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Abstract: This paper presents a study of brane formation in six-dimensional space. There is
no a priori assumption of the existence of brane(s). However, an analysis of the generalized
Einstein equations shows that there is a set of metrics describing two static branes even in
the absence of matter fields. At the same time, no one-brane configurations were found.
The trapping of massive particles on branes is a consequence of the metric structure, which
prevents these particles from moving between branes. It is shown that communication
between charged particles on different branes is provided by photons. Such positron—-
electron annihilation could be studied experimentally at the LHC collider. The Higgs field
is distributed between the branes in such a way that it can serve as a Higgs portal connecting
two worlds located on different branes. The values of the 4D physical parameters depend
on the extra metric structure near the branes. We also found a non-trivial effect of the
decompactification of extra space during the Hubble parameter variation.

Keywords: {(R) theory of gravity; extra dimensions; branes; background fields

1. Introduction

The idea of multidimensional gravity is an important tool for obtaining new theoretical
results [1-4]. In paper [5], warped geometry is used to solve the problem of the small
cosmological constant. The concept of multidimensional inflation is discussed in detail in
several sources, including [6-8]. These papers postulate that an extra-dimensional metric g,
is stabilized at a high energy scale. The stabilization of extra space as a purely gravitational
effect has been studied in [9,10].

Theories concerning fields confined to a three-dimensional hypersurface (a brane)
within a multidimensional spacetime have been a significant area of interest for several
decades. Akama was the first to propose this idea [11]. The thick brane hypothesis was
independently proposed by Rubakov and Shaposhnikov [12]. Branes are an essential tool
for solving a wide range of problems. The hierarchy problem is undoubtedly one of the
most important such problems [13-15].

Thin branes were the first to be discussed in the literature. It has been shown that they
suffer from some intrinsic problems [16]. So, despite hopeful results, they are gradually
being replaced by branes with an internal structure—thick branes [17-22]. The latter require
special conditions to prove their existence and stability. It could be the choice of a specific
metric, including the warp factor [23] or a special form of the scalar field potential [21].
A pure geometric approach based on f(R) gravity in 5D is performed in [24] where a
substantial number of bibliographic sources can be found.
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In brane world scenarios, the key issue is the localization of fields on branes and the
recovery of effective 4D gravity. The localization of gauge and spinor fields on branes is a
necessary element of any brane model and is a widely discussed topic in the literature. The
solutions representing the tensor-mode excitations in the presence of a brane are examined
in [25,26] with a focus on the stability problem. It is proven that the extra-dimensional part
of the metric is perturbatively stable provided that conditions (6) are valid. The stabilization
of extra space as a pure gravitational effect has been studied in [27]. Analytical solutions
allow for prompt study of the stability [26,28,29] of one-brane configurations in 5D space—
time, and it is of interest to apply these results to the stability question in the presence of
the two branes discussed here.

The stabilization mechanism for the radion in two-brane models was proposed in [30].
The numerical stability of extra dimensions was discussed in our paper [31]. In the paper [32],
we used an alternative method—transforming the initial equation into one resembling the
Schrodinger equation.

The introduction of the warp factor in a D-dim metric [23] facilitates analysis, especially
in the fermion sector, as outlined in [33] which provides a detailed analysis of this subject
in even-dimensional space-time. Fermions in other types of extra metrics are studied
in [34,35].

Two-brane models are often based on the well-known 5D Randall-Sundrum model,
describing two 3D thin branes located at two fixed points of the orbifold. The model has a
fixed distance between the branes, which is one of its disadvantages. A substantial amount
of references can be found in [36]. The formation of multiple thick branes is considered in,
e.g., [37].

In this study, we discuss a new class of branes with properties depending on initial
conditions that form under the horizon at high energies. There are no a priori assumptions
on the existence of branes. We consider purely gravitational action with the simplest
extension to gravity with higher derivatives; see (3) and (5). Our analysis demonstrates
that one-brane metrics represent exceptions rather than the norm, and we are particularly
interested in the set of metrics that describe two branes, located at a finite distance from each
other. In this framework, the distance between the branes depends on the initial conditions.

Here, we analyze two-brane configurations in the framework of the f(R) gravity
acting in 6D space-time. It is assumed that the observers are located on only one of the
branes (brane-1). Therefore, the initial conditions should be adjusted so that the effective
physical constants coincide with the experimental ones on brane-1. The problem can be
solved by taking into account the random distributions of the matter fields over the extra
dimensions due to the quantum fluctuations at the high energies [38]. The particle masses
and their coupling constants are arbitrary on the second brane (brane-2).

