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Глава 1

Детерминированная коммуникационная
модель

1.1 Коммуникационные протоколы, сложность
коммуникационных вычислений

Под коммуникационными вычислениями понимаются распределен-
ные вычисления. В коммуникационной модели имеются два (или
более) участников (вычислителей), которые совместно пытаются
решить некоторую задачу. При этом входные данные распределе-
ны между ними таким образом, что каждый из участников знает
лишь часть входа. Для решения задачи участники вынуждены ком-
муницировать друг с другом, передавая информацию другу другу
по каналу. Алгоритмы, определяющие коммуникационные вычис-
ления называются протоколами.

Коммуникационные вычисления булевых функций определя-
ют следующим образом. Пусть f булева функция следующего вида
f : {0, 1}n×{0, 1}n → {0, 1}. Даны два вычислителя с неограничен-
ными вычислительными возможностями (как правило один из них
называют A, т.е. Алиса , а другой B, т.е. Боб), каждый из них по-
лучает на вход последовательность σ и γ соответственно, длиной n
бит каждая. Ни один из них не знает входного набора, который
получил другой вычислитель, и они совместно хотят вычислить
значение функции f на наборе (σ, γ). Для вычисления значения
f (σ, γ) A и B обмениваются сообщениями (двоичными последова-
тельностями) согласно протоколу (алгоритму) Φ. Под сложностью
протокола Φ на наборах σ и γ понимают количество бит, переда-

5



ваемых вычислителями. В теории коммуникационных вычислений
исследуются различные варианты коммуникационных вычислений.
Теория и техника коммуникационных вычислений имеет обширную
область применений. В частности она используется при доказатель-
стве нижних оценок времени и памяти реализации вычислений на
машинах Тьюринга, в исследовании сложности вычислений для ря-
да других моделей вычислений.

Структуры данных, такие как частично упорядоченные пол-
ные бинарные деревья, массивы сортировки, списки и т. д. — основ-
ные объекты в алгоритмических конструкциях. Были исследованы
многие разновидности схемы, описанной выше, такие как: вероят-
ностные протоколы, недетерминированные, выборочные и т.д. Бо-
лее того, нижняя оценка коммуникационной сложности использу-
ется в СБИС.

Дадим формальные определения протокола вычисления буле-
вой функции и коммуникационной сложности протокола булевой
функции. В данном пособии мы будем рассматривать коммуника-
ционные протоколы, у которых ответ может выдавать только вы-
числитель B. То есть количество раундов в вычислениях нечетно.
Определение 1.1 t-раундовым коммуникационным протоколом Φ
для булевой функции f (x, y) называется алгоритм:
1. Вычислитель A получает на вход σ ∈ {0, 1}n, вычислитель B

получает γ ∈ {0, 1}n.
2. Первый раунд. Вычислитель A начинает вычисления: по σ опре-

деляет сообщение
m1(σ) = m1 = {m1

1,m
1
2, ...m

1
t1
} ∈ {0, 1}t1, t1 = t1(σ)

и передает его B.

3. Вычислитель B получает m1. Если вычислитель B по γ,m1

может вычислить значение функции, то он выдаёт значе-
ние функции f (σ, γ) и выполнение протокола завершается. В
противном случае выполняется второй раунд протокола: вы-
числитель B формирует сообщение

m2(γ,m1) = m2 = m2
1...m

2
t2 ∈ {0, 1}t2
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и отправляет вычислителю A сообщение m2.

4. Вычислитель A получает m2, формирует сообщение m3 и от-
правляет его вычислителю B и т.д.

Определение 1.2 Коммуникационным сообщением протокола Φ
на входном наборе σ, γ называется двоичная последовательность:

m = m1m2 . . .mt = mΦ(σ, γ)

Определение 1.3 Сложностью коммуникационного протокола на
наборе (σ, γ) называется количество бит, которыми обменивают-
ся вычислители в протоколе Φ (количество бит в коммуникаци-
онном сообщении):

CΦ(δ, γ) =
∣∣m1

∣∣ + ∣∣m2
∣∣ + ... + |mt| = |mΦ(δ, γ)|

Определение 1.4 Сложностью коммуникационного протокола Φ
называется величина:

C(Φ) = max
δ,γ∈{0,1}n

CΦ(δ, γ)

Определение 1.5 Коммуникационный протокол Φ вычисляет фун-
кцию f : {0, 1}n×{0, 1}n → {0, 1}, если для любого (σ, γ) ∈ {0, 1}n×
{0, 1}n значение, выдаваемое вычислителем B в качестве ответа
совпадает со значением f (σ, γ).

