй пункт подменю «Primary Terrain Attributes», который называется «Local Neighborhoods».

Первый пункт меню «Flow Direction» реализует алгоритмы позволяющие рассчитывать направления потоков из каждого узла сетки.

💫 Flow Routing Algorithms			X
Input DEM	Flow Algorithm-		
	• D8	C Rho8	
Elevation Units: 💿 m 🔿 dm 🔿 cm 🔿 feet	O D-Infinity	C FRho8	
_ Options	C FD8	C FD8-Quinn (1995)	
C Optimize for speedLn(catchment area)	C ADRA		
Optimize for memory (for display only) (for large DEMs)			-
Outputs			
pointer file 🔽 catchment area 🔲 dispersal	area		
Output type: 🔿 total area 💿 specific area	C number of up	oslope elements	
OK	Cancel		

Выбираем данный пункт меню и перед нами появляется диалоговое окно (рис.14). Традиционно в верхнем левом углу располагается строка ввода, в которой указывается имя файла исходной модели. В блоке «Options» располагаются три переключателя: 1 «Optimize for speed» - при его выборе максимально сокращается время расчета; 2 «Optimize for memory (for large **DEMs**)» - при выборе данного пункта расчет ведется таким образом, чтобы объем временных файлов был минимальным (рекомендуется для очень больших растровых моделей); 3 «Ln (catchment area)» - при выборе этого пункта рассчитывается не сама дренируемая площадь, а ее логарифм. При расчете направлений потока могут быть вычислены 3 характеристики, каждая из которых записывается в отдельный файл. В блоке «Outputs» есть переключатели, при выборе которых можно рассчитать ЭТИ три характеристики: 1- «**pointer file**» - в каждую ячейку данной растровой модели записывается кодированное значение одного из 8 соседних узлов растровой модели, в который направлен поток; 2 – «catchment area» - в каждую ячейку данной растровой модели записывается оценка дренируемой площади, причем в зависимости от того, что будет выбрано в строке «Outputs file» результат Если выбрать пункт «number of upslope будет разным. elements(NUE)» - то будет записано число узлов сетки, поток из которых проходит через данный узел сетки; если выбрать «Total area (TA)», то в результирующий файл будет записана дренируемая площадь, которая равна NUE*площадь ячейки растровой модели; если выбрать пункт «specific area», то будет рассчитан показатель равный ТА/размер ячейки растровой модели.

Второй пункт данного меню «Number of Downslope Neighbours» рассчитывает количество ячеек растровой модели лежащих ниже центральной ячейки в окрестности 3*3.

Третий пункт данного меню «Number of Upslope Neighbours» рассчитывает количество ячеек растровой модели, лежащих выше центральной ячейки в окрестности 3*3.

Четвертый пункт «Number of Inflowing Pixels» рассчитывает для каждой ячейки растровой модели количество вышележащих ячеек, поток из которых, используя алгоритм «D8», проходит через данную ячейку.

Пятый пункт меню «Maximum downslope elevation change» рассчитывает разность между высотой в текущем узле сетки и высотой в самой низшей ячейки локальной окрестности 3*3.

Шестой пункт меню «Average downslope elevation change» рассчитывает разность между высотой в текущем узле сетки и средним значением высоты, которое рассчитано по ячейкам локальной окрестности 3*3 лежащих ниже текущей ячейки.

Пункты меню с седьмого по девятый рассчитывают локальные статистики в окне 3*3: «Local Elevation Percentiles» - расчет процентилей; «Difference from mean elevation» - расчет разницы между высотой в текущем узле сетки и средним значением высот в локальной окружности 3*3; «Standard Deviation of Elevation» - рассчитывает стандартное отклонение в локальном окне 3*3.

Десятый пункт меню «Find Valley Bottom Pixels» находит такие ячейки, которые являются дном долины (фактически это тальвеги).

Следующим пунктом меню третьего уровня является «Extended Neighborhoods» - группа показателей, основанная на расчете дренажной сети алгоритмом «D8».

Группа «Compound Terrain Analysis» объединяет пункты меню, которые реализуют расчет вторичных характеристик рельефа, исходя из 2-х и более первичных характеристик. В некоторых случаях эти свойства могут быть автоматически подсчитаны на основе ЦМВ

Вторичные характеристики системы, рассчитываемые TAS, включают в себя:

1. индекс влажности (или топографический индекс, Beven, Kirkly, 1979);

- 2. относительную силу потока (Moore et al, 1993);
- 3. потенциал стока взвешенных наносов (Burrough, McDonell, 1998);
- 4. химическое накопление;

- 5. классификация форм рельефа;
- 6. моделирование сложности рельефа.

При выборе пункта меню «Wetness Index» появляется диалоговое окно (рис. 15). Отметим, что с помощью данного диалогового окна также можно рассчитать следующие два пункта данного меню, такие как «Relative Stream Power» и «Sediment Transport Capacity Index».

Отметим, что нормальное значение для индекса влажности ранжируется в пределах от 0 до 20, однако, если ЦМВ содержит плоские области (даже если они «исправлены» под поток), изображение индекса влажности будет содержать очень большие значения из-за очень маленьких значений уклонов территории. Числовое значение для таких умеренно наклонных областей незначимы, но они могут наводить на предположение о большой насыщенности влагой таких областей.

🔗 Secondary T	errain Attribu	ites	
			Outputs Vetness Index V Relative Stream Power
Elevation Units Meters Decimeters Flow Algorithm	C Centimeters C Feet	Options © Optimize for speed © Optimize for memory (for large DEMs)	WI = In(As/tan5) RSP = As ⁺ 10.0 * tan5 ✓ Sediment Transport Capacity Index (Equivalent to the RUSLE Length-Slope Factor) LS = (As/22.13) ⁺ 0.6 x (sinS/0.0896) ⁺ 1.3
D8 D-Infinity	C FD8 C ADRA	C Rho8 C FRho8 C FD8-Quinn (1995)	As = specific catchment area S = local slope.

Рис. 15

Моделирование массопереноса осуществляется через пункт меню «Mass accumulation» (рис.16) и может быть использовано при моделировании геохимических потоков в пределах водосборного бассейна, построенного на основе ЦМВ, на загружаемом или на производительном изображении. Производительное изображение – множитель со значением в пределах от 0 до 100 %. Эта программа подобна алгоритму химического накопления в GRASS GIS, которая базируется на исследованиях Soranno, Hulber, Carpenter, Lathrop (1996).

🔗 Mass Accumulation 🛛 🔯
Inputs and Outputs: Input DEM:
Elevation Units: 📀 m 🔿 cm 🤍 dm 🤇 ft
Loading:
Efficiencu
Absorption:
Output File Name:
Options:
● D8 C Dinf C FD8
OK Cancel

Рис. 16

Индекс влажности сети «Network Wetness Index» – это минимальное значение индекса влажности, встречающееся вдоль направления потока. Данный процесс определяет, когда ячейка с нулевым или отрицательным дефицитом насыщенности соединяется с дренажной сетью. В терминах процесса предполагается, если локальный дефицит насыщенности равен 0 или отрицательный, но область сбора потока не присоединяется к сети, то поток будет продлен к точке вдоль направления водотока, которая имеет положительный дефицит насыщенности.

Классификация очертаний рельефа «Landform Classification» основана на Pennock, Zebarth, DeJong (1987). Эта схема классифицирует отдельные ячейки, основываясь на локальных окнах 3*3 для значений уклона и кривизны. Исход данного модуля включает 7 численных ключей классификации.

Следующим пунктом в территориальном анализе является анализ депрессий «**Depression Analysis**». В данном модуле выполняются операции, характеризующие депрессии в ЦМВ, при этом обычно используют предположение, что все депрессии в ЦМВ – фактические особенности территории и любая аномальная впадина уже удалена. Практически во всех диалоговых окнах данного модуля требуется лишь имя исходной и результирующей растровой модели. Первый пункт «Find Depressions» находит области в ЦМВ, которые локализованы в единичных депрессиях, заполняет их и сравнивает с оригиналом. Любые области, которые были изменены процедурой заполнения, приобретают значение 1, а все остальные – 0. Это эквивалентно заполнению ям, используя модуль «Fill All Depression» и идентификации ячеек, которые были заполнены, используя растровый калькулятор.

Второй пункт «**Depth In Sink**» может быть использован при измерении глубины депрессий или разницы между поверхностью и дном ямы. Antonuc, Hatic, Pernar (2001) нашли, что эта переменная оценивает пространственное распространение экологических явлений. Алгоритм заполняет депрессии в ЦМВ, используя метод Planchon, Darboux (2001), затем вычитает из заполненной ЦМВ оригинальную. Эта процедура может быть выполнена, используя растровый калькулятор.

Особым пунктом данного меню является анализ случайной формы «Stochastic Shape Analysis» (рис.17). Данная операция проводит тест Монте-Карло для идентификации наиболее вероятной формы депрессий в ЦМВ, основываясь на известных ошибочных отклонениях. Анализ случайной формы может также использоваться, чтобы идентифицировать в какой части местности по всей вероятности происходит прерывание дренажной сети из-за аномальных ям. Эта программа по существу добавляет поле со случайной ошибкой в ЦМВ, затем находит результирующие ямы или плоскости. Этот процесс повторяется многократно, таким образом, измеряется вероятность того, что ячейка находится во впадине или на плоской области в процессе моделирования.

💫 Stochastic Depression Shape Analysis	
Input DEM:	Mask File (blank if none):
Output Name: Stopping Conditions: Maximum number of realizations: Use a convergence threshold	Options: Root-mean-square-error (in DEM units): Degree of spatial autocorrelation: Include flat areas as sinks Output stochastic depth in sink
Stop when RMS difference between realizations is less than:	OK Cancel

Рис.17

Ошибочное поле – это случайные проявления гауссовского (т.е. нормального) распределения со среднеквадратичным отклонением равным среднеквадратичной ошибке.

В зависимости от размера ЦМВ и числа повторений, программа может работать очень долго. Возможны 2 случая остановки процесса. Во-первых, пользователь может указать число повторений «Maximum number of 1000). realuzations»(по умолчанию ____ Во-вторых, В качестве останавливающего условия используется понятие конвергенции «Use a convergence threshold». Пороговое значение корня среднеквадратичного отклонения между вероятными изображениями установлено по умолчанию как 0.001. Когда корень среднеквадратичного отклонения между двумя последовательными вероятными изображениями в моделировании падает ниже этого порога, то полагается, что устойчивое решение найдено и моделирование закончено. Продолжение моделирования после конвергенции не приведет к значительному изменению результирующей картины. Если пороговый корень среднеквадратичного отклонения слишком низкий, то моделирование может не достичь конвергенции в течение максимального числа повторений. С установленным по умолчанию порогом конвергенция обычно происходит между 200 и 400 повторениями в зависимости от ЦМВ и ошибочного распространения. Строка состояния будет показывать производительность относительно максимального числа повторений. Поэтому, если конвергенция – останавливающее условие, то далее повторения не будут идти, что отразит строка состояния. Появится текстовое окно, которое сообщит текущий номер повторения, число ячеек, испытавших хотя бы одно применения ямы или плоской области и текущий корень среднеквадратичного отклонения. Это может помочь оценить, насколько долго будет моделирование. Выбрав конвергенцию ИДТИ как останавливающее условие, моделирование может идти несколько дольше, чем используя просто максимальное число повторений, т.к. дополнительное время нужно для расчета корня среднеквадратичного отклонения для каждого случая. Однако это дополнительное время обычно компенсируется тем, что конвергенция может наступить до достижения максимального по умолчанию числа повторений. Известно, что ошибки высот пространственно автокоррелированы, т.е. ошибки чаще всего подобны окружающим. На ошибочных полях можно установить степень пространственной автокорреляции «Degree of spatial autocorrelation» такую как: нет, низкая, средняя, высокая. Выбрав «нет» - результаты приводят к стационарной

22

степени автокорреляции, для низкой – используется фильтр Гаусса 5х5 для стационарных ошибочных полей и повторное вычисление результирующего распространения такое, что оно имеет указанный корень среднеквадратичного отклонения. Средняя и высокая степень используют фильтры 9х9 и 15х15. Случайный анализ предназначен для работы с низкой степенью автокорреляции.

Четвертым пунктом данного меню является морфометрия и связь **«Morphometrics** and **Connectivity**». Эта депрессий операция идентифицирует каждую депрессию, В Т.Ч. вложенную, ЦMB. В Дополнительно, эта программа создает текстовый файл, который описывает связь между ямами и высоту заполнения. Если у вас сложная ЦМВ с множеством депрессий, программа будет работать очень долго и может вывести множество данных. Удалив одиночные ямы. можно сократить время выполнения. Если вы просто пробуете идентифицировать ячейки вашей ЦМВ, которая содержит ямы, то лучше использовать «Find depressions» в меню «Depression Analysis».

Пятый пункт меню «Find Depressions in Contours» может использоваться, чтобы идентифицировать контурные линии внутри покрытия, которое расположено в топографических депрессиях.

Раздел 7. Гидрологический анализ водосборов

Операции данного пункта меню используются для выполнения ряда задач анализа гидрологической сети. Все эти программы используют метод D8 для моделирования дренажного пути в ЦМВ.

Начинается данное меню с построения речной сети «Derive Stream Network» (рис. 18). В верхнее левое поле вносят название ЦМВ. В правое поле вносят изображение, построенное ранее при помощи пиктограммы на панели инструментов *X*. Ниже, в поле «Output File Name», вносят имя результирующего файла. В поле «Method of Channel Delineation» выбираем метод построения. В пункт «Options» вносят минимальное число ячеек, используемое при моделировании («Min stream length») и пороговое значение из файла D8 SCA, используемого выше.

Следующим пунктом данного меню является «Strahler Stream Order». При помощи данной операции определяется порядок водотока, используя метод Стралера-Философова. Также эту операцию можно выполнить, используя пиктограмму на панели инструментов *У*. При этом появляется

23

диалоговое окно (рис. 19), в которое вносится исходная ЦМВ, имя результирующего файла и исходный файл речной сети.

Также одним из наиболее важных пунктов данного меню является «Convert Streams to Vector». Этот пункт меню конвертирует водотоки из растровой модели в векторный формат.

🔗 Derive Stream Network	$\overline{\mathbf{X}}$
DEM:	D8 Specific Contributing Area Image:
Elev. units: \odot m \bigcirc dm \bigcirc cm \bigcirc ft	Is SCA Ln transformed? 🔿 yes 💿 no
Slope Image:	Output File Name:
Method of Channel Delineation:	Options:
O'Callaghan and Mark O Montgomery	Min stream length (in cells): 5
C Peuker and Douglas C Douglas	SCA threshold:
C Johnston and Rosenfeld	
OK Cancel	

Рис.18

🔗 Strahler Stream Order	X
Input DEM:	
Output File Name:	
Options: Stream File Name:	
Value of Streams:	
OK Cancel	

Рис.19

После построения речной сети может быть выполнен следующий пункт основного меню – анализ дренажного пути «Drainage Path Analysis». Входные изображения – ЦМВ и начальное изображение. Файл начального изображения – это двоичный файл (1 - начальные области) Выходное

изображение содержит дренажные пути от каждой исходной ячейки начального изображения, которые определяются, используя алгоритм D8.

Для построения водосбора нужно воспользоваться пиктограммой на панели инструментов **S**, при этом появляется диалоговое окно (рис.20).

🔗 Watershed	X
Input DEM:	Seed Points:
Output Watershed Image Name:	
Elevation Units:	
Meters Centimeters	
C Decimeters C Feet	
Digitize Outlet Points From:	
Start Digitizing	Delete Clear Open File Save File
Watershed Method:	
 Digitize seed points Use stream file to find s 	ub-basins 🛛 🔘 Use stream file to find Strahler order basins
C Use seed image C Use stream file to find h	nillslopes 🛛 🔘 Use stream file to find Shreve magnitude basins
C Use .dig file C Create even-sized sub-	basins
OK	Cancel

Рис. 20

В данном диалоговом окне вносится название исходной ЦМВ, название результирующего файла, единицы измерения и способ построения водосборного бассейна. Используя метод, установленный по умолчанию «**Digitize seed points**», пользователю необходимо самостоятельно определить точку, относительно которой строится водосбор. Координаты данной точки вносятся в правое окошко. Их можно сохранить или удалить, а окошко можно почистить, либо координаты могут быть открыты из уже имеющегося файла координат.

Остальные методики используются в зависимости от целей пользователя.

Раздел 8. Морфометрический анализ водосборов

Операции в меню «**Basin Morphometry**» используются в исследованиях геоморфологических характеристик водоразделов. Водораздел – это

фундаментальная единица в геоморфологии, в которой могут быть изучены взаимоотношения между очертаниями суши и процессами, которые их формируют. Изучение морфометрии бассейна помогает связать бассейн и геометрию речной сети с учетом переноса воды и взвешенных частиц через территорию водосбора. В данном пункте можно рассчитать следующие характеристики водосбора:

А = площадь бассейна

L = длина бассейна

Р = периметр бассейна

Фактор формы (F) = A / L^2 (Horton 1932; Selby 1985) Форма бассейна (S) = L^2/A (US Corps of Engineers; Selby 1985) Длина-Площадь = $1.4A^{0.6}$ (Strahler 1958; Ritter, Kochel, and Miller 1995) Кругообразность (C) = A / площадь круга с таким же периметром $(4piA) / P^2$ (Miller 1953; Selby 1985) Удлинение (E) = диаметр круга с такой же площадью как и бассейн/L $2(A / pi)^{0.5} / L$ (Schumm 1956; ; Selby 1985) Lemniscate соотношение (K) = $L^2 / 4A$ (Chorely et al. 1957; Selby 1985) Изрезанность бассейна (Н) = самая высокая точка бассейна – самая низкая точка бассейна Divide averaged relief = average divide elevation - mouth elevation (Ritter, Kochel, and Miller 1995) Relief ratio = H / максимальная длина потока

(modified from Schumm 1956 and Ritter, Kochel, and Miller 1995) Относительность рельефа = H / P (Ritter, Kochel, and Miller 1995)

Также одним из интересных пунктов данного меню является последний - «Flowpath and Stream Profile». Данный пункт меню позволяет строить продольный профиль водотока, при этом создается график профиля и текстовый файл, содержащий координаты профиля, т.е. его высоту и длину водотока.