The paper is organized as follows. Section 2 is devoted to a comprehensive discussion
of metric choice. In Section 3, we present the results of numerical simulations leading
to brane formations in the framework of pure f(R) gravity. Section 4 is dedicated to the
exploration of the different behavior of matter fields on branes. The conclusions of our
study are summarized in Section 5.

2. The Metric Choice

In this paper, we study the static extra metric, so we have to act on scales where
the wavelengths of 4D fluctuations are much larger than the extra space size. The D-
dim Plank mass mp determines the highest possible energy scale, and we assume that
mp ~ 107 +10'® GeV. The scale of extra-dimensional space, which is of the order of
the first KK mode, is Ip ~ 10211151, see Figure 1. At the same time, the characteristic
wavelength at the de Sitter stage is of the order of the inverse Hubble parameter H!.
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Therefore, estimation H = Hp < I5! ~ 10 = 10'® GeV provides us with the energy
scales where the extra dimensional metric can be considered as static. Here, we keep in
mind that the wavelengths larger than the scale of the extra dimensions cannot disturb the
extra metric.

—- a) r'(0)=3, R'(0)=-0.0006 -20 -10 O 10 20
— b)r'(0)=1.6, R'(0)=-0.00001

Figure 1. The numerical solution of Equation (4) in units mp = 1, for the following parameters:
n = 2, H = 0 and the boundary conditions r(0) = 50, v(0) = 0,9/(0) = 0, (a) ¥(0) = 3,
R'(0) = —0.0006, R(0) ~ 0.01451, u; ~ —13.671,u; ~ 27.865; (b) r'(0) = 1.6, R'(0) = —1073,
R(0) ~ 0.00824, 1y ~ —21.244, up ~ 31.374.

The general picture is as follows. Our universe is created at the D-dim Planck scale
mp due to strong quantum fluctuations of the metric and fields. Then, the universe
moves slowly down to the scale Hp while the extra metric is heavily influenced by the
quantum fluctuations. Simultaneously, the 4D de Sitter space is divided into the causally
disconnected spatial domains, each of which has a specific extra metric. The extra metric is
frozen at the energies below Hp and remains constant thereafter. Some processes continue
to produce the 4-dim field fluctuations that are currently observed. However, their energy
is too small to disturb the extra-dimensional metric. In other terms, their wavelengths are
much larger than the extra-dimensional size, and we will use the approximation

dy- €3, H=12,34a=56 1)

in the range H < Hp ~ 10 + 10> GeV to study the static classical distributions over the
extra dimensions.

Another factor is important in the analysis, although not essential. In the subsequent
discussion, the assumption H ~ const (more accurately, e = H/H? < 1) is often used, and
evaluating its precision is essential. There are two energy scales where this approximation
is accurate. The first is above the threshold H > H; ~ 1013 GeV, marking the end of
inflation. The second, the lowest energy range, is given by H ~ \/A/3 ~ 0, where A
is the current cosmological constant. Both of these limits do not contradict the interval
H ~ 10" + 10'® GeV obtained above. The analysis above indicates that metric (2) holds in
the energy interval (Hj, Hp) at high energies. The second appropriate interval lies at low
energies, 0 < H < Hj.

As a result, we will consider the 4D conformal de Sitter metric with a 2D factor space
in the form

ds? :gMNdXMdXN — e2r(u) (dt‘2 — eZHt(Sijdxidxj)

—du® —*(w)d02 |, i,j=1,3, )

with the radial extra coordinate X* = u and X* = x¥, u =0,1,2,3. The angular coordinate
X5 = 6 varies in the finite region. We consider 6D space so that D = 4 + 1, n = 2 and the
set of extra dimensional coordinates is y = {X*, X°} = {u,6}. The brane position in the
radial extra coordinate is usually postulated [23,35,39]. By brane, we mean the subspace
of the 4 + n-dimensional space-time under consideration in which the material fields are
concentrated. In our study, the position of the brane u, is determined by solving the
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equations of f(R) gravity. They are formed spontaneously with the form determined by
random initial conditions. The origin of the latter is closely related to the metric fluctuations
during inflation.