Определение 1.6 Коммуникационная сложность C(f ) для функ-
ции f определяется как сложность наилучшего протокола, вычис-
ляющего функцию f :

C(f ) = min
Φ вычисляет f

C(Φ)

Далее мы рассмотрим примеры протоколов.
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EQ Рассмотрим функцию EQ(x, y) и построим протокол Φ для
неё. На наборе (σ, γ) функция EQ равна 1, если σ = γ и 0 в про-
тивном случае. Построим протокол Φ: вычислитель A получает на
вход σ — последовательность из n бит, вычислитель B получает по-
следовательность γ. Вычислитель A передаёт вычислителю B всё
сообщение σ, вычислитель B, зная σ, γ, производит их побитовое
сравнение и выдаёт ответ. Сложность такого протокола C(Φ) = n,
поэтому C(EQ) ≤ n.

NEQ Теперь рассмотрим функцию NEQ(x, y) и построим прото-
кол Φ для неё. На наборе (σ, γ) функция NEQ равна 1, если σ ̸= γ
и 0 в противном случае. Построим протокол Φ: вычислитель A по-
лучает на вход σ — последовательность из n бит, вычислитель B
получает последовательность γ. Вычислитель A передаёт вычисли-
телю B всё сообщение σ, вычислитель B, зная σ, γ, производит их
побитовое сравнение и выдаёт ответ. Сложность такого протокола
C(Φ) = n, поэтому C(NEQ) ≤ n.

PARITY Parity(z) = z1⊕ z2⊕ ...⊕ z2n. Рассмотрим два коммуни-
кационных протокола для функции Parity.

1. Протокол Φ1 для функции Parity: пусть вычислитель A полу-
чает на вход σ — последовательность из n бит, B получает γ.
Вычислитель A передаёт вычислителю B всё сообщение σ, вы-
числитель B, зная σ, γ, производит их побитовое сложение и
выдаёт ответ. Сложность такого протокола CΦ1

(σ, γ) = n, по-
этому C(Parity) ≤ n.

2. Для этой же функции построим ещё один протокол Φ2, в кото-
ром оба вычислителя получают на вход те же последователь-
ности, но вычислитель A сначала выполняет побитовое сложе-
ние последовательности σ и передаёт вычислителю B резуль-
тат этого сложения. Вычислитель B, зная этот результат, вы-
полняет побитовое сложение последовательности γ, к резуль-
тату этого сложения прибавляет результат, полученный им от
вычислителя A и выдаёт ответ. Сложность такого протокола
CΦ2

(σ, γ) = 1. Таким образом, C(Parity) ≤ 1.
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Из протокола Φ2 получаем верхнюю оценку C(Parity) ≤ 1. Так как
функция Parity существенным образом зависит от всех перемен-
ных, то вычислитель A должен передать вычислителю B хотя бы
один бит и значит C(Parity) ≥ 1. Отсюда получаем C(Parity) = 1.

MODm Рассмотрим функцию MODm(x, y) и построим протокол
Φ. Пусть (σ, γ) входной набор. Обозначим n(σ) (n(γ)) — целое неот-
рицательное число, двоичным представлением которого является
последовательность σ (γ). На наборе (σ, γ) функция MODm равна
1, если n(σ) равно n(γ) по модулю m, то есть при делении на m
оба числа дают одинаковый остаток. Значение функции равно 0 в
противном случае. Построим протокол Φ, вычисляющий функцию
MODm(x, y): вычислитель A получает на вход σ — последователь-
ность из n бит, B получает последовательность γ. Вычислитель A
вычисляет r(σ) = n(σ) (mod m)— остаток от деления n(σ) на m и
передаёт вычислителю B. Вычислитель B вычисляет r(γ) = n(γ)
(mod m), сравнивает r(σ) и r(γ) и выдаёт ответ. Сложность такого
протокола C(Φ) = logm , количество бит необходимых для переда-
чи числа меньшего m . Таким образом сложность функции будет
C(MODm) ≤ logm.

Теорема 1.1 Для произвольной булевой функции f (x, y) выполня-
ется C(f ) ≤ n.

Доказательство: Для произвольной булевой функции f (x, y)
построим протокол Φ. Пусть на вход вычислителя A поступает на-
бор σ, B получает γ. A генерирует следующее сообщение m =
σ1σ2 . . . σn. Тогда вычислитель B, получив это сообщение, будет
знать оба входных набора σ и γ и исходя из определения коммуни-
кационных вычислений, может выдать ответ. В связи с произволь-
ностью выбора функции f , получаем что C(f ) ≤ C(Φ) = n. 2
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1.2 Методы доказательства нижних оценок
коммуникационной сложности

Покажем, что построенный выше протокол для функции EQ яв-
ляется наилучшим и не существует протокола меньшей сложности,
вычисляющий функцию EQ. Для этого воспользуемся одним из
методов доказательства нижних оценок коммуникационной слож-
ности — методом «полных множеств».

