
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ЭКОЛОГИИ, БИОТЕХНОЛОГИИ И

ПРИРОДОПОЛЬЗОВАНИЯ

Кафедра моделирования экологических систем

ЭЛЕМЕНТАРНОЕ ВВЕДЕНИЕ В PYTHON

Учебно-методическое пособие

Казань – 2025

2

УДК 51-7

Принято на заседании учебно-методической комиссии

Института экологии, биотехнологии и природопользования

Протокол № 9 от 17 января 2025 года

Авторы-составители:

доктор физико-математических наук, профессор Зарипов Ш.Х.;

кандидат физико-математических наук, доцент Костерина Е.А.;

кандидат физико-математических наук, доцент Гильфанов А.К.;

кандидат физико-математических наук, доцент Никоненкова Т.В.;

ассистент Латыйпова С.Е.

Рецензент:

доктор биологических наук, профессор Савельев А.А.

Элементарное введение в Python: учебно-методическое пособие /

Ш.Х. Зарипов, Е.А. Костерина, А.К. Гильфанов, Т.В. Никоненкова,

С.Е. Латыйпова. – Казань: Казанский федеральный университет, 2025. –

29 с.

Учебно-методическое пособие представляет собой с элементарное введение в

язык Python и содержит описание базовых команд. Даны примеры решения

простейших математических задач. Пособие рекомендовано для студентов

бакалавриата и магистратуры по направлениям подготовки «Экология и

природопользование», «Землеустройство и кадастры», «Биотехнология»,

«Гидрометеорология», «Почвоведение».

© Казанский федеральный университет, 2025

3

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ ... 4

ТИПЫ ДАННЫХ ... 5

ОРГАНИЗАЦИЯ ВЫЧИСЛЕНИЙ И ВЫПОЛНЕНИЕ КОМАНД 5

ОПРЕДЕЛЕНИЕ ПЕРЕМЕННЫХ .. 7

ЭЛЕМЕНТЫ ПРОГРАММИРОВАНИЯ .. 7

Логические выражения .. 7

Логические операторы ... 7

Условный оператор if... 9

Операторы цикла for и while ... 10

CПИСКИ ... 12

Создание списков на Python .. 12

ВСТРОЕННЫЕ ФУНКЦИИ ... 16

Таблица стандартных встроенных функций ... 16

Таблица встроенных математических функций ... 17

ОПРЕДЕЛЕНИЕ ФУНКЦИЙ ... 18

ПОСТРОЕНИЕ ГРАФИКОВ .. 19

График функции, заданной набором точек ... 19

График функции, заданной формулой ... 22

Оформление графика и сохранение рисунка в файл .. 23

График функции двух переменных .. 26

ЛИТЕРАТУРА ... 29

4

ВВЕДЕНИЕ

Высокоуровневый язык программирования Python общего назначения ре-

ализован практически во всех операционных системах, и большинство его моду-

лей распространяется бесплатно. Язык программирования Python обладает по-

нятным синтаксисом и хорошо подходит для программирования математических

вычислений и решения математических задач, в том числе анализа данных. Стан-

дартные библиотеки включают большой объем математических функций. Кроме

того, для Python написано большое количество прикладных библиотек, в том

числе для научных расчетов, которые позволяют решать ряд математических за-

дач без необходимости самостоятельной разработки алгоритмов. Программную

среду для Python можно установить с сайта разработчиков

https://www.python.org/downloads/. Необходимо выбрать желаемую версию

Python и скачать инсталляционный пакет, соответствующий вашей операцион-

ной системе. После запуска скачанного файла и установки Python, необходимо

также установить дополнительные библиотеки. Другой способ установить

Python состоит в использовании бесплатного дистрибутива Anaconda

(https://www.continuum.io/downloads). Это самый простой способ установить

сразу Python и стандартные библиотеки. Кроме всего прочего, вы получите ин-

тегрированные оболочки Jupyter Notebook и Spyder, предназначенные для разра-

ботки и выполнения программ. С основными принципами работы в среде Python

и командами можно ознакомиться, например, в [1-7].