Sometimes, relations between the metric functions ¢?(#+) and r(u.) are postulated
to avoid possible singularities [35]. In this paper, we do not impose such restrictions,
assuming that the formed singularities are weak enough to be integrated. This subject
has been discussed earlier [32,40,41]; see also the text around expression (7) of this paper.
Such sharp peaks (the cusps) have been also discussed in a variety of papers, mostly in 5D
models; see, e.g., [42].

Consider f(R) gravity in a D = 4 4 n-dimensional manifold mp:

D—2
mp

s="2— [ dPxy/lgol F(R), ©
Mp

where ¢p = det gmn, M, N = 1, D, the n-dimensional manifold M,, is assumed to be closed,

f(R) is a function of the D-dimensional Ricci scalar R, and mp is the D-dimensional Planck

mass. Below, we will work in the units mp = 1. Variation in the action (3) with respect to

the metric gMN leads to the known equations

1
— S fRIN + (RN + VMV — N 0p) fr = 0, )

with fr = df(R)/dR, Op = VMV)y. We use the conventions for the curvature tensor
RSk = OkThin — ONThix + TE T — TEnT Sk and the Ricci tensor Ry = R en-

We assume that the Hubble parameter H(t) is a slowly varying function of time,
consistent with the inflationary paradigm. Above, we justified the approximation
H(t) ~ H ~ const, which significantly simplifies the analysis. We also set d,- = 0 in
all the following equations, according to (1). Furthermore, we assume the s-wave approxi-
mation, omitting the dependence on the extra angle coordinate 6. Consequently, the extra
metric and the field distributions depend only on the internal radial coordinate u at the de
Sitter stage.

As a result, the de Sitter stage permits us to exclude the 4-dim coordinates dependence
from the equations at high energies. The only trace of time remains in the Hubble parameter
H(t), which varies extremely slowly with time.

The system (4) is the system of differential equations with respect to the argument
u, according to the discussion above. The solutions form a continuum set of functions
depending on additional conditions (1), dy(u)/du |y—y,, . . . at an arbitrary chosen point
ug. In the next section, we discuss the solutions of system (4), the explicit form of which is
given in our previous papers [32,41].

3. Brane Configurations

In this section, we show that the metrics obtained as a solution to the classical equations
relate to two sorts of manifolds with different topology. The first type of manifold represents
the closed extra space endowed with two branes. The second type of the extra space
represents the open space with two branes. We do not choose the topology a priori. The
explicit form of the numerical solution to system (4) has also been intensively discussed in
our previous papers [32,41]. Here, we study the behavior of matter in the vicinity of branes.
We define a brane as a 3D hypersurface characterized by a cusp in the Ricci scalar. The
geometric configuration of the subspace thus defined depends on the selected coordinate
system. The coordinate choice used in (2) provides the most straightforward representation
of the relative positioning of the branes.
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Here, we restrict ourselves to pure f(R)-gravity in its simplest extension of the Ein-
stein’s gravity in the form
f(R) = aR*+R +c. (5)

The matter fields are considered as test fields in the subsequent sections. We also assume
that the ghost- and the tachyon-free conditions

df(R)/dR > 0; d*f(R)/dR* >0 (6)

hold.

The general solution of the system (4) is a hard problem. Nevertheless, under the
conditions discussed above, the extra-dimensional metric depends only on the radial coor-
dinate u of the extra space. This greatly simplifies the analysis so that non-trivial numerical
results can be obtained. We refer the reader to the system of differential Equations (6)—(11)
written in [41]. The brane position depends on a certain solution which is characterized by
additional conditions: specific values of metric functions and their derivatives at the point
u = ug. We choose ug = 0 without loss of generality.

The results for numerical simulations are shown in Figure 1. Note that all results are
obtained for fixed Lagrangian parameters

a = 300,c =0.02

and different additional conditions. The solid curve on the left panel describes the behavior
of the extra-space radius r(u). It crosses the abscissa at two points 17 and u,, which means
that the closed extra-space is formed.