1.2.1 Метод полных множеств “fooling set”

Продемонстрируем схему доказательства, основанного на методе
полных множеств, на примере функции EQ.

Теорема 1.2 C(EQ) ≥ n.

Доказательство: Докажем от противного. Предположим,
что существует протокол Φ, вычисляющий функцию EQ и имею-
щий сложность не более n−1. Это означает, что множество возмож-
ных сообщений, которыми вычислителя могут обмениваться друг с
другом, содержит не более чем 20+21+ ...+2n−1 = 2n−1 элементов.

Рассмотрим множество всех пар вида (σ, σ):

S = {(σ, σ) |σ ∈ {0, 1}n}.
Заметим, что |S| = 2n. Так как число различных сообщений,

которые могут использоваться в протоколе Φ, строго меньше 2n, то
по принципу Дирихле, найдутся две пары (σ, σ) и (σ′, σ′), для ко-
торых в протоколе используется одно и то же коммуникационное
сообщение m. Понятно, что EQ(σ, σ) = EQ(σ′, σ′) = 1 и протокол
на наборах (σ, σ) и (σ′, σ′) должен выдавать ответ 1. Теперь рас-
смотрим вычисление на входе (σ, σ′). Для неё коммуникационное
сообщение будет таким же, как для (σ, σ) и для (σ′, σ′). Действи-
тельно, если вычислитель A отправляет бит первым, тогда этот
бит будет таким же, как и для σ, и для σ′. Если вычислитель B от-
правляет сообщение во втором раунде, тогда его бит должен быть
таким же, как для σ и для σ′ до тех пор, пока он получает такой
же бит от вычислителя A. Таким образом, ответ протокола на на-
боре (σ, σ) должен совпадать с ответом протокола на наборе (σ, σ′).
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Но EQ(σ, σ′) = 0, а EQ(σ, σ) = 1. Получили противоречие с тем,
что протокол Φ правильно вычисляет функцию EQ. Следователь-
но, выполняется C(EQ) ≥ n. 2

Определение 1.7 Полное множество (fooling set или FSf) для
функции f : {0, 1}n × {0, 1}n → {0, 1}— это множество входных
наборов S ⊆ {0, 1}n×{0, 1}n такое, что существует b ∈ {0, 1} при
котором выполняется:

1. для любой пары (σ, γ) ∈ S, f (σ, γ) = b,

2. для любых двух разных пар (σ1, γ1), (σ2, γ2) ∈ S выполняется
либо f (σ1, γ2) ̸= b, либо f (σ2, γ1) ̸= b.

Теорема 1.3 Для произвольной булевой функции f выполняется

C(f ) ≥ log |FSf |.

Определим функцию DISJ (функцию «непересечения»). Пусть
σ, γ — характеристические вектора подмножеств Sσ, Sγ ⊆ {1, 2, ..n}.

DISJ(δ, γ) =

{
1, если δ ∩ γ = 0,
0, если δ ∩ γ ̸= 0.

Теорема 1.4 C(DISJ) ≥ n

Теорема 1.5 C(MODm) ≥ logm

Теорема 1.6 C(EQ) ≥ n

Теорема 1.7 C(NEQ) ≥ n

Теорема 1.8 C(Parity) ≥ 1

1.2.2 Метод монохроматических прямоугольников

Рассмотрим метод доказательства нижних оценок коммуникацион-
ной сложности, основанный на разбиении коммуникационной мат-
рицы на монохроматические прямоугольники.
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Коммуникационная матрица — это табличный способ задания
булевой функции, отражающий распределение входных данных меж-
ду двумя вычислителями. Формально, коммуникационная матрица
CM(f ) булевой функции f (x, y) : {0, 1}n × {0, 1}n → {0, 1}— это
таблица с 2n строками и 2n столбцами. Строки пронумерованы все-
возможными наборами σ, столбцы пронумерованы всевозможными
наборами γ. На пересечении строки σ и столбца γ стоит 0 или 1—
значение функции f (σ, γ).

Определение 1.8 Комбинаторным прямоугольником A×B назы-
вается подматрица, составленная из элементов, находящихся на
пересечении строк, входящих в множество A и столбцов, входя-
щих в множество B, где A,B ⊆ {0, 1}n.
Определение 1.9 Комбинаторный прямоугольник A×B называ-
ется монохроматическим, если существует b ∈ {0, 1}, такое что
для любого σ ∈ A, и для любого γ ∈ B, значение f (σ, γ) = b.