5

ТИПЫ ДАННЫХ

Числовые данные в Python могут быть представлены двумя способами, ко-

торым соответствуют два типа данных. Целые числа (integer) – положительные

и отрицательные целые числа, а также 0 (например, 1, 223, -36, 0). Числа с пла-

вающей точкой (float point) – дробные числа (например, 3.32, -5.4321, 0.00111).

Разделителем целой и дробной части числа служит точка. Наряду с числовыми

данными Python оперирует символьными данными типа string. Cтроки (string) –

набор различных символов, заключенных в кавычки (например, "Kazan", "Yes",

'loading', '656', 'a12345'). Кавычки в Python могут быть одинарными или двой-

ными.

ОРГАНИЗАЦИЯ ВЫЧИСЛЕНИЙ И ВЫПОЛНЕНИЕ КОМАНД

Написание программ в Python может быть выполнено в среде разработки

(Spyder) или в режиме интерактивного блокнота (Jupyter). В первом случае сна-

чала пишется программа, а затем получается результат работы программы. Во

втором случае программа пишется в режиме «вопрос-ответ», когда разработчик

видит результат работы каждого блока. Эти блоки по-английски называются

ячейками (Cell). Далее будем предполагать использование среды Jupyter. Запуск

на выполнение последовательности команд в активной ячейке в среде Jupyter

происходит при нажатии комбинации клавиш "Shift+Enter" или "Ctrl+Enter".

Вводимая команда и ответ маркируются символами In[n]: и Out[n]: Эти обозна-

чения представляют начальные буквы слов Input и Output. В квадратных скобках

пишется номер команды n. Маркировка команд и их номеров осуществляется ав-

томатически.

Запишем в строке ввода команду 2+2. Получим ответ 4.

In[n]: 2+2

Out[n]: 4

6

Вычислим сумму 1/3 + 3/7 и разность дробей 11/3-3/7.

In[n]: 1/3+3/7

Out[n]: 0.7619047619047619

In[n]: 11/3-3/7

Out[n]: 3.238095238095238

Для ввода чисел, заданных в экспоненциальной форме, используется буква

"e". Найдем произведение чисел 3.4 ∙ 10−5 и 6.7 ∙ 108.

In[n]: 3.4e-5*6.7e8

Out[n]: 22780.0

Для четырёх основных арифметических операций – сложения, вычитания,

умножения и деления – используются символы "+", "-", "*", "/". Для задания при-

оритета операций используются круглые скобки. Так, для того чтобы вычислить

дробь 6(3 − 4) (7 − 3)⁄ , надо использовать следующую команду

In[n]: 6*(3-4)/(7-3)

Out[n]: -1.5

Для возведения в степень используется символ ** (две звездочки). Для того

чтобы вычислить 210, 5−2, 271/3, следует писать команды

In[n]: 2**10

Out[n]: 1024

In[n]: 5**(-2)

Out[n]: 0.04

In[n]: 27**(1/3)

Out[n]: 3.0

Еще две основные операции – это целочисленное деление // (две наклон-

ные черты) и остаток от деления % (обозначается знаком процента).

In[n]: 5//2

Out[n]: 2

In[n]: 5%2

Out[n]: 1

7

ОПРЕДЕЛЕНИЕ ПЕРЕМЕННЫХ

В Python можно определять переменные. Как известно, переменная – это

именованная область памяти. Важно, что в Python имена переменных, имена

функций, ключевые слова и другие идентификаторы чувствительны к регистру.

Зададим x=5 и y=10 и найдем сумму и произведение x и y:

In[n]: x=5

y=10

z1=x+y

z2=x*y

print(z1, z2)

Out[n]: 15 50

Задания.

1. Вычислить
√25+1

8
2
3−1

. Ответ 2.

2. Задать a=2, b=a+1/a, c=ba. Найти сумму a+b+c. Ответ 43/4.

ЭЛЕМЕНТЫ ПРОГРАММИРОВАНИЯ

Логические выражения

Наряду с числовыми и символьными переменными в Python вводится

также логический тип данных. Данные этого типа могут быть представлены

двумя значениями: True (истина, константа 1) и False (ложь, константа 0). С по-

мощью логического типа данных можно выразить значение логических выраже-

ний и/или результат логических операций.

Логические операторы

Логические операции – это операторы сравнения:

> больше
< меньше
>= больше или равно
<= меньше или равно
== равно
!= не равно

и логические операторы and, or, not.

8

Примеры логических условий

x == 8 x равен 8
x != 2 x не равен 2
x > 15 x больше 15
x < 52 x меньше 52
x >= 16 x больше или равен 16
x <= 43 x меньше или равен 43

Замечание. Один знак равенства соответствует операции присваивания,

например, x = 103+3, а двойной знак равенства – операции сравнения, например,

x==4.

Два и более простых логических выражения могут быть объединены в еди-

ное логическое выражение с помощью логических операций "and" (и) и "or"

(или). В этом случае при использовании оператора and значение логического вы-

ражения True (истина) достигается, если истинны результаты обоих простых

выражений, которые связывает данный оператор. Если хотя бы одно из этих про-

стых выражений будет иметь результат False (ложь), то и все сложное выраже-

ние будет ложным. При использовании оператора or значение True достигается,

если будет истинным результат хотя бы одного простого выражения, входящего

в состав сложного. Сложное выражение с оператором or становится ложным

лишь тогда, когда ложны все его составляющие.

Примеры сложных логических условий

x == 2 and y < 3 x равен 2 и y меньше 3
x > 4 and y < 5 x больше 4 и y меньше 5
x != -1 or y < 1 x не равен -1 или y меньше 1
x < 1 or y > 0 x меньше 1 или y больше 0

При использовании логических операций в одном выражении следует иметь в

виду, что по приоритету сначала вычисляется not, затем and и в последнюю оче-

редь – or. Управлять приоритетом можно с помощью скобок.

x == 1 or y < 2 and z > 3 сначала будет вычислена операция

and, а затем or
(x == 1 or y < 2) and z > 3 сначала будет вычислена операция

or, а затем and

9

Задания.

1. Присвойте переменным x и y произвольные числовые значения. Со-

ставьте сложные логических выражения с помощью оператора and, два из кото-

рых должны давать истину, а два других – ложь.

2. Выполните задание 1 с логическим выражением с помощью опера-

тора or.

Условный оператор if

Условный оператор if позволяет выполнять различные действия в зависи-

мости от выполнения тех или иных условий. Синтаксис оператора имеет следу-

ющий вид:

if условие:

действия, выполняемые в случае результата True в

условии

else:

действия, выполняемые в случае результата False в

условии

Конструкцию else можно пропустить в написании. В условии использу-

ются операторы сравнения и логические операторы.

Важную роль в синтаксисе языка Python играют отступы. Отступы дела-

ются с помощью четырех пробелов или по нажатию клавиши Tab. Отступами

выделяются блоки операторов – последовательности операторов, которые

должны выполняться друг за другом. В Python каждый блок операторов должен

быть записан по одной вертикальной линии отступов. Такую же роль в языке

программирования Pascal играют ключевые слова begin ... end, а в языке C фи-

гурные скобки {}.

10

Пример.

С использованием оператора if, присвоим переменной c наибольшее из зна-

чений переменных a = 10 и b = 2:

In[n]: a=10

b=2

if a>b:

 c=a

else:

 c=b

print(c)

Out[n]: 10

Операторы цикла for и while

Для формирования списков и массивов используются операторы цикла for

и while.

Синтаксис оператора while имеет вид:

while условие:

 операторы, выполняемые в цикле

Пример.

Вывести на экран числа, квадраты которых меньше 50:

In[n]: i = 1

while i**2 < 50:

 print(i)

 i = i + 1

Out[n]: 1

2

3

4

5

6

7

Синтаксис оператора for имеет вид:

for имя индекса in range (начальное значение индекса,

конечное значение индекса):

операторы, выполняемые в цикле

11

Функция range() создает последовательность чисел внутри определенного

диапазона и не используется как самостоятельная функция, а обычно применя-

ется только для работы с циклом for.

• range(start, stop, step) создает последовательность из чисел от start до

(stop - 1) с шагом step;

• range(start, stop) создает последовательность от start до (stop - 1) с ша-

гом 1;

• range(stop) создает последовательность от 0 до (stop - 1) с шагом 1.

Примеры.

1. Вывести на экран сумму квадратов чисел от 1 до 10.

In[n]: sum = 0

for i in range(1,10):

 sum = sum+ i**2

 print(sum)

Out[n]: 1

5

14

30

55

91

140

204

285

2. Найти сумму чисел от 1 до 10.

In[n]: sum = 0

n = 10

for i in range(1, n):

 sum = sum + i

print(sum)

Out[n]: 45

3. Вывести на экран квадраты чисел от 1 до 5.

In[n]: for i in range(6):

 print(i**2)

Out[n]: 0

1

4

9

16

25

12

Задания.

1. Напишите программу, которая определяет, состоит ли заданное двузнач-

ное число из одинаковых цифр. Если состоит, то вывести «Да», в противном слу-

чае вывести «Нет».

2. Напишите программу, которая выводит на экран квадраты нечетных чи-

сел от 1 до 10.

3. Вывести в столбик таблицу умножения на 10.

CПИСКИ

Списки являются последовательностями числовых значений и/или сим-

вольных данных, заключенных в квадратные скобки [] и отделенных друг от

друга с помощью запятой:

a1 = [15, 55, -10, 33, -4] # список целых чисел

a2 = [11.1, 51.31, 21.68, 14.61, 4.1, 1.85] # список дробных чисел

a3 = ["Moscow","Samara", "Ufa", "Kazan"] # список из слов

a4 = ["Moscow ", "Kazan", 1222, 10,-1] # смешанный список

a5 = [[0,1, 2], [3, 2, 1], [-1, -1, -1]] # список, состоящий из списков

a6 = ['l', 'i', ['st', 2]] # список из значений и списка

Создание списков

1. Присваивание значений в списке

q = [0, 1, 2, 3, 10] # список целых чисел

s = [] # пустой список

2. Список можно получить при помощи функции list()

In[n]: list('Kazan')

Out[n]: ['K', 'a', 'z', 'a', 'n']

In[n]: list('12345')

Out[n]: ['1', '2', '3', '4', '5']

13

3. Создание списка при помощи функции split() (расщепить)

In[n]: stroka ="Hi,Kazan"

list1=stroka.split(",")

list1

Out[n]: ['Hi', 'Kazan']

4. Создание списка с помощью генератора элементов

Список формируется умножением одного элемента на число:

In[n]: s=[1]*10

print(s)

Out[n]: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Список формируется с помощью цикла

In[n]: n=10

s = []

for i in range(n):

 s.append(i)

print(s)

Out[n]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Аналогичный список можно получить с помощью следующей конструк-

ции

In[n]: s = [i for i in range(10)]

print(s)

Out[n]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In[n]: s = [i**2 for i in range(10)]

print(s)

Out[n]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In[n]: s = [10-i for i in range(10)]

print(s)

Out[n]: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

5. Списки можно складывать (конкатенировать) с помощью знака «+»:

In[n]: s=[1,2,3] + [4,5,6] + [10]

print(s)

Out[n]: [1, 2, 3, 4, 5, 6, 10]

14

6. Формирование двумерного списка

In[n]: m=2

n=5

s2d=[[i+j for j in range(m)] for i in range(n)]

print(s2d)

Out[n]: [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]

Cписки можно рассматривать как массивы с индексацией от 0. Элементы одно-

мерного и двумерного списков могут быть получены как s[i] и s[i][j] соответ-

ственно, как показано ниже:

In[n]: s=[1, 2, 3, 4, 5, 6, 10]

print(s[0],s[4])

Out[n]: 1 5

In[n]: s = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]

print(s[0][1],s[3][0])

Out[n]: 1 3

Задания.

Создать список, используя генератор:

1. Заполнить список квадратами чисел от 1 до 10.

2. Заполнить список числами от 10 до 1.

3. Создайте список целых чисел от -5 до 25.

4. Создайте список целых чисел от -10 до 10 с шагом 2.

5. Создайте список из 20 пятерок.

6. Создайте список из сумм чисел от 0 до 10:

[0, 0+1, 0+1+2, …, 0+1+2+…+10].

МАССИВЫ NumPy

Списки удобны для хранения данных различного типа. Но их использова-

ние в качестве числовых массивов не всегда возможно. Например, умножение на

2 приводит к удвоению списка, а не удвоению его элементов:

15

In[n]: mylist=[1,2,3,4]

print(mylist)

mylist2=[1,2,3,4]*2

print(mylist2)

type(mylist)

Out[n]: [1, 2, 3, 4]

[1, 2, 3, 4, 1, 2, 3, 4]

list

Для создания массивов используется библиотека NumPy, которая позво-

ляет применять обширный набор высокоуровневых математических функций

для операций с большими массивами чисел и вызывается командой

import numpy

Используя функции из библиотеки, нужно каждый раз указывать имя биб-

лиотеки, например, numpy.array(). Для сокращения записи можно в рамках сво-

его кода дать библиотеке сокращенное имя и далее ссылаться на него. Будем да-

вать библиотеке NumPy имя np, используя команду

import numpy as np

Cписок может быть преобразован в массив командой array()

In[n]: import numpy as np

mylist=[1,2,3,4]

print(mylist)

myarray=np.array(mylist)

print(type(myarray))

myarray2=myarray*2

myarray2

Out[n]: [1, 2, 3, 4]

<class 'numpy.ndarray'>

array([2, 4, 6, 8])

16

ВСТРОЕННЫЕ ФУНКЦИИ

Таблица стандартных встроенных функций

abs() Абсолютное значение
sum() Сумма элементов списка
type() Определение типа переменной
max() Максимальное значение в списке
min() Минимальное значение в списке
str() Перевод значения переменной в текстовое
int() Целая часть переменной
float() Представление переменой в виде числа с плавающей точкой
len() Количество элементов в объекте (например, длина списка

или строки)

Примеры.

In[n]: abs(-5)

Out[n]: 5

In[n]: L = [1,5,30, 40, 55, 111]

sum(L)

Out[n]: 242

In[n]: type('Kazan')

Out[n]: str

In[n]: max([1,-2,10,112,2,5,70])

Out[n]: 112

In[n]: S=[1,13,12,1,3,5,7]

len(S)

Out[n]: 7

Модуль (иначе говоря, библиотека) math включает в себя набор математи-

ческих функций и вызывается командой

import math

Модуль math содержит математические константы – числа π и е.

In[n]: import math

math.pi

Out[n]: 3.141592653589793

17

In[n]: import math

math.e

Out[n]: 2.718281828459045

Таблица математических функций библиотеки math

Функция Описание

math.sqrt(x) √𝑥 квадратный корень из x

math.sin(x) sin 𝑥 синус x (x указывается в радианах)

math.cos(x) cos 𝑥 косинус x (x указывается в радианах)

math.tan(x) tg 𝑥 тангенс x (x указывается в радианах)

math.atan(x) arctg x арктангенс x, возвращает значение от

–π/2 до π/2

math.atan2(y, x) arctg (y/x) арктангенс отношения y и x, возвра-

щает значение от –π до π

math.fabs(x) |𝑥| модуль x

math.facto-

rial(x)

𝑥! факториал числа x

math.fmod(x, y) остаток от деления x на y

math.exp(x) 𝑒𝑥 exp(x)

math.log(x, [a]) log𝑎 𝑥 логарифм x по основанию a. Если a не

указано, вычисляется натуральный ло-

гарифм

math.degrees(x) переводит радианы в градусы

math.radians(x) переводит градусы в радианы

math.erf(x)


−=

x
t dtexerf

0

22


 функция ошибок

Примеры.

In[n]: import math

math.sqrt(9)

Out[n]: 3

18

In[n]: import math

math.degrees(math.pi)

Out[n]: 180.0

ОПРЕДЕЛЕНИЕ ФУНКЦИЙ

Наряду с встроенными функциями пользователь может задавать свои

функции. Функция – это блок кода, который начинается с ключевого слова def,

названия функции и двоеточия. Функция может принимать входные данные (ар-

гументы или параметры), выполнять действия с ними и возвращать данные. Вы-

звать функцию – значит передать ей входные данные, необходимые для выпол-

нения действий внутри тела функции и для возвращения результата выполнения

функции. Функции в Python схожи с математическими функциями. Например,

функция, выражающая квадрат числа f(x) = x2, в Python имеет вид

def f(x):

return x ** 2

Ключевое слово def определяет функцию. После def следует имя функции, кото-

рое должно отвечать тем же правилам, что и имена переменных: в имени функ-

ции нельзя использовать заглавные буквы, а слова должны быть разделены под-

черкиванием. Для вызова функции после ее имени надо указать круглые скобки

и поместить внутрь параметры, отделив каждый из них запятой. После скобок

ставится двоеточие. Тело функции является блоком операторов и должно быть

на одной вертикальной линии отступа. Ключевое слово return используется для

определения значения, которое функция возвращает как результат своей работы.

Для вывода результата на экран применим функцию print.

Примеры.

In[n]: def function():

 print("Задаем функцию")

function()

Out[n]: Задаем функцию

In[n]: def f(x):

 return x * 2

y = f(5)

print(y)

19

Out[n]: 10

In[n]: def g(x, y, z):

 return x**2 + y-2*z

a = g(1, 2, 3)

print(a)

Out[n]: -3

Задания.

1. Найти значение выражения
𝝅𝟐

𝟏+√𝒆−𝟏
 в десятичной форме. Ответ 4.2710.

2. Присвоить функции
𝒆𝒙−𝒆−𝒙

𝒆𝒙+𝒆−𝒙
 имя th и вычислить значение этой функции

при а) x=1, б) x=ln(2), с) x=‒4. Ответы а) 0.7616, б)0.6, в) ‒0.9993.

ПОСТРОЕНИЕ ГРАФИКОВ

Для построения графиков может быть использована библиотека Matplotlib.

Библиотека имеет широкие возможности для визуализации данных двумерной и

трехмерной графики, построения различных диаграмм. Наилучшим вариантом

использования библиотеки является выбор подходящего графика из галереи с

официального сайта и его адаптация под свои задачи.

Библиотека Matplotlib вызывается командой

import matplotlib.pyplot as plt

График функции, заданной набором точек

Для визуализации наборов точек data_d=[24,19,20,20,22,22,20,19,22,23] и

data_n=[16,13,12,14,15,15,14,14,12,12], соответствующих прогнозу дневной и

ночной температуры на 10 дней в июле 2024 в г. Казани, используем команду

plt.plot(data)

In[n]: import matplotlib.pyplot as plt

data_d=[24,19,20,20,22,22,20,19,22,23]

data_n=[16,13, 12, 14, 15, 15,14,14,15,15]

plt.plot(data_d)

plt.plot(data_n)

plt.show()

20

Out[n]:

Функция plot() строит график линии, а функция show() показывает его на

экране. На графике появится ломаная линия, в которой номерам элементов дан-

ных data_d и data_n [0,1,2,3,4,5,6,7,8,9] будут соответствовать их значения. Рису-

нок можно сохранить в одном из графических форматов, например *.png, с по-

мощью крайней правой иконки (три точки) на панели в левом нижнем углу гра-

фика:

Для визуализации численности бобров в Республике Татарстан с 2005 по

2015 год используем списки:

data_y=[2502,3298,4998,5501,8500,8303,13797,13498,13797,17197,

15599], data_t=[2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,

2014, 2015] и программу:

21

In[n]: import matplotlib.pyplot as plt

data_y=[2502,3298,4998,5501,8500,8303,

 13797,13498,13797,17197,15599]

data_t=[2005,2006,2007,2008,2009,2010,

 2011,2012,2013,2014,2015]

plt.plot(data_t,data_y)

plt.show()

Out[n]

:

Набор точек численности бобров может быть представлен в виде отдель-

ных точек с помощью команды plt.scatter(data_t,data_y)

In[n]: import matplotlib.pyplot as plt

data_y=[2502,3298,4998,5501,8500,8303,

 3797,13498,13797,17197,15599]

data_t=[2005,2006,2007,2008,2009,2010,

 2011,2012,2013,2014,2015]

plt.scatter(data_t,data_y)

plt.show()

Out[n]:

22

График функции, заданной формулой

Для построения функции одной переменной надо задать эту функцию, с

помощью команды linspace библиотеки NumPy создать список точек, в которых

функция будет показана, и построить график функции с помощью команды

plt.plot(t,y).

Пример.

Пример программы построения графика зависимости численности популя-

ции от времени (r – коэффициент прироста, к – емкость среды, x0 – начальная

численность)

𝑥(𝑡) =
𝑘

1 +
𝑒−𝑟𝑡(𝑘 − 𝑥0)

𝑥0

.

In[n]: import numpy as np

import matplotlib.pyplot as plt

k=10

r=1

x0=1

def x(t): # x(t)=k/(1+e-rt (k-x0)/ x0)

 return k/(1+np.exp(-r*t)*(k-x0)/x0)

t = np.linspace(0, 10, 201) # 101 точка между 0 и 5

y = x(t)

plt.plot(t, y)

plt.show()

Out[n]:

23

Оформление графика и сохранение рисунка в файл

Добавим к построению кривой название графика, обозначение осей, ле-

генду. Изменим вид кривой и пределы ее просмотра. Можно также cохранять

файлы с рисунком, включив в код команду для автоматического сохранения ре-

зультатов в файле.

In[n]: import numpy as np

import matplotlib.pyplot as plt

import os

#os.chdir("C:\\Python") # куда сохранить файл с графи-

ком

k=10

r=1

x0=1

def x(t): # x(t)=k/(1+exp(-rt)*(k-x0)/ x0)

 return k/(1+np.exp(-r*t)*(k-x0)/x0)

t = np.linspace(0, 10, 201) # 201 точка от 0 до 10

n=len(t)

y = []

for i in range(n):

 y.append(x(t[i]))

plt.plot(t, y,'g', label=' x(t)=k/(1+exp(-rt) (k-x0)/

x0)')

plt.axis([0,10,0,10]) # задание [xmin, xmax, ymin,

ymax]

plt.xlabel('t, время') # обозначение оси абсцисс

plt.ylabel('x(t), численность') # обозначение оси орди-

нат

plt.title('Численность популяции') # название графика

plt.legend() # вставка легенды (текста в label)

plt.grid()

plt.savefig('Рис.1.png', dpi=200)

plt.show()

24

Out[n]:

Пример 1.

Вычислить последовательность чисел Фибоначчи, представляющую дина-

мику численности биологической популяции по формуле

𝑥𝑛+2 = 𝑥𝑛+1 + 𝑥𝑛

и представить в графической форме.

In[n]: # вычисление ряда чисел Фибоначчи

import matplotlib.pyplot as plt

a=1

b=1

n=10

x =[1 for i in range(10)]

for i in range(1, n):

 c=a+b

 a=b

 b=c

 x[i]=c

print(x)

plt.xlabel('i') # обозначение оси абсцисс

plt.ylabel('xi, численность популяции') # обо-

значение оси ординат

plt.plot(x)

plt.show()

Out[n]: [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

25

Пример 2.

Найти площадь S полигона, вершины которого задаются координатами

x=(3,5,12,9,5,3) и y=(4,11,8,5,6,4), по формуле землемера:

S=𝑆 =
1

2
|∑ 𝑥𝑖𝑦𝑖+1 + 𝑥𝑖𝑦1 − ∑ 𝑥𝑖+1𝑦𝑖 −𝑖=𝑛−1

𝑖=1 𝑥𝑖𝑦𝑛
𝑖=𝑛−1
𝑖=1 |=

1

2
|𝑥1𝑦2 + 𝑥2𝑦3 + ⋯ + 𝑥𝑛−1𝑦𝑛 + 𝑥𝑛𝑦1 − 𝑥2𝑦1 − 𝑥3𝑦2 − ⋯ − 𝑥𝑛𝑦𝑛−1 − 𝑥1𝑦𝑛|

In[n]: # расчет площади полигона по формуле землемера

import matplotlib.pyplot as plt

Координаты полигона

x=[1,2,3,4,5,1]

y=[4,11,10,9,6,4]

xy1=[x[i]*y[i+1] for i in range(5)]

xy2=[x[i+1]*y[i] for i in range(5)]

s=0.5*abs(sum(xy1)-sum(xy2))

print ('Площадь полигона=',s)

plt.figure(figsize=(8,5))

plt.title("Полигон",fontsize=20)

plt.plot(x,y,'-',linewidth=2)

plt.xlabel("x",fontsize=20)

plt.ylabel("y",fontsize=20)

plt.tick_params(axis='both', which='major',

labesize=15)

plt.grid()

plt.show()

Out[n]: Площадь полигона= 15.0

26

График функции двух переменных

В экологии одной из важных задач является исследование функции двух

переменных, к которым относятся участок земной поверхности в виде модели

рельефа, двумерное распределение природных и экологических факторов по

пространству. При этом наиболее информативным является представление

функции двух переменных в виде изолинии (изотермы, изобары, изохоры и т.п.).

Пример 1.

Построить поверхность – изображение функции Экли и изолинии этой по-

верхности в диапазоне x= [-3,3], y=[-3,3]:

f(x, y) = −20 exp (−0.2√0.5(x2 + y2) − exp [0.5(cos(2πx)

+ cos(2πy)] + e + 20

In[n]: # Изолинии и поверхность функции Экли

import math

import numpy as np

import matplotlib.pyplot as plt

mpi=math.pi

me=math.e

задаем функцию Экли

def f(x,y):

 return -20*np.exp(-

0.2*np.sqrt(0.5*(x**2+y**2)))+np.exp(0.5*(np.cos(2*mpi*x)+

np.cos(2*mpi*y)))+me+20

27

создаем массив дискретных значений аргументов в диапа-

зоне x= # [-3,3], y=[-3,3].

x = np.linspace(-3, 3, 1000)

y = np.linspace(-3, 3, 1000)

создаем двумерный массив дискретных значений аргументов

X,Y=np.meshgrid(x,y)

вычисляем функцию Экли на введенном двумерном массиве

Z=f(X,Y)

рисуем изолинии функции Экли

CF=plt.contourf(X,Y,Z)

добавляем легенду, названия осей и графика

plt.legend(['2D Поверхность'], fontsize=10)

cbar = plt.colorbar(CF, orientation='horizontal', pad=0.1,

shrink=0.8)

cbar.set_label('Значения функции Экли', rotation=0, la-

belpad=10)

plt.xlabel('X')

plt.ylabel('Y')

plt.title('Изолинии поверхности функции Экли')

plt.show()

рисуем поверхность, задаваемую функцией Экли

fig=plt.figure()

plt.title('Поверхность функции Экли')

ax=plt.axes(projection='3d')

ax.contour3D(X,Y,Z,50,cmap='jet')

ax.set_xlabel('x')

ax.set_ylabel('y')

ax.set_zlabel('z')

Out[n]:

28

Задания.

1. Нарисовать график функции y(x): 𝑦 = −𝑥2 + 4𝑥 − 1.

2. Нарисовать график функции y(x)

𝑦 = {
𝑥3, если 𝑥 > 0
|𝑥|, если 𝑥 ≤ 0

.

3. Нарисовать изолинии и поверхность функции Химмельблау

f(x, y) = (x2 + y − 11)2 + (𝑥 + y2 − 7)2 в диапазоне x= [-5,5], y=[-5,5].

29

ЛИТЕРАТУРА

1. Доля П.Г. Введение в научный Python – Харьков: Харьковский

национальный ун-т, 2016. – 333 с.

2. Доусон М. Программируем на Python. – СПб.: Питер, 2014. – 416 с.

3. Лутц М. Изучаем Python. – СПб.: Символ-Плюс, 2011. – 1280 с.

4. Соболев А.Н., Воронцов А.Г. Компьютерная физика: учебное пособие. –

Челябинск: Издательский центр ЮУрГУ, 2016. – 119 с.

5. Шапошникова С.В. Основы программирования на Python. – Лаборатория

юного линуксоида, 2011. – 44 с.

6. Программирование и научные вычисления на языке Python [Электронный

ресурс] – Режим доступа: https://ru.wikiversity.org/wiki/Программирование и

научные вычисления на языке Python, свободный. – Дата обращения:

16.01.2025.

7. Зарипов Ш.Х., Никоненкова Т.В., Ложкин Г.И., Гильфанов А.К.,

Костерина Е.А. Математические модели динамики популяций: реализация на

языке Python: учебное пособие. – Казань: Изд-во Казанского федерального

ун-та, 2023. – 44 с.