The right panel in the figure describes the curvature of the extra space and indicates
that singularities or cusps can exist at points #; and up. They are quite weak, so that
the integration over them does not lead to infinities [41]. Such cusps can be suppressed
by imposing artificial relations between metric functions [35]. Another way to avoid the
singularities is to choose a more complicated function f(R), like

fu(R)=aR% K t Ryc 0<e< 1. @)

Suppose that at some point R — 0. Then, f,(R) = R + ¢ with the well-known solution
in the form of the de Sitter metric. (Remember that the matter is still absent). Thus,
the curvature R — const contradicts the initial assumption. This means that the limit
R — oo is not realized. The exact solution to the system (4) with the function f. is a
hard problem. At the same time, the multiplier e R ~ 1, (¢ < 1) with an arbitrary
good accuracy near singularity if the parameter € is small enough. Hence, we continue
our numerical calculations with the quadratic function f(R), assuming that the possible
curvature singularity is replaced by a sharp maximum.

The dashed lines in the figure relate to another metric which is topologicaly different
from the first one. The nontrivial effect of transition from one topology to another is
illustrated in Figure 2. The lines describe the extra metrics’ behavior as the solutions to the
classical equations with the same Lagrangian parameters and additional conditions. The
only difference is the Hubble parameter value, which slowly decreases together with the
energy scale. Evidently, there exists a value of the Hubble parameter at which the topology
changes. We postpone the discussions on this phenomena to a later time. The stability of
such branes is discussed in [25].
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[—H=0.03; —-H=0.02; —-'H=0.01; ----H=0] [—H=0.03; —-H=0.02; --'H=0.01; -~‘H=0] [—H=0.03; —-H=0.02; — H=0.01; -~ H=0]

Figure 2. The numerical solution of Equation (4), for the following parameters n = 2, f(R) = 300R? + R +
0.02 and the boundary conditions r(0) = 50, 7(0) = 0, 7(0) = 3, 9/(0) = 0,R'(0) = —6-107%,
(@) H = 0.03,R(0) ~ 0.02986,(b) H = 0.02,R(0) ~ 0.02060,(c) H = 0.01,R(0) =~ 0.01590,
(d) H = 0, R(0) ~ 0.01451.

In the next section, we study the way to concentrate a matter in 3D space within the
local extra-space region, which would mean the formation of a brane. In our previous
paper [40], we mentioned the effect of the scalar field concentration near the critical points
where the curvature has a sharp peak. Here, a more thorough analysis is performed.

4. Matter Localization on Brane

Here, we study the matter distribution along the radial coordinate u in the vicinity of a
brane. We focus on the point # = u;, which is characterized by the sharp peak of curvature.
The geodesic motion of the point-like mass as a first test of a possible way to trap particles
in the local region around u; has been discussed in [41], Appendix A. It was shown there
that at least non-relativistic massive particles are trapped by branes. Indeed, their motion
is governed by the equation

i o —2e27/. (8)

Therefore, the particles are accelerated to a brane as it is seen from the behavior of warp
factor y(u) on Figure 1, the second panel.

Our goal is to find the distribution of fields (scalars, fermions, vectors) over the radial
extra coordinate # and to study them in detail. We will seek for the field solution in the form

ox,y) = O(x)Y(y)+ kZ 0 (¥)Yi(y) = O(x)Y (y) ©)
=0

The orthonormal functions satisfy the equation

OnYi(y) = MY () (10)

where U is the D Alembert operator acting in n-dimensional extra space. The functions
0,0y and O are assumed to be endowed with equal group indices depending on the group
representation, while the scalar function Y is responsible for the distribution over the
extra dimensions. We consider the wavelengths much larger than the scale of the extra
dimensions. Consequently, the summation accounting for field variations across the extra
dimensions may be disregarded.

The task is made considerably easier if we keep Formula (1) in mind, so that
O(x) ~ const with great accuracy. This helps to fix the extra-dimensional distribution
Y (u) of the fields as a solution of the system (4). The knowledge of the extra-space distribu-
tions allows us to substitute decomposition (9) into the initial action and to integrate out
extra coordinates, thus reducing the D-dim action to the observable 4-dim one.
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4.1. Scalar Field

The aim of this subsection is to find the scalar-field distribution over the extra space,
which is formed and stabilised at very high energies. The conjecture to be proved is that
particles (field fluctuations) can be concentrated on the branes. The classical equation for
the free massive field has the standard form

Opg+We(p) =0, W(p) = 59" (11)

Let us find the scalar-field distribution over extra dimensions to integrate them out from
the initial D-dim action. To this end, we will seek solutions in the form of (9). The method
of variables separation leads to the system

O4®(x) + p?®(x) =0 (12)

— [aﬁ + <4’y’ +(n— l)i)BH} Y (u) + (m? — )Y (u) =0, (13)

where ¢(x,u) = ®(x)Y(u) and y is an arbitrary parameter that can be fixed by observations.
The parameter y varies in the range 0 < p < mp and is known as the Kaluza-Klein tower
of masses if ¥ =0, r(u) = rgx = const and equals u = k/rgg, k =0,1,2.... Note that the
extra metric considered in this paper is not periodic in the coordinate u.