Пусть Φ— коммуникационный протокол. Если протокол начи-
нает работу с сообщения от первого вычислителя, длиной в один
бит, тогда CM(f ) разбивается на два прямоугольника типа A0 ×
{0, 1}n, A1 × {0, 1}n, где Ab — подмножество строк, для которых со-
общения первого вычислителя равно b. При этом A0 ∪A1 = {0, 1}n.
Если следующий бит послан вторым вычислителем, тогда каждый
из двух прямоугольников разбивается на два меньших прямоуголь-
ника, зависящих от того, какой бит был послан. Если протокол от-
работал k шагов, матрица будет состоять из 2k прямоугольников.
После k шагов вычислитель B выдаёт правильный ответ, значит
каждый такой прямоугольник соответствует подмножеству вход-
ных пар, для которых значение функции одинаково. Если протокол
остановил свою работу, то значение f внутри каждого прямоуголь-
ника должно быть одинаковым для всех пар σ, γ в этом прямо-
угольнике. Значит, коммуникационный протокол должен привести
к разбиению коммуникационной матрицы на монохроматические
прямоугольники.
Определение 1.10 Монохроматическое разбиение для матрицы
CM(f )— это разбиение CM(f ) на непересекающиеся монохрома-
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тические прямоугольники. Обозначим через χ(f ) минимальное чис-
ло монохроматических прямоугольников, на которые мы можем
разбить CM(f ).

Следующая теорема следует непосредственно из рассуждений,
сделанных выше.

Теорема 1.9 Если f имеет коммуникационную сложность C, то-
гда её монохроматическое разбиение содержит не более чем 2C

прямоугольников. Т.е. C ≥ logχ(f ).

Лемма 1.1 Для произвольной функции f выполняется

χ(f ) ≥ |FSf |.
Доказательство: Пусть полное множество для функции f

содержит m пар. Две различные пары (σ1, γ1) и (σ2, γ2) не могут
принадлежать одному монохроматическому прямоугольнику. Сле-
довательно, χ(f ) ≥ m. 2

1.2.3 Метод ранга коммуникационной матрицы

В данном разделе мы рассмотрим оценку коммуникационной слож-
ности χ(f ) в терминах ранга коммуникационной матрицы. Напом-
ним, что ранг матрицы в поле F — это максимальное число линейно
независимых строк или столбцов. Для ранга матрицы существует
и другое определение:

Определение 1.11 Ранг матрицы M размера n× n— это мини-
мальное значение l такое, что M может быть представлена в
виде M =

∑l
i=1 αiBi, где αi ∈ F\{0} и каждая матрица Bi — это

n× n матрица ранга 1.

Отметим, что 0, 1 являются элементами любого поля, поэтому
мы можем вычислить ранг над любым полем (выбор поля может
быть ключевым).

Теорема 1.10 Для любой функции f выполняется

χ(f ) ≥ rank(CM(f )).
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Доказательство: каждый монохроматический прямоуголь-
ник может быть представлен как матрица ранга не больше чем 1. 2

1.3 Функция Inner Product

Определим функцию IP (Inner Product) скалярного (внутреннего)
произведения по модулю 2 для двух векторов x, y ∈ {0, 1}n:

IP (x, y) =
n⊕

i=1

xiyi.

Задача состоит в том, чтобы два участника, Алиса и Боб, на-
шли значение функции IP (x, y) при условии, что Алиса знает x, а
Боб знает y.

Пример:

• Пусть x = (1, 0, 1, 1) и y = (0, 1, 1, 0).

• Тогда IP (x, y) = (1 · 0+0 · 1+1 · 1+1 · 0) mod 2 = (0+0+1+0)
mod 2 = 1.

Теорема 1.11 C(IP ) = n.

Доказательство: Неравенство C(IP ) ≤ n очевидно. Дока-
жем нижнюю оценку. Воспользуемся методом ранга коммуникаци-
онной матрицы.

Пусть M = CM(IP )— коммуникационная матрица. Нужно
оценить её ранг. Возведем матрицу M в квадрат: N = M 2. В мат-
рице N первый столбец и первая строка состоят из нулей. Элемент,
стоящий на пересечении строки x и столбца y матрицы N равен

N [x, y] =
∑

z∈{0,1}n
IP (x, z)IP (z, y).

Заметим, что xizi и ziyi это либо 0 либо 1, так как xi, zi, yi —
булевские переменные.

Рассмотрим два случая:
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1. x = y. Тогда N [x, x] равно числу решений уравнения

x1z1 ⊕ · · · ⊕ xnzn = 1 (1.1)

относительно переменной z для фиксированного x.
Уравнение невырождено при x ̸= 0. Пусть x ̸= 0— произволь-
ный набор. Будем строить наборы z, для которых выполняется
(1.1). При поразрядном умножении набора x на набор z нену-
левые биты могут получаться только если на соответствующих
позициях в x и z стоят единицы. Зафиксируем произвольную
позицию i, для которой xi = 1 (такая позиция существует, так
как x ̸= 0). Для всех позиций j ̸= i в качестве значения zj будем
выбирать произвольное значение ∈ {0, 1}. Получим 2n−1 набо-
ров z с незаполненной i-ой позицией. Для каждого построенно-
го набора в качестве значения zi будем выбирать такое, чтобы
равенство (1.1) обратилось в истину, т. е.

zi = 1⊕
⊕
j ̸=i

xjzj.

Получили, что для любого x ̸= 0 значение N [x, x] = 2n−1.

2. x ̸= y. В этом случае N [x, y]— число таких z, что скалярное
произведение по модулю 2 вектора z и на вектор x и на вектор
y равно 1. Имеем следующую систему уравнений над полем из
двух элементов относительно переменных zi (i = 1, . . . , n):{

x1z1 ⊕ · · · ⊕ xnzn = 1

y1z1 ⊕ · · · ⊕ ynzn = 1
(1.2)

То есть N [x, y] равно числу наборов z для которых оба равен-
ства обращаются в 1. Так как x ̸= y ̸= 0, то найдется номер i
такой, что xi ̸= yi. Пусть для определенности xi = 1, yi = 0.
Найдем число наборов z, для которых y1z1 ⊕ · · · ⊕ ynzn = 1.
Как было показано выше, число таких наборов равно 2n−1. При
построении наборов z в качестве zi мы могли выбирать и 0
и 1, так как yi = 0. Теперь добьёмся выполнения равенства
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x1z1 ⊕ · · · ⊕ xnzn = 1, выбирая в качестве zi значение 0 или 1,
при котором указанное равенство обращается в 1, т.е.

zi = 1⊕
⊕
j ̸=i

xjzj.

Число наборов сократилось в два раза. Получили, что для лю-
бых x, y таких, что x, y ̸= 0, x ̸= y значение N [x, y] = 2n−2.

Таким образом

N =


0 0 0 . . . 0
0 2n−1 2n−2 . . . 2n−2

0 2n−2 2n−1 . . . 2n−2

· · · . . . · · ·
0 2n−2 2n−2 . . . 2n−1


Ранг этой матрицы равен 2n − 1. Теперь найдем ранг исходной

матрицы M = CM(IP ).
• rank(M) < 2n, так как при возведении в квадрат получилась

нулевая строка и нулевой столбец (при возведении в квадрат
матрицы полного ранга получаем матрицу полного ранга).

• При возведении в квадрат ранг не возрастает.
Поэтому rank(CM(IP )) = 2n−1. По теореме о нижней оценке

получаем C(IP ) ≥ n. 2

1.4 Многораундовые коммуникационные вычисления

Определение 1.12 Многораундовыми или t−раундовыми комму-
никационными вычислениями булевой функции f (X, Y ) называет-
ся алгоритм:
1. Вычислитель A получает на вход σ ∈ {0, 1}n,вычислитель B

получает γ ∈ {0, 1}n

2. Вычислитель A начинает вычисления: по σ определяет сооб-
щение

m1(σ) = m1 = {m1
1,m

1
2, ...m

1
t1
} ∈ {0, 1}t1, t1 = t1(σ)
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и передает его B.

3. Вычислитель B получает m1. Если по m1 и γ вычислитель B
может вычислить значение функции, то он выдаёт ответ —
значение f (σ, γ). В противном случае B формирует сообщение

m2 = m2
1...m

2
t2
∈ {0, 1}t2

и отправляет вычислителю A сообщение m2.

4. Вычислитель A получает m2. Если вычислитель A по σ,m1,m2

может вычислить значение функции, то он выдаёт значение
функции f (σ, γ). В противном случае A формирует m3 и от-
правляет его вычислителю B и т.д.
Согласно рассматриваемой модели коммуникационных вычис-

лений, булева функция f (x, y) вычисляется с нечётным количе-
ством раундов. В следующем разделе мы рассмотрим однораундо-
вые коммуникационные вычисления.

1.4.1 Однораундовые коммуникационные вычисления

Определение 1.13 Однораундовым (односторонним) коммуника-
ционным протоколом вычисления булевой функции f (x, y) называ-
ется алгоритм:
1. Вычислитель A получает на вход σ ∈ {0, 1}n, вычислитель B

получает γ ∈ {0, 1}n.
2. Вычислитель A начинает вычисления: по σ определяет сооб-

щение
m1(σ) = m1 = m1

1m
1
2 . . .m

1
t1
∈ {0, 1}t1, t1 = t1(σ)

и передает его B.

3. Вычислитель B получает m1 и по m1 и γ выдаёт ответ —
значение функции f (σ, γ).

Определение 1.14 Односторонняя коммуникационная сложность
функции f — это минимальная сложность однораундового прото-
кола, вычисляющего f

C1(f ) = min
Φ вычисляет f

C(Φ).
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Пусть f (x, y)— произвольная булева функция, CM(f )— ком-
муникационная матрица этой функции. Обозначим число различ-
ных строк матрицы CM(f ) через nrow(CM(f )) .

Теорема 1.12 Для любой булевой функции выполняется

C1(f ) = log nrow(CM(f )).

Доказательство: Для удобства рассуждений будем пола-
гать, что nrow(CM(f )) = 2l. Докажем, что C1 ≤ log nrow(CM(f )).
Рассмотрим коммуникационную матрицу, где 1, 2, . . . , 2l — группы,
внутри каждой группы строки одинаковые (это возможно сделать,
так как от перестановки строк матрица не изменится). Построим
протокол Φ. Закодируем номер каждой группы:

m1 → 1
m2 → 2
...
m2l → 2l

Длина кода ≤ l.
Вычислитель A определяет номер группы, в которую попал

входной набор σ и передаёт закодированный номер вычислителю
B. Вычислитель B получает на вход набор γ и, зная номер груп-
пы, выдает ответ f (σ, γ). Сложность этого протокола Φ: C1(Φ) ≤ l.
Следовательно, C1(f ) ≤ l.

Теперь докажем обратное неравенство C1(f ) ≥ l. Покажем, что
не существует протокола, сложности < l, вычисляющего функцию
f . Воспользуемся принципом Дирихле и методом от противного.
Предположим, что существует протокол Φ, такой, что C1(Φ) < l.

Протокол Φ может использовать < 2l различных сообщений.
Следовательно, найдутся по крайней мере две строки σ и σ′ комму-
никационной матрицы, принадлежащие различным группам, для
которых протокол использует одно и то же сообщение m. Но так
σ и σ′ принадлежат разным группам, то найдется такое γ, что
f (σ, γ) ̸= f (σ′, γ). Поскольку и для σ и для σ′ вычислитель A пере-
даёт одно и то же сообщение m, то вычислитель B будет выдавать
один и тот же ответ и для (σ, γ) и для (σ′, γ). На одном из этих
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наборов выдаваемый ответ будет неверный. Получили противоре-
чие с тем, что протокол верно вычисляет функцию. Следовательно,
выполняется C1(f ) ≥ l. 2

1.4.2 Сравнение трёхраундовых и однораундовых
коммуникационных вычислений

Рассмотрим трёхраундовые коммуникационные вычисления.

Определение 1.15 Трёхраундовым коммуникационным протоко-
лом вычисления булевой функции f (x, y) называется алгоритм:

1. Вычислитель A получает на вход σ ∈ {0, 1}n, вычислитель B
получает γ ∈ {0, 1}n.

2. Вычислитель A начинает вычисления: по σ определяет сооб-
щение

m1(σ) = m1 = m1
1m

1
2 . . .m

1
t1
∈ {0, 1}t1, t1 = t1(σ)

и передает его B.

3. Вычислитель B начинает вычисления: по сообщению m1 и γ
определяет сообщение

m2(γ,m1) = m2 = m2
1m

2
2 . . .m

2
t2
∈ {0, 1}t2, t2 = t2(γ,m

1)

и передает его A.

4. Вычислитель A по сообщению m2 и σ определяет сообщение

m3(σ,m2) = m3 = m3
1m

3
2 . . .m

3
t2
∈ {0, 1}t3, t3 = t3(σ,m

2)

и передает его B.

5. Вычислитель B получает m3 и по m3, m1 и γ выдаёт ответ —
значение функции f (σ, γ).

Проверим даёт ли использование нескольких раундов передачи
сообщений преимущество в коммуникационной сложности.

19



INDEX Рассмотрим функцию INDEX(x, y) : {0, 1}n × {0, 1}n →
{0, 1}, определяемую следующим образом

INDEX(σ, γ) =

{
σi, если в γ только одна единица на i-ом месте,
0, иначе.

Теорема 1.13 C1(INDEX) = n

Доказательство: Построим коммуникационную матрицу M
для функции INDEX , увидим что nrow(M) = 2n, так как для вся-
кого набора σ строки будут различны, таким образом C1(ISA) ≥ n.
Равенство получаем из теоремы о верхней оценки коммуникацион-
ной сложности для произвольной функции. 2

Теорема 1.14 C3(ISA) ≤ log n + 1

Доказательство: Для трёхраундового коммуникационного
вычисления можно построить протокол Φ с коммуникационной слож-
ностью C3(ISA) = log n+ 1. Принцип работы протокола Φ следую-
щий. На первом раунде вычислитель A передаёт пустое сообщение,
затем вычислитель B просматривает входной набор γ, если в нём
присутствует ровно одна единица, то вычислителю A передаётся
номер этого символа, иначе выдается ответ 0. Вычислитель A, по-
лучив i, находит соответствующий бит своего входного набора и
отправляет его значение σi вычислителю B. Таким образом слож-
ность этого протокола равна C(Φ) = log n+1, а значит коммуника-
ционная сложность функции C3(ISA) ≤ log n + 1. 2

Теорема 1.15 C(INDEX) ≥ log n

Доказательство: Воспользуемся одним из методов доказа-
тельства нижней оценки коммуникационной сложности — методом
полных множеств. Построим множество

S = {(σ, σ) : σ = 0j10n−j−1, j = 0, . . . , n− 1}.
Очевидно, что для любых (σ, σ) ∈ S выполняется INDEX(σ, σ) =
1, и для любых различных пар (σ, σ), (σ′, σ′) ∈ S выполняется
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INDEX(σ, σ′) = 0 и INDEX(σ′, σ) = 0, то есть множество S —
полное множество для функции INDEX . Заметим, что |S| = n,
откуда следует C(INDEX) ≥ log n. 2

Далее покажем, что увеличение количества раундов, не всегда
даёт улучшение в коммуникационной сложности. Рассмотрим уже
известную функцию EQ(x, y).

Теорема 1.16 C1(EQ) = Ct(EQ) = n, для любого t ≥ 1.
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Глава 2

Недетерминированная
коммуникационная модель

2.1 Определение недетерминированной модели

В данном разделе будем рассматривать следующую модель комму-
никационных вычислений. Имеются два вычислителя A и B, им
на вход подаются два входных набора σ и γ, соответственно. Вы-
числитель A, на основе входного набора строит множество возмож-
ных сообщений M(σ) = {m1, . . . ,mt}, которые можно отправить B,
где t = t(σ) также зависит от входа. Далее вычислитель выбира-
ет сообщение из этого множества m ∈ M(σ) и отправляет его B.
Механизм выбора отправляемого сообщения недетерминирован (не
определён). Вычислитель B, получив сообщение m и зная входной
набор γ, если может выдать ответ, выдаёт значение функции. Ина-
че строит своё множество возможных сообщений M(m, γ) и также
недетерминированно выбирает сообщение m′ ∈ M(m,σ) и отправ-
ляет его вычислителю B. Вычисления продолжаются до тех пор
пока B не сможет выдать ответ. В следующем определении рас-
смотрим односторонний недетерминированный протокол.

Определение 2.1 Будем говорить, что протокол Φ недетерми-
нированно вычисляет функцию f (σ, γ), если:

1. для любого входного набора (σ, γ), такого что f (σ, γ) = 1, су-
ществует такое сообщение mσ

i , что вычислитель A передает
mσ

i вычислителю B, а B выдаёт единицу;

2. для любого входного набора (σ, γ), такого что f (σ, γ) = 0 и
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для любого сообщения mσ
i ∈ {mσ

1 ...m
σ
t }, которое вычислитель

A передает B, вычислитель B всегда выдаёт 0.

Обозначим через Φ протокол, который недетерминированно
вычисляет функцию f . Из определения получаем, что на входных
наборах, на которых функция принимает значение 1, у протокола
Φ существует такое сообщение, на котором протокол Φ выдаёт 1. А
на тех входных наборах, на которых функция принимает значение
0, протокол Φ всегда выдаёт 0.

Далее введём понятие сложности недетерминированного ком-
муникационного протокола. На произвольном входном наборe (σ, γ)
сложность протокола будет вычисляться следующим образом. Пусть
M(σ, γ) = {m1(σ, γ),m2(σ, γ), . . . ,mt(σ, γ), } множество всех сооб-
щений протокола Φ на этом входном наборе. Тогда сложность про-
токола для данного входа

C(Φ(σ, γ)) = max
m∈M(σ,γ)

|m|

Определение 2.2 Сложностью недетерминированного коммуни-
кационного протокола Φ называется величина:

C(Φ) = max
σ,γ

C(Φ(σ, γ))

Определение 2.3 Недетерминированной сложностью функции f
называется минимальная сложность протокола, недетерминиро-
ванно вычисляющего f :

NC(f ) = min
Φ

C(Φ)

Теорема 2.1 Для произвольной булевой функции f (x, y) верно

NC(f ) = NC1(f )

Доказательство: Неравенство NC1(f ) ≥ NC(f ) выполня-
ется, так как как односторонние коммуникационные вычисления
это частный случай коммуникационных вычислений.

Докажем, что NC1(f ) ≤ NC(f ). Для этого возьмем недетер-
минированный протокол Φ, который вычисляет функцию f с ми-
нимальной (наилучшей) сложностью, то есть NC(f ) = C(Φ). По
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этому протоколу Φ построим односторонний недетерминированный
протокол Φ1 с той же коммуникационной сложностью, C(Φ) = C(Φ1).

Пусть M(Φ) = {m1,m2, . . . ,mt}— множество различных сооб-
щений, используемых протоколом Φ. Так как Φ недетерминирован-
но вычисляет функцию f , то для любых входов (σ, γ) для которых
f (σ, γ) = 1 существует m ∈ M(Φ), при использовании которого от-
вет вычислителя B равен 1 и для любых входов (σ, γ) для которых
f (σ, γ) = 0 для любых m ∈ M(Φ). Недетерминированный односто-
ронний протокол Φ1 будет использовать то же множество сообще-
ний M(Φ). На первом шаге вычислитель A недетерминированно вы-
бирает сообщение m ∈ M(Φ) и передаёт его вычислителю B, после
чего B выдаёт ответ. Несложно показать, что Φ1 верно вычисляет
функцию f . При этом C(Φ1) = C(Φ). Поэтому NC1(f ) ≤ NC(f ).

Объединяя оба доказанные неравенства, получаем утвержде-
ние теоремы NC1(f ) = NC(f ). 2

Теперь рассмотрим примеры недетерминированных протоко-
лов для некоторых булевых функций.

Теорема 2.2 NC1(NEQ) ≤ log n + 1

Доказательство: Построим для недетерминированный ком-
муникационный протокол для функции NEQ:

1. Вычислитель A недетерминированно выбирает i-тый бит σi на-
бора σ и пересылает B номер i и значение σi.

2. Вычислитель B cравнивает σi = γi, если они не равны, то вы-
дает 1, иначе 0.
Проверим корректность данного протокола, правильно ли вы-

числяет наш протокол функцию NEQ в недетерминированном смыс-
ле. В соответствии с определением функции и недетерминирован-
ных коммуникационных вычислений:

1. f (σ, γ) = 1 ⇒ существует mσ
i , такое что на наборе γ вычис-

литель B выдаст 1. Действительно, если NEQ(σ, γ) = 1, то
σ ̸= γ ⇒ ∃i ∈ [1, n] : σi ̸= γi. Если A пошлёт i, σi, тогда B
выдаст правильный ответ.
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2. f (σ, γ) = 0 ⇒ для любого mσ
i на наборе γ вычислитель B всегда

выдаёт 0. Действительно, если NEQ(σ, γ) = 0, то σ = γ ⇒
∀i ∈ [1, n] : σi = γi. Вычислитель B в этом случае всегда будет
выдавать 0, так как δ = γ.

Значит алгоритм корректен и недетерминированная сложность фун-
кции NC(NEQ) ≤ log n + 1. 2

Ранее было доказано, что детерминированная сложность функ-
ции NEQ C(NEQ) = n. То есть недетерминизм уменьшает слож-
ность коммуникационных вычислений. Однако это выполняется не
для всех функций. Для того, чтобы это понять, нам необходимо
уметь доказывать нижние оценки недетерминированной коммуни-
кационной сложности функций.

2.2 Методы доказательства нижних оценок
недетерминированной коммуникационной сложности

Отличие недетерминированной модели от детерминированной со-
стоит в том, что в недетерминированном коммуникационном про-
токоле участники могут передавать различные сообщения для од-
ного и того же входа, и ответ вычислителя B для конкретного вхо-
да может отличаться от значения функции на данном входе. Для
доказательства нижних оценок для этой модели необходимы свои
методы. В данном разделе мы рассмотрим некоторые из них.

2.2.1 Метод 1-полных множеств

Метод 1-полных множеств является аналогом метода полных мно-
жеств для детерминированной модели.

Определение 2.4 1-полное множество (1-fooling set или FS1f)
для функции f : {0, 1}n × {0, 1}n → {0, 1}— это множество вход-
ных наборов S ⊆ {0, 1}n × {0, 1}n такое, что

1. для любой пары (σ, γ) ