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ON THE GEOMETRY OF SUBMANIFOLDS IN EJ,
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Abstract

A special class of 2m-dimensional submanifolds in a 2n-dimensional pseudo-Euclidean
space with metric of signature (n,n), known as a pseudo-Euclidean Rashevsky space, is studied.
For such submanifolds, canonical integrals and parametric equations are found.

Key words: even-dimensional submanifolds, pseudo-Euclidean Rashevsky space, double
fiber bundle, canonical integral, differential-geometric structure, fibration, foliation.

One of the most characteristic features of modern Differential Geometry is the active
application of its methods in the adjoining fields of the mathematical science. Essentially
increased effectiveness of these methods which accumulated fundamental achievements,
first of all from the general algebra and theory of differential equations, in combination
with the tendency to consider various mathematical objects as differential-geometric
structures on corresponding manifolds, has led, on the one hand, to the appearance of
new directions of the differential geometric study, and, on the other hand, to a more
fundamental, geometric interpretation of these objects.

The next step is the differential geometric analysis of these structures and identifica-
tion of their most general characteristic (geometric) properties. Finally, on the last stage
of research, these properties or their part become the foundation for generalizations and
new problems in the initial theory.

Moreover, in accordance with [1], they assume in particular the exact description of
the category of the structures under study and also the identification of the category of
algebraic systems necessary for their study.

All above mentioned is true for the geometry of multiple integral depending on
parameters. The study of differential geometric structures defined by such an integral
on the manifold of integration variables and parameters to a certain extent is similar to
the study of the integral geometry [2—4]. At the same time the presence of parameters
totally changes the cycle of arising problems and corresponding results. By systematic
study of multiple integrals depending on parameters (in a special case when the number
of parameters is equal to the number of variables) and corresponding integral transforms
one can see a good number of interesting geometrical problems connected with the
description of invariant properties of such integrals.

The present article is devoted to the study of a special class of 2m-dimensional sub-
manifolds with structure of double fiber bundle in the 2n-dimensional pseudo-Euclidean
space E3, with metric of index n. We find multiple integral depending on parameters,
determining the structure of such a submanifold on the corresponding manifold of in-
tegration variables and parameters, also parametric equations of this submanifold.
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1. Pseudo-Riemannian Rashevsky space

In 1925, Russian geometer P.A. Shirokov from Kazan State University introduced [5]
the special class of even-dimensional symmetric spaces known as A-spaces or elliptic
A-spaces. In 1933, E. Kihler [6] studied the same spaces known now as K#hler spaces.

Let us consider a 2n-dimensional manifold M with local coordinates z!,..., 2",
Y1, .- ., Yn such that in all admissible transformations of coordinates two sets of n coordi-
nates are separated: the transformed coordinates x',...,z™ are functions of z',... 2"
and the same is true for the second set of coordinates. Consider a real kern function
U(zt,..., 2", y1,...,yn) and introduce the following values

i 02U
9 = 0xidy;

It is easy to check that the matrix

_(0 9
G<93 0>

is invariant under all admissible transformations of local coordinates. This matrix is
nondegenerate and, therefore, its elements introduce a metric on M. In its turn this
metric generates an affine connection on M . On this manifold, the fibers from different
families are complex conjugate.

The so called hyperbolic case when both the families of fibers are real n-dimensional
manifolds was introduced by P.K. Rashevsky [7]. He studied an invariant scalar field
U(xt,... ;2" y1,...,yn) with nondegenerate matrix of second order derivatives:

0*U
e (G ) #°

and, using this matrix, introduced a pseudo-Riemannian metric of index n on M and
the corresponding pseudo-Riemannian connection. This space is known as a Rashevsky
pseudo-Riemannian space. It has the following characteristic properties.

1. The scalar field U(x!,..., 2", y1,...,yn) generating the structure of a pseudo-
Riemannian space on M is determined with arbitrariness

U(z',y;) — U’ y;) + Ur(a") + Ua(y;)-

2. Each point of M belongs to one and only one fiber from each of the two families
of fibers. Fibers from different families have intersection in no more than one point.

3. The fibers of both the families are isotropic.

4. The fibers of each family have the property of absolute parallelism (auto paral-
lelism): vectors tangent to fibers from one of the families remain tangent to them after
parallel transfer along an arbitrary smooth curve.

It follows from each of the two latter properties that both the families of fibers are
totally geodesic in M .

This space was studied by P.K. Rashevsky and other researchers as an example of
a pseudo-Riemannian space only, without any relations to other fields of Mathematics
and Physics.

Later, in 60-th, professor V.V. Vishnevsky from Kazan State University introduced
the third type of A-spaces (parabolic A-spaces) [8] and completed the classification of
these structures.

In terms of a co-basis of linear differential forms w?', ..., w™ wi,...,w, adapted to
the structure of 2n-dimensional Rashevsky space, the structure equations of this space
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can be presented in the form [9]
dw! = wk AWk,
dwr = —wE ANwp, I,K,PT=1,...,n (1.1)

dwl, = wh AWl + RITL WP Awr,

where RII, are the nonzero components of the curvature tensor. The metric of this
space is generated by the nondegenerate bilinear closed form [9]

dp = w! Nwr . (1.2)

It is known [9] that an integral of the form Aw! A ... A w" induces a structure of
a 2n-dimensional Rashevsky space on the manifold M of integration variables and
parameters under natural condition of nondegeneracy for the matrix of second order
derivatives of the function In .

Rashevsky space can also be considered as a double fibered manifold with two fami-
lies of n-dimensional transverse geodesic fibers. It is a generalization of the cross product
of two manifolds: a (2n + s)-dimensional smooth manifold M is said to be a double
fiber bundle if two smooth mappings

mo M — M;, i=1,2,

from M onto n- and n + s-dimensional smooth manifolds M; and M, are given, the
fibers, i.e., full preimages of points from M; and M, under the mappings 7 and
o respectively are smooth n + s- and n-dimensional submanifolds, and the tangent
spaces to the fibers of the bundles 71 and 7y at an arbitrary point have only trivial
intersection:

Tp (77 (2)) NTp (73" (y)) =p, m(p) ==, m(p) =y, x €M, y€< M.

Therefore, the tangent space of M at an arbitrary point is a direct sum of n + s-
and n-dimensional subspaces. The case of Rashevsky spaces corresponds to s = 0.

If the curvature tensor of such a space is trivial, we have a pseudo-Euclidean Ra-
shevsky space which, in terms of a co-frame of principal exterior linear differential forms

wl . w" wi,...,w, adapted to the structure of a double fiber bundle on EJ and

defined on the principal fiber bundle of tangent frames on EJ, , can be presented by

the following structure equations [9]
dw! = wk AWk,
dwr = —wE ANwp, I,K,P=1,...,n (1.3)
dwl. = wh AWk,
where the secondary forms wk- are defined on the manifold T2?EY, of second order
tangent frames associated to EJ, and do not depend on the principal forms. There is
a natural connection between such spaces and the Fourier transform [9]: this integral
transform invariantly induces a structure of E3, on the double fibered manifold of
integration variables and parameters M .
An (n + s)-tuple integral depending on n parameters is said to be a canonical in-
tegral of a differential-geometric structure on a 2n + s-dimensional manifold M if this

integral generates the structure on M . Suppose that n-tuple integral depending on n
parameters generates a structure of a Rashevsky 2n-dimensional space on a manifold
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of integration variables and parameters. An n-tuple integral depending on n parameters
constructed on parameters of integration generates the same structure of a Rashevsky
2n-dimensional space on the manifold of integration variables and parameters M if and
only if M is an Einstein space (Ricci tensor is proportional to the metric tensor with
constant coefficient). This is the geometrical meaning of the invertibility of the corre-
sponding integral transform. This means that the category of Einstein 2n-dimensional
spaces with metric of signature (n,n) is the most general one for the construction of
invertible integral transforms. One of the most important problems here is findind of
an integral transform generating the structure of a given Rashevsky (Einstein) space
on M.

2. 2m-dimensional submanifolds with structure
of double fiber bundle in a pseudo-Euclidean space Ej},

The necessity to consider submanifolds of the pseudo-Euclidean spaces E3, and
corresponding canonical integrals follows from the problem of finding canonical integrals
of Rashevsky (Einstein) spaces because in the special case when the space under study is
pseudo-Euclidean (the curvature is equal to zero) the corresponding canonical integral
coincides with the classical Fourier transform. Taking into account that an integral
generates the corresponding differential-geometric structure in an invariant way and
that the geometry of a pseudo-Riemannian space, in general, is defined by its curvature
tensor, it is natural to suppose that the canonical integral of a Rashevsky (Einstein)
space is related to the curvature tensor of this space in a special way.

Let us consider 2m-dimensional submanifold M with structure of a double fiber
bundle in an 2n-dimensional pseudo-Euclidean space EJ, with metric of index n
(pseudo-Euclidean Rashevsky space) when the dimension n satisfies the condition
2m >n.

Suppose that, in terms of a co-basis of linear differential forms w', w?,...,w", wi,
wa, . ..,wy adapted to the structure of a pseudo-Euclidean Rashevsky space EJ, , the
structure equations of the space are represented in the form (1.3) and that a 2m-
dimensional submanifold M is defined by the equations

n

W' = W ptis Wmgs =W, i=1,...n—m. (2.1)

Let us note that relations (2.1) determine the most general class of 2m-dimensional
submanifolds in EJ, with structure of a double fiber bundle. This class is a direct
generalization of the corresponding classes of submanifolds of codimension two, studied
in [10, 11].

There are three possible cases: 1) 2(n —m) > m or 3m < 2n, 2) 2(n —m) =m or
3m =2n, 3) 2(n—m) <m or 3m > 2n.

The case 3) was studied in [12]. Let us study the case 3m < 2n. Therefore the
following inequalities hold

3n < 6m < 4n.

This condition is equivalent to the inequality 2m —n < n — m. Let us introduce
new indices a =1,....2m—n; é=2m—-n+1,...,n—m; a=n—m-+1,...,m. The
metric form of the total Rashevsky space EZ, defined by the invariant bilinear closed
nondegenerate form dy = w! A w; induces the bilinear form

dp* = W Nwe +wE Awe + W Aw, + 5§m7n+awg AW + 05, i eWa A Wt (2.2)

on M.
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Substitution of relations (2.1) into (1.3) and application of the above introduced
indices gives the following general structure equations of a submanifold M

dw® = w§ A w” T W NS+ wi AW + W A Wam—ntks
dw® = wh Aw" + Wi AW + w§ A w" +an+k A Wam —ntks

dw® = wy A wb + wi A w® +wg A wb + Wik AN W2am—ntk;

dwe = —wWB Awg — w§ Awe — W Awg — wTF A WE,
dwg:7wg/\wnfwg‘/\wafwg/\wafwgwrk/\wk,
dwg = —wl Awp + WS Awe — WS Awe —wlHE A WF

dwg:w,‘j/\wg—l—wg‘/\wg—i—wg‘/\wg—i—w%Jrk/\wgﬂ'k,

du§ :wg/\wﬁl‘+w§/\w,?erg/\wﬁ;erfnJrk/\w;nMa (2.3)
duwf = W A wf + Wl AW+ wE Awh + Wl AwptE,
dwg = wj /\w? + wy /\wg +wg Awg +wi g /\W?Jrkv
dwg = w§ AW + Wi AW + Wi AW+ Wi AR,
3

m

m-+k

dwg:ngwg+w§,sz+w§AwZ+w wE NWa

dw§ = w§ Awd +wh Awl! +wh Awd +wh,,, AwtE,

dwl = Wi Awh +wg Aw§ +wif AWl +wp AwtE,

[e3

dwg = Wi AW +w Awd + Wi Awl + Wl Awitt,

where the secondary forms w3, wf,, Wy, W, Wy ws, wh, we, wg and wp ., an-kk:
W s W, wg”rk, wmF* are defined on the manifold 72 M of second order tangent
frames associated to the manifold M and adapted to its structure.

Taking into account that the bilinear form dp* is closed and using exterior differenti-
ation of (2.2) with application of general structure equations (2.3), we arrive at the iden-
tity which shows that, in the general case, the forms wg', W, 6§m7n+ﬁwg — 0ol
5gmfn+§w§75§mfn+awgi 5§mfn+aw'ro;7(sgm—n+nwgi 5gmfn+§w§]7(sgm—n+nwg are prin'
cipal. We will use these general conditions for more detailed research of the differential-
geometric structure on M .

Taking into account that the submanifold M has a structure of a double fiber bundle,
i.e., that the following systems of linear differential equations

wr=0, w*=0, w*=0,

a=1,....2m—-n, {=2m—-n+1,....n—m, a=n—m-+1,...,m;
wWoe =0, we=0, w,=0,

a=1,....2m—n, &=2m-n—+1,....n—m, a=n—m-+1,...,m
are totally integrable, we arrive at the following system of identities

_ 3 _ _
W%Jrk AN wWam—n+k =0, Witk ANwom—ntk =0, w?nJrk AN wam—n+k =0,

wmtk AWk =0, wg'”k Awk =0, wrtk AWk =0.
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Applying Cartan’s lemma [1], one can easily see that the secondary forms w$

m+i
Wyntis Wi and Wt wgnﬂ, W™t are linear combinations of the basic linear differ-
ential forms we, we, §E =2m—n+1,....n—m,a=n—-—m+1,...,m and w®, wt,
a=1,....2m —n, £ =2m —n+1,...,n — m respectively.

On the other hand, the exterior differentiation of relations (2.1), which are identities
on M, gives the following two identities

( m-+1 +wm+lc ) /\wk +w;n+z A w? +W§men+i A Wat

2m—n-+1

»
(w;”_Tfl+§+w2m nﬂ) Awe + (Wihh o + WS nii) Awa =0,

( "H'kerk)/\w er AW +wp i A wat

m+z
i 13 i _
+ (wiz—m—&-& + meri) AN we + (W:L—m+a + wng—i) Awg = 0.

Taking into account identities (2.4), it is easy to check that this system is equivalent
to the system of the following four identities

m+i m-+k k n-+1i a _
( +w2m7n+i)/\w F WA W =0,

m-+1

3
w2amfn+i AW + (Wn_m+g + w2m—n+i) A we + ( n— 7n+a + w2m n+z) Nwaq = 0

(Wmth + W) AwF + wi Aw® =0,

m+z

(2.5)

wm+z N Wa + (w'fL—m-i-f + wer+i) Nwe + (wfzfm+a + wg@-{-i) Awq = 0.

It follows directly from the obtained system that all the secondary forms w$ are
equal to zero identically. Indeed it’s follows from the third identity from (2.5) that the
secondary forms w2 are linear combinations of the basic principal differential forms w?,
w?,...,w". But it is easy to see from the second identity of system (2.5) that the same
forms have expansions in terms of the basic principal differential forms wy, wa,...,w,
only. This is possible if and only if the forms w¢ are equal to zero.

Besides the first identity of system (2.4) shows that the secondary forms w, ;
have nontrivial expansions in terms of the basic principal forms wo;,—n41, - .., wy, only.
Substituting the corresponding expansions into the fourth identity of system (2.5), we
see that the secondary forms wyy, |, are vanishing.

Let us note now that, as follows from the last identity of system (2.4), the secondary
forms w™T* are linear combinations of the basic principal forms w!,w?, ... W™ ™.
Substitution of the corresponding expansions into the first identity of system (2.5)
shows that all the forms w™** are vanishing too.

Using relations (2.4), it is easy to check that system of identities (2.5) is equivalent
to the following system

wpT ™t AWk =0, (u}Zﬁm+£ + wg”k) Awk =0,

wg Awa + (wZ::Zif] +w€) Awy =0,

(w"‘””‘a + wg) ANwe =0, wt

n—m-+¢ A

maa N wa =0, (2.5)

( Zi§+wk) AWk +wE Awt =0,

3 3 —
(wn—m+n + w?nJrg) A Wny + (wn—m-&-a + w7n+§) NWa = 0.
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Exterior differentiation of relation (2.2) shows that the secondary forms w$, wg' are
principal forms. The application of the second and third identities of system (2.5’) gives

the following expansions

wg = C¢Pwa + O, (2.6)
wé = C8 w™ + anw" + C’gbwb

with the symmetry conditions on the coefficients corresponding to Cartan’s lemma:
Caﬁ _ Cﬁa C& _ CE
§ g 0 Tab T That . ”, . o
Applying Cartan’s lemma [1] to identities of the first and the last identities of system
(2.5), we obtain the following expansions

wZL+i _ C;nﬁﬂ'wﬁ + nggiwg’ CO%H _ C”ZH,

Wt = O Ogten, o = Ot 27)
anﬂ' = Cr&r?jJriw?? + Cfr?Jriwa? Cfr?ﬂ' = CZeriv .
Wi = Cﬁfﬂ“’& + Cabw, Cab = Che,.

Exterior differentiation of expansions (2.6), (2.7) with further application of the
general structure equations of a submanifold M gives the following differential identities

(ace? - cgrwf - CQPws + O ) Awp+
+ (ng”’ - Cgw)! — C’f”wg + CYwi — C’gﬁg;g) /\wnng‘ﬁwg/\wafC’gnwg/\wa =0,
(dcﬁb + O wf + Ol — Clywls + Clawpy + anwg) Aw'+

+ (dCE, + Ol + O — Gl + Cht ) A+

aa n

+ (dCE, + Cluwls + Ot — Cliyh + Chlh) A =0,

(dCms + Cmrin) + Cptwy - Costbwmth + Ol + Cptiug ) AP+

+ (dOm + bl + Chetull - Clhwnth + Cpriul + Ol O, ) At =0,
(2.8)
(dCer + Catiwg + il — Crehwmtt + ClFiwl + Ol CPw, ) A+
m+i m+i +i, K m+k m+ti +i ey +i ey —
+(dCut + Oy + Ol — CRwith + CIFiCe Y w, + ClH O w, ) Aw™ = 0,

(dcfr?ﬂ — Ot — Colwf + CRl i — CRlL o — Cgbcﬁaﬂ‘“b) A wn+

13 &b 13 +k 13 & e b _
+ (dC'r:Jri - Ceriwl? - CZLaJriwfy + CJJFICWZLLH - Cnyﬂwf; - C% ;fﬂw ) ANwq =0,

b +k b
(dcﬁfﬂ' — O — Oy + Cot it — CEM, iy — C8,Ct ) N we+

+ (dCfﬁLbH -0 Wb — CP Wt + C’ﬁﬂrkw:ﬁif - wé-’ — wg) Awp = 0.

m+1 m—+1i m—+1i
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It follows from first two identities of this system that quantities Cﬁb and C’?B are in-
variants and therefore their vanishing has an invariant geometric meaning. For example,

if Cgﬁ =0, then the system of linear differential equations w* =0, a=1,...,2m —n
is totally integrable; the condition Cﬁb = 0 characterizes the total integrability of the
system of Pfaff equations w, =0, a=n—m-+1,...,m. . .

Next identities of the system (2.8) show that the quantities Cg:lﬂ, Cf,:q_i, C’Z};",

Cab,, are invariants, and the other quantities occurring in this system are not invariants.
Therefore, without any loss of generality, the quantities Cg?'i, C§?+i can be considered
equal to zero.

There are three possible cases:

a) 2m —n < 2n —3m, i.e., 5m < 3n, therefore 15n < 30m < 18n,
b) 2m —n =2n — 3m, i.e., 5m = 3n, therefore 15n < 30m = 18n,

c) 2m —n > 2n — 3m, i.e., bm > 3n, therefore 18n < 30m < 20n.
Let us consider the case 15n < 30m = 18n. We note that, by virtue of the

fact that the ranges of the indices o« = 1,....2m —n; { =2m—n+1,...,n —m;
a=n—m+1,...,m are of the same length, the dimension m is divisible by 3.
Exterior differentiation of identities wg =0, w®,, =0, W™ = 0 and application

of the general structure equations of a submanifold M gives the system of relations

ngwg:o, wé’”‘i/\wg:O, wg‘/\wg =0,

m-1

and, therefore, by virtue of expansions (2.6) and (2.7), the following system of algebraic
relations holds:

af e _ af € _ bE anqe _ aB e _
Ce C§, =0, CPCyy =0, C¢ Cs, =0, Ce Cs, =0, Ce cs, =0,

(e § _ (e _ ab _ acvE
ConCs, =0, €05, =0, CECE, =0, CgoCs, =0,

Crtics, =0, CptiCy, =0, CItCs, =Cptics

aa?

_ _ | _ (2.9)
Coy " Cha = Ce'CEy CET O = CET Ty,
cofesn, =0, COCi =0, Cerosl, =Ceney

3/ 3 brga €b
CeOnlys = C¢ Oy CECy = CE° 0l

It follows from identities (2.5") that the form wﬁii is principal and that it has an
expansion in terms of the principal forms wq, we, wq, W<, wé. Tt follows from here
(and from the same identities) that the form w$ is also principal, but it has expansion
in terms of the principal forms w,, we, we, w® only. Comparison of these relations
shows that the form w$ has an expansion in terms of the principal forms w®, w*® only.
Therefore, in particular, Cﬁb =0.

Further classification of admissible differential-geometric structures is based on the
analysis of algebraic relations (2.9).

A) At least for one value of the index ¢ (=1,...,n —m),
det (Cort) #0 # det (CS1,. )
B) At least for one value of the index i (=1,...,n—m),

det (Cot') 0= det (CS7,, )
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C) At least for one value of the index i(=1,...,n —m),
det (Cg’;ﬂ) =0 =det (CS;’H) .

The case (A) was studied in [13]. Let us study the case B. Taking into account that
the matrix (Cg’;”) is of maximal rank, it is easy to see from algebraic relations (2.9)
that

Cﬁb =0, C’ga =0, C’g,} =0, therefore wg = 0.

It follows from identities (2.8) that the values CZL&H can be considered equal to zero:

CZ“;”' = 0, then the forms w$ become principal. Using the same procedure, we arrive

at the relation Cf,fjri = 0 but values C®’ remain arbitrary. This gives a reason to
consider system of algebraic relations (2.9) once more and suppose that, for a fixed
value of the index (= 2m —n+1,...,n —m), the matrix Cgﬁ is nondegenerate:

det C’?B # 0. It follows from this condition that C5/., = 0. Let us note that this
condition can be obtained from the relation det (Cg’:’“) # 0 (for fixed value of the

index i (= 1,...,n —m). It is easy to see now that the system of linear differential
equations
wgzo, wfl:O, wg =0, wf]=0, wp =0

is completely integrable. We can rewrite the system of structure equations of M in the
following form
dw® = Cgﬁw[g/\wg, dw® =0, dw®=w? A\w® +wg/\w5,
dwe = —wg Awa, dweg = —wg Awa, dwe =0, (2.3
dwl = CEb,CleFlwy AWP, dwi = Cgﬁwg Awg + CE2LCEFwy AW,
where the coefficients satisly equations (2.8). Exterior differentiation of the identity
w& = 0 gives the following algebraic condition

crice’ =,

therefore, C’Zg'i = 0. It is obvious now that the system of linear differential equations
w2 = 0 is completely integrable. We obtain the final form of the system of structure
equations

dw® = C’?’@wﬁ Aws, dwt =0, dw®= wg A WS,

dwo =0, dwe=—w¢ Awg, dwa =0, (2.3")
dwg = C ,CEF oy AW,

6 _ o
dCeP = C2,,

Oy = ot

Enp ’
dCg = —CPtCeBug + Crtowh, (2.8)
dCab, , = Ca CPuwg + A% we,

ACH, ¢ = Cilt e,

It is easy to see that the system of principal and secondary differential forms w®,
wE, W, Wa, We, Wa, w¢ and functions Cgﬁ, Cg’flﬂ, Ceb,; satisfying equations (2.3”),
(2.8') is closed and, therefore, by virtue of the Cartan —Laptev theorem [14] the following

statement is true.
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Theorem 2.1. The metric connection of a 2n-dimensional pseudo-FEuclidean Ra-
shevsky space EY, induces a differential-geometric structure of special type affine con-
nection determined by the system of differential forms w®, w®, W?, Wy, We, Wa, wg

and functions C’gﬁ, C’g’:]“—, C’%’H, a,B=1,....2m—-n, &n=2m—n+1,...,n—m,
a,b=n—m+1,....m, i =1,...,n —m satisfying equations (2.3"), (2.8) on 2m-

dimensional (15n < 30m = 18n) submanifold M defined by equations (2.1) on con-
dition that, at least for one value of the index i (=1,...,n —m), det (C’g’;}”) #0=

= det (Ofn’gi), det (cgﬁ) £0.

The structure of this affine connection can be studied using structure equations
(2.3’). Let us note that it has nontrivial curvature tensor
ab __ ~ab m-+1
Rey = CnyiCey -
To study the structure on M, let us note that the system of linear differential
equations w® = 0 is completely integrable and, therefore, it determines submanifolds of
dimension n — m. Therefore the following result is established.

Theorem 2.2. The submanifold M is a double fiber bundle. The fibers of the first
bundle are foliations with n—m-dimensional flat leaves. The fibers of the second bundle
are cross products of 2m — n- and n — m-dimensional planes in EZ, .

It is easy to see that the system of Pfaff equations w® =0, wo, =0, a=1,...,2m—n
is completely integrable and determines in M submanifolds N of dimension 2(n —m).

3. Canonical integral

It is known [9] that a k-tuple integral depending on k parameters induces a structure
of a pseudo-Riemannian Rashevsky space on the 2k-dimensional manifold N of inte-
gration variables and parameters. The inverse problem of finding a k-tuple integral
depending on k parameters inducing a given admissible structure on N, known as
a canonical integral of this differential-geometric structure, is much more interesting.
If the curvature tensor is trivial, this integral leads to the Fourier transform. It is evi-
dent that, in all other cases, obtained integrals are natural generalizations of the Fourier
transform.

Let us find a canonical integral of a differential-geometric structure defined by equa-
tions (2.3”), (2.8’) on N, i.e., an n — m-tuple integral of the form

Q= T A AW (3.1)
depending on n — m parameters inducing the differential-geometric structure
dwé® =0, dw®= we Awt,

dwe = —w¢ A wa, dwg, =0,

dwg = C,abHCm”wb A w",

m &n
dCg ™ = Ot (3.2)
dcgn-i—u — an—&-aw#
n e ’

dCﬁLbJra = O,anb_ic_gwc )

b _ be
ACHY, ¢ = Cab% .
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on the 2(n—m)-dimensional manifold of integration variables and parameters. Following
the results obtained in [9], this procedure includes solution of the system of differential
equations

dIn A = Aew® + Aqw?® + Awe + AN%wq,
d ()\gwg + )\awa) =wéA we + W Awg + 6gm7n+£wa A w.

Using structure equations (2.3”), let us present the essential principal and secondary
forms as linear combinations of differentials of variables:

Wt =dzt, W =dz® — C%+ng'L+idx€,

1
2

we = dyg — Cp, Oy, wa = dya, (3.4)

1 ) )
wg = 5 (Cfn+i(7$,“dfv" - Cfanrnganyb)

where the smooth functions Cy.; = Cfi(Wem—nt1s-- Ym), cett =
= C’g”“(:ch*"H, ...,x™) are solutions of the following differential equations

dCy, s = Cpady,

m+i

dC T = CEtdan.

It is easy to check that forms (3.4) satisfy structure equations (2.3").
Let us introduce the following formal expansions of the differentials of the coefficients
of equations (3.3):
d\¢ = )\%w” + )\gwa + )ﬁ”wn + N,

AN = Agw + Mwb + ACwe + Xy,

(3.5)
dXe = pugnw" + pigaw® + plwe + piwa,
dXa = paew® + papw® + piwe + pbwp.

Let us substitute now the expressions of basic forms into these expansions. Then
we substitute these expansions into the second relation and into the result of exterior
differentiation of the first relation of system (3.3). As a result we obtain the following
system of algebraic relations:

Hen = Hng, Hea = Hags Hab = Hba s )\577 - )\TI&’ )\&a = )‘a€7
)\%:,LL%:&?], Ag: g:(sga MSZAEZO,

1o . 1 |
Mg - §C$L+icgm+z)‘b - 5(21m—n+£’ )‘g - Ecna@+icg:;+z>‘n - gm—n-i—f'

Substitution of the obtained relations into the system of expansions (3.5) gives the
following system of differential equations

NS NS ONE O .
—— — ¢ -0 — \én — _\nge  omti.
Oxn n’ ora ’ 8y77 ’ aya m+i—'n )
_a)\a a 1 a m—+1i 17 1 a m+i,
ax& = —(52m7n+£ + §Cm+lcf'r] )\] — ECer,LC‘E 5
N oA N ,

= §¢ - )\ﬁa — )\ab _ )\&acb _Cerz,
Oz b ayg ! ayb m+i~¢ 5
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a)‘ﬁ _ 1 a m+i a)‘§ _ 8)‘5 — SN

ozn Hen — E,UﬁachriCn C pa Heas Dy = 5@

e 50%“06 TN - §an+icg = 0 nte

0Aq 1 . 0\ o\ o\

0 = pea — = papC O L = 2 =90 < = b,
Ozt Héa 5 Hablp i 3 , b Hab, ay£ s ayb a

Solving this system, we represent the solution in the following form
X = at 4+ 4 (y),

A = % — 59

1 .
2m—n+a Ec'zL—Q—ngm-HxE +9° (y)a
1 .
)‘f =Y¢ — §CSL+ng1+zya - 6Sm—n+§ya + (pf(x)7
Ao = Ya + ‘Pa(m)a

where ¢ (z), ¢a(z), V5(y), ¥*(y), are smooth functions of the corresponding variables.
Substitution of these expressions into the first equation of system (3.3) gives the formula

I\ = 259 +2%a — 03 _n e ¥a — Cp 1O 2t ya + 0(2) + ¥(y),

where p(z) = @(z!,...,2™) and ¥(y) = ¥(y1,...,ym) are smooth functions on the
corresponding fibers of the double bundle N. Therefore, the following result holds.

Theorem 3.1. An n — m-tuple integral depending on n —m parameters inducing
a differential-geometric structure (3.2) on the 2(n — m)-dimensional submanifold N
of variables and parameters can be reduced to an integral of the form

Q = P(x)Q() exp |25y + 2"y — 0%, c0Ya — O O by x
x dz?™ T A oA de™  (3.6)

where P(z) = P(x®>™ "+ 2™ and Q(y) = Q(Y2m—ni1,---,Ym) are the exponents
of functions @(x) = o(z*™= "1 . 2™) and Y(y) = V(Y2m—ni1,-- - Ym) respectively.

In the special case when the values Cg’;lﬂ, anbﬂ are constants, we arrive at the
formulas
a __ vab m+i __ ~m+i,..n
Crnvi = Oy i, Cg = an T,

and expression (3.6) can be rewritten in the following more symmetric form

Q= P(2)Q(y) exp [2%9e + 2o = 03167 — Citei L ata"yays | x
x dz®™ TN A oA de™. (3.7)

Let us note that the partial derivatives of the functions C? cmti

i occurring
in the canonical integral of a differential-geometric structure (3.6) compose the curvature
tensor of the corresponding affine connection. Besides, the components of the curvature

tensor are coefficients of monoms of the fourth degree.
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4. Parametric equations

To find parametric equations of the submanifold M under consideration, let us
integrate structure equations (2.3”). To do this, let us consider the equations of in-
finitesimal displacement of a moving frame (P,e®, €S, e® ™t ey, e, €q,€mii) in the
space of affine connection E3,

de® = wiel +wiet +wye® +wy, e,
def = wgeﬁ + whet +whe® + wh, et
de® = whe® + wiet +wie’ +w, L em

dem+i — w(’r;L—i—iea =+ ng-i-ieg =+ w;n—i—iea + wm-‘ri em+k7

m—+k
deg = —wgeq — wg’en —wieq — wg'”kemﬂg,
deq = —wleq — whee —wley —wmtre,, )
dem+i = —Wp, 1 ;€a — W§n+ie§ — Wi 4i€a — w:r?izke’m-i-k'
The submanifold M is characterized by the identities
wg =0, wy=0, wf,:O, wg =0, why; =0, w, =0,
ws =0, anﬂ' =0, w!=0, W'=0 wW"rt=0,

a,B=12m—-—n; &En=2m—-n+1,....n—m; ab=n—m+1,...,m.

Substitution of these relations into the previous system gives the following equations of
infinitesimal displacement of a moving frame (P, e®, e, e, e™ T ey, e¢, €4, €m+i) On the
space of affine connection M :

de® = Cgﬁdygeg,

det =0,

1 ; : ,
de® = 5 (Ca COtida — Cpb -Cg”“dyb) et + Caldype™

m-+1 m-+1

de™ti = Co%“dajﬁe“ + C'g’f,“dyc"e5 + wthem

de,, =0,
1 ’ . )
deg = —C¢ dysea — 5 (CapiCaptian = €, Oy, ) ea — O damernys,
de, =0,
dem—i—i = _Cgf_yidybea - w:zifem-i-k-

Replacing the secondary forms w:,’fi,’g by —wk and solving the obtained, we obtain

the following expressions for the basis vectors

e = Cg(e)o + (e)o,
es = (e%)o,
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e = [Cap Cpt = Gl CECE ] (Mot

m-+1

+ [%Cﬁlﬂcg”” +Ch (CgI‘HC’? + Cg”‘”)} (e)o+
- (Coia = CireC2) (™) + Cltyele™ )0 + (%o,

e = G + (G5 TCE 0P (o e

emte = (CFTE = Caept) (e)o + (CPHECy + Cpte) (en)o — C2 (€™ )o + (e )y,

ea = (€a)o,

ce = ~Cg ealn + (GOI Clo + CP 7 CY Ol ) (eaho = CF emsalot
+ (Cg”" + C?Jracﬁ‘) (€mtn)o + (en)o,

ea = (€a)os

€mta = — (C%Jracgacgwg) (€a)o + C¢(emte)o + (emta)o,

emie = fonJrg(ea)o + (€m+§)0.

where [P’ (ea)07 (65)07 (ea)Oa (em+a)07 (em+§)0a (60)07 (65)07 (@a)O, (em+a)07 (€m+§)0] is
a fixed orthonormal frame in E3, . Substitution of these relations into the equation

dP = —w%e, — w§e§ —wq — Wam—ntiCmii — Wa" — wgeg — waet — whe™m Tt

and further integration gives the equality
P = —2%(e%)y — 2*(e5)o—

- [xa - anJra m+nc;;( - 6gm—n+a (Czﬂri + C;;Cgrﬂrn) Ynt

+ B nta (Crra + O Crgy) OmgiCF =
- 6gm—n+a (Cna@-i-oz + C?Cna@-i-g) Yp — 5gm—n+§cna1+§yb} (ea)of

_ [6§m7n+ayg + Cmta + 05, niaYa — 5§m—n+aCm+¢C?+i] (emta)o—
- [5(21m—n+£ya + 6(21m—n+ozcﬁaya - 5gmfn+acm+ic’:1n+ic’§a + 6727m7n+acﬁay77+
+ (CmHE  omtecy) } (em+£)o — [ya 1 (cm+£ _ Cfcg”ﬁ) zt+
+ (Cmﬂ-cg”“ - cmﬂ:cgcgl*ﬁ) FCat CfC’;’”ﬁmg} (€)o—
1 mti m+i ~0 m+i B
= [+ Cet (=5 CmuCEt + Congi (CHCL + ) ) + (CaCl + C) +
+Cy (Cprecgan + Cte ) 4 (-4 Co)| (€90 — pale)o—

— (2% + Cmga — CmseCE) (€™ %)g — (2° + Crnge) (€™)0.
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Therefore, the following statement is true.

Theorem 4.1. The submanifold M has be given by parametric equations of the
form

Xo— g0, X6 =gt
Xo — pa _ omtacy co — 55 ( a ceoe )
=z I3 m+nn 2m—n+a m-i + n ~m-+n Ynt

+ 65

sm-n+a (Cpa + O Ciiy) g CF T —
— B (Cirpa + CEC ) U = BB Colrei
X = 05 able + Cmta + Bmnsalie = O5mntaCmsiCEH,
XM =52 Yo+ 08 aCoYa — Sy aConp i O OO
+ 0 nraClYn + C™HE - CMTCE,
Yo = yo+ (O™ = CLOTT) 2 4 (ConyiCt = Cray e CLCIH) +
+ Co + CLCT P2t

1
2
+ Gy (Cprocian + cprte) 4 cmince,

Ye=ye +Ce + { Cm+icgn+i + Croti (C;”“Cf + C?Jri)] + CﬁCer

Yo =%, Ymta=2%+Chpya— CerECaa Ym+§ =¢ +Cm+6’

where
crte = cmte(gt, 2t O e = 0T (et P

Ca:Ca(xla-”amein)a C§ :Cg(ynferla-"aym)a
Cm-i—a = Cm+a (yn—m+1; ce 7ym); Cm+§ = Cm+§(yn—m+17 ceey ym)
are smooth functions satisfying the following differential equations

dC™re = O dal,  dC™TE = O teda®,  dC, = O Pdaf,
ACryo = Ch i oya, dCmie = C8 cdy,.

It is easy to check that the parametric equations of the submanifolds N C M can
be written in the following form

X¢ =af,
X =" — 6§m—n+acna@+iy?7 + 6§m—n+ac'gn+acm+’icgn+z - 6}2)m7n+acgz+§yb7

Xmta = 5§m—n+ay§ + Cimta + 5(21m—n+aya - 5gm—n+acm+icgn+l’

1 ) )
X = 5gmfn+§ya + Cm-i-&, Yé =y + 50711-',-1'0‘5erZ + Cm-i—icgnJﬂ; Yo = Ya,
Yija=2%+ Cm-i—om Ym-i—& =zt + Cm—i—&a

where Crita = Coga(Un—m+1s--,Ym); Cmte = Crte(Un—m+1,...,Ym) are smooth
functions satisfying the following differential equations

dCmta = Ch o Ya, dCrmie = C L edyq.
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Pesrome

C.X. Apymwonan. O reomerpun mogMHOr000pasuit B Ey, .

3ydaercs CrenuaabHbI KaacC 2m-MePHBIX HOJAMHOr000pasuil B 2n-MePHOM IICEBI0€B-
KJIUZOBOM IPOCTPAHCTBE C METPUKOH CHUTHATYDHL (1,7), M3BECTHOM KaK ICEBIOEBKJINIOBO
npoctpancTBo Pammesckoro. Jas u3ydaeMbiX [MOJMHOr000pa3uii HaleHbl KAHOHUYECKUe WH-
TerpaJjibl ¥ IapaMeTPUYeCKIe YPaBHEHHS.

Knro4deBbIe cj10Ba: 4eTHOMEDHOE IO IMHOr000pasue, ICeBI0EBKINI0BO IPOCTPAHCTBO Pa-
IIEBCKOTO, JIBOMHOE DPAaCC/I0eHWe, KaHOHWYECKHUH WHTerpas, nuddepeHuaasHo-TeoMeTpude-
CKasi CTPYKTYpPa, PACC/IOEHHUE, CIIOEHUE.
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