A new possibility opens up when the extra-space dimensionality n > 1. There is the
continuum set of static solutions to the Equation (13), because solutions do not satisfy the
periodicity conditions. These solutions together with the metric functions y(u), r(u) depend
on the Hubble parameter H, which decreases slowly. At the same time, if we keep in mind
the inflationary paradigm, the Hubble parameter H varies quickly if 4 > H. Therefore,
we have to choose a solution with small values of the parameter y < H ~ mp = 1. In
this case, we can study solutions to the Equation (12), assuming that the 4-dim space is
endowed with the de Sitter metric with a good approximation.

A typical numerical solution of Equation (13) is shown in Figure 3, where we neglect
u compared to m ~ mp. One can see that the scalar field is indeed concentrated near the
points 17 », leaving desert with Y ~ 0 in between. Let us estimate the effect analytically by
reducing Equation (13) to the stationary Schrodinger-like equation.

10,

8
6,
Y(u)
4

2,
- D
-20 0 20
,2. u

Figure 3. The scalar-field distribution along the radial coordinate u for the gravitational background
described in Figure 1b, m = 0.1 and the boundary conditions Y(0) = 0, Y’(0) = —0.01.

Moving on to a new variable u — |

dl 1

du — m—lebr’ (14)
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Equation (13) can be rewritten as follows
d*y
-z~ VY =0, V()= m? r? 2 b7, (15)

where the typical forms of /(1) and V(1) is shown in Figure 4.

34 30
2,
I(u) n 20
40
10 20 30 1
u
3 2 1 o 1 2 3

Figure 4. /(1) and V() for the gravitational background described in Figure 1b.

If V > 1, we may use the quasi-classical approach to solve this equation. Let us insert
the small parameter € so that V = V /e and change variables Y = e%/¢. Substitution in
Equation (15) gives two solutions

q I ,
Yio(l) = Yi exp(:t/ V(l’)dl’) = Yiexp(j:m/ r(l')”_1e47(l)dl’>, (16)

where we have neglected terms « 1/€ in comparison to 1/€?. Coming back to the coor-
dinate u, see (14), we obtain two functions describing the scalar field in both sides of the
potential maximum

Yq(u) = Y_exp[m(u; —u)], (17)
Yo(u) = Yy exp[m(u — uy)]. (18)

The quasi-classical approximation is violated in the vicinity of the brane, so the obtained
result describes the field behavior only between the branes. Therefore, the 4D fluctuations
near each brane interact extremely weakly with each other, due to the smallness of the
overlapping integral

Jaiwwa) = vy, [ duexp [l — )] exp [ - )]

~exp {m(uy —up)} < 1. (19)

The influence of the scalar field concentrated on brane-2 on the processes on brane-1 is
negligibly small, and vice versa. An important conclusion is that we can study the fields
on each brane independently. As we will see below, the low-energy physical parameters
depend on the extra metric and thus can be different on both branes.

4.2. Fermions

Here, we study the fermion field distribution along the radial extra-dimensional
coordinate u. The general form of the free fermion action in D dimensions can be found,
for example, in [43].

S = / d°z\/1s| [#irMD¥]. 20)
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The mass term is assumed to be generated by the interaction with the Higgs field. A more
thorough model in even dimensions is outlined in [33] where conditions for decoupling
the left and right chiralities of spinors are studied.

The particular form of the curved gamma matrices I'M, the spin connection w 4, and
the covariant derivatives can be found in [23]. In this subsection, we follow that paper and
refer the reader to the details there. A useful discussion is also performed in [44,45].

A 6D spinor
[ &
Y = ( & ) (21)

acting in six dimensions is equivalent to a pair of 4-dimensional Dirac spinors ¢; and ¢».
As shown in [34], both 4D spinors, ¢; and ¢y, are equal in the s-wave approximation used
in our approach. The more complicated situation with the contribution of p-waves (I # 0)
is also discussed there. In this paper, we are interested in the spinor distribution over the
extra dimensions. We will derive a subsequent representation of the fermion field in the
form (9) discussed in the previous section. Namely,

¥l y) = p(x)Yr(y) + k; P () Ye(y) = ()Y (y)- (22)

In this context, ;. (x) denotes massive Kaluza—Klein (KK) modes, which are excluded by
concentrating on the zero-mode approximation. The spinor ¢ is characterized by both
spinor and group indices and functions within a six-dimensional framework. This study is
focused on the distribution of fields across the extra-dimensional coordinates rather than
their reduction to four-dimensional physics. Consequently, our attention is directed toward
the form of the function Y (y) exclusively.

The explicit form of the scalar function Y (u) is needed to study whether it is really
trapped on the brane. To this end, consider the equation of motion

0 =MDy ¥ =TM(0y + wy)¥

= [TH(0y + wy) +T"(9y + wy) +T7(0s + wy)|¥

= T"9,¥ (y|x) + O(y[x)¥ (y[x)- (23)
The matrix form of the operator O

O(y|H,x) = TPwy+Tw;+T40y + wy) + T, + wy) (24)

depends on the dimensionality of the space.
Keep in mind that the 4D derivatives of fields are small compared to the derivatives in
the extra space; see (1). Therefore, d,'¥ = 0 and we obtain the equation

O(u|H)Yf(u) =0 (25)

for the field distribution along the extra coordinate u.
The distribution Y (u) can be found by solving the Equation (25), which is transformed
into the ordinary differential equation

[0+ ;;((Z)) +29'(u) | Y(u) = 0. (26)

The solution in the analytical form

Y(u) = cor(u)~V/2e 2 () (27)
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was obtained in [23], Section 4.3. The metric functions 67(”), r(u) tend to zero on branes;
see Figure 5. This means that the solution (27) has a sharp peak on branes and, hence, the
fermions are located there.

301
201
1
ZYr
e r 101
- _J
-20 0 20

u

Figure 5. The fermion distribution along the radial coordinate u for the gravitational background
described in Figure 1b.

There is also a region between the two branes where the field distribution and its
derivatives are close to zero. Therefore, the interference between fields located on different
branes is negligible, as has been discussed in Section 4.1. We have obtained two independent
worlds located on the branes. The fields on different branes do not affect each other. Note
that if the extra metrics on the two branes are different, then the effective parameters of the
fields are also different. Keeping this in mind, we can limit ourselves by fixing the 4-dim
low energy physics to only one brane.

4.3. Electromagnetic Field

The metric (2) contains the warp factor ¢27(#), which is responsible for the gauge-field
localization on string-like defects [23]. It holds even if a gauge field does not depend on the
internal coordinates, which are u in our case. In this subsection, we show that the unique
distribution of the Abelian gauge field exists and does not depend on the extra coordinates.

The action of an Abelian gauge field has the standard form, see e.g., [46]

Sguuge = _%TD dDX |gD|gPMgQNFPQFMN/
FQN = BQAN — apAQ (28)

Here, g, is the D-dimensional coupling constant. Field equations

dp(1/1gplg" M NFon) =0 (29)

are used to find the field distribution along the extra coordinate u. Keeping in mind the
expression (9) in the form
AN (x,u) = aN (%) Yom (1) (30)

and the condition d;,- = 0 used above, Equation (29) can be rewritten as follows (1 = 2)
7,./
M=p: ¥t (2045 )] =0,
/
M=6: af {Yg;n + (47' — :)ygm} =0. (31)

Here, only nontrivial equations are written. Evidently, Yoy, (4) = Cem = const is the unique
solution to system (31) if a*, a® # 0. Hence, there exists the unique classical solution

AN (x,u) = Coma™ (x) (32)
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and it does not depend on the internal coordinates. Cey, is an arbitrary constant. Note that
the gauge condition choice is not necessary to prove this statement.
Finally, the effective low-energy action is as follows

Squse =~ / 40X, /|3018" 8 Fua Fup
g
— —14 /d4x |g(4)|gl(2/)g?éf)fyafv/5, (33)
where

fyv = aylly - ava},, (34)

and .
gy =27Cl, [ dur(u)e*r™) )

up

is the effective 4-dim coupling constant. It is also assumed that the vector projections a"
and 4’ are not perturbed by 4-dim fluctuations at low energies, and hence do not depend
on x. One can conclude that the photons are disposed between the branes.

The exploration of non-Abelian gauge fields presents a significantly more complex
challenge. Nonetheless, it is simplified to the previously addressed Abelian case when the
field amplitudes are small. In this case, the nonlinear terms of the gauge-field strength

Fiy = OmAY — INAY + feab A, a=1,23 (36)

can be neglected. Here, the constants f* are the structure constants of the Lie algebra of
the generators of the gauge group.

4.4. Gravitational Fluctuations

In this subsection, we follow the paper [25], which discusses the linear stability of
space-time under gravitational perturbations. The metric is chosen in the form

ds? = 7 W) (1 + Iy )dxtdx? — du® — r(u)dg? (37)

Nuv = diag(1,—-1,-1,-1), hyy < 1y, where the perturbation hy, represents the tensor
mode obeying the transverse—traceless gauge conditions

Huh™ =0, 9,k =0

After some algebra, see [25], the equations for the linear tensor perturbations are
reduced to a non-trivial equation for the perturbation

/
6*2'717,”8”8” + 1’7285, + (4’)// + r>au+a§ + aufR du hucﬁ =0 (38)
r fr

We are interested in the zero mode
hw(x,u) = H,g?,) (x)Yo(u) (39)

keeping in mind decomposition (9). Our aim is to find the distributions over the extra
dimensions, so we put Hy (x) = const (x—derivatives are small, see (1)). It is evident that
one of the possible solutions to Equation (38) is Yy = const. Therefore, the gravitational
field is uniformly distributed between the two branes. Gravitons generated by a matter on
the brane-2 can affect a matter on the brane-1 and vice versa.
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4.5. The Higgs Field

Up to now, we have not included the Higgs field interaction, so that the low-energy
fermions remain massless. In the paper [41], we analyzed the Higgs field properties in D
dimensions in the context of the hierarchy problem. Here, we study a new aspect—the
localization of the Higgs field on the different branes.

Suppose that the form of the Higgs action at the Planck scale is the same as at the
electroweak scale,

1 2
SHp = 5 /dDX 8D (aMHP+3MHP +vHp"Hp — A(Hp"Hp) ) (40)

where the symbol + means Hermitian conjugation, v > 0 and A > 0 are arbitrary numbers,
and Hp is a proto-Higgs field. It is assumed that the parameter v is many orders of
magnitude larger than the known value of the Higgs vacuum average vy,.
Below, we follow the standard procedure used above to integrate out extra coordinates.
The classical equations of motion are obtained by varying the action (40) with respect to
Hp, which gives
OpHp = vHp — 2A(Hp'Hp) Hp. (41)

According to general prescription (9), the proto-Higgs field can be presented as

Hp = h(x)Yy(u), (42)

where Hp and h(x) are two-component columns acting in the fundamental representa-
tion of SU(2) x U(1). The dimensionality of the proto-Higgs field is [Hp| = mg)D 272,

(] =[] = mp, [U] = [Yi] = m}/?. Recall that the expression (1) holds in the de Sitter

metric so that
1 0 10
) = ﬁ<p<x>> 8 ﬂ<1>' )

The approximation (43) transforms Eqaution (41) in the following way:
OnYr(u) = vYg(u) — AY3 (1), (44)

or in more details
/
[aﬁ + (47’ + :>au] Yer(u) = —vYp(u) + A Y3 (1), (45)

A set of solutions to this equation can be obtained numerically, each for certain additional
conditions Ygr (1), Yf;(1+) at an arbitrary point u,. One of them is represented in Figure 6.
The field is settled mostly in the stationary state with sharp peaks on the branes. The
structure of the peaks is different as well as the extra-space metric functions; see Figure 1.
The scalar and spinor fields located on the different branes interact with the same Higgs
field distributed between the branes.

The extra metric and field distributions over extra dimensions are fixed at high energy
at a certain value of the Hubble parameter H. The latter slowly approaches the extremely
small observable value. This is the reason we perform calculations for H >~ 0; see also the
short discussion above Formula (3).
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0.0003"

0.0002+
Y(u)
0.0001+

-20 0 20
-0.0001 u

-0.0002-

Figure 6. The solution of Equation (45) on the gravitational background shown in Figure 1b. Pa-
rameter values: v = 1-107°, A = 1.9-103. Additional conditions: Y(0) =~ 0.000052 (this value
corresponds to the stationary state VV/A for the Yy field), Y’ (0) = —-1- 10~7. For this solution,
mpy ~ 333.25mp, Ay ~ 0.13, my ~ 10~ mp;.

Substitution (42) into initial action (40) and integration over the extra coordinates u, 6
leads to the 4-dim effective Higgs action

1 N 2
s =1 [/l (0,39 Ho + B Ho A (HGHO)) te
o _m; An
mi = gt M = g0 Ho@) = h(x) VK. (47)
h

The parameters included in the effective 4-dim action (46)

Kp= Vi / - Y2 (1) 271 () dy, (48)
uy
mi = Vn_l/ 2(—(6uYH)2 +1/Y12_I(u))e4"’(”)r“_1(u)du, (49)
1y
‘U
A= Vas / AYA (1) 0010 du, (50)
i
_ 271%
Vn-1 = /d" /181l = NOK (51)
2

depend on Yp () and the extra-space metric. Therefore, the physical parameters slowly
vary with time together with the Hubble parameter. The Higgs parameters are measured
at the low energies characterised by the Hubble parameter H ~ 0. So, we have to fix all
extra-space distributions at H = 0 as in Figures 1 and 6.

According to [47], the experimentally measured parameters, the Higgs boson mass
and its vacuum average are

Myiggs = 125GeV,  vpjges = 246 GeV. (52)
They are related to the parameters my and Ay of the effective Higgs action (46) as follows:
My = Migiggs/ V2 = 88.6GeV ~ 10~ mpj, (53)

where myp is the 4D Planck mass and
An = (mp/ Ottiggs)* /2 ~ 0.13. (54)

The appropriate function Yy (u) is represented in Figure 6. The effective parameters
(48)—(50) also depend on the Lagrangian parameters a, c which are fixed from the beginning,
and on the distributions r(u), (1) over the internal coordinate u. The latter are randomly
created during the fluctuation stage and are specific to each causally separated 3D domain.
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A Higgs field distribution realized within some of such domains can lead to the observable
Lagrangian parameters (see (46)) and hence resolve the hierarchy problem.

5. Conclusions

This research examines the formation of branes in six-dimensional space in the context
of pure f(R) gravity. We do not postulate the position and the number of the branes a priori,
nor a scalar-field potential that could cause the branes to form. Numerical simulations
definitively show that only the two-brane metrics are realized. The choice of metric (2)
assumes that the universe is formed at the conformally 4D de Sitter space at high energies
(H > 10'3 GeV) with a 2D factor space.

It is known that the Hubble parameter decreases with time at an extremely slow rate
when chaotic inflation is taken into account, as discussed in reference [48]. Herein, we
neglect this time dependence, assuming that H = const, and analyze static solutions for
different values of the Hubble parameter.

As a consequence of quantum fluctuations, the metrics differ between the infinite
number of causally disconnected three-dimensional volumes at high energies. This results
in an infinite set of static extra metrics, which have been demonstrated to be the solution to
the classical equations. Through numerical analysis, it has been established that there are
two types of solutions, namely those with closed and opened extra manifolds. The infinite
set of such solutions is provided by two nonequivalent branes. These branes are settled
at some distance from each other. The unique nonsingular solution is discussed in detail
in [32], Section 4.

This article examines the properties of closed extra manifolds with two branes and
the manner in which matter fields appears to be attracted to the branes. It is demonstrated
that the massive fields are attracted to each brane, leaving the space between them empty.
Analytical proof was provided that the electromagnetic field is independent of extra coordi-
nates, thus preserving the observed charge universality. The fermions located on different
branes can exchange photons. For example, the positron-electron pair on brane-1 could
annihilate into the positron—electron pair on brane-2. For the observer located on brane-1, it
looks like the positron—electron annihilate into nothing. This opens the possibility to study
such kinds of processes at the LHC collider.

The Higgs field is distributed almost uniformly between branes, acting as a Higgs
portal [49] between matter on different branes. There exists a specific extra metric for which
the Higgs vacuum average coincides with the observable one. The low-energy Lagrangian
parameters of the fields are functionals of the extra metric and are specific to each brane.
This leads to the dependence of the physical parameters on the energy scale—in addition
to the renormgroup flux.

The research is based on the conceptual model elaborated in [32,41]. Necessary
elements to be added further are the renormgroup analysis, the standard model in D
dimensions, and possible brane interference.

It was shown that the extra metric topology undergoes a transformation at a specific
value of the Hubble parameter, as illustrated in Figure 2. This non-trivial effect requires a
comprehensive investigation in future studies.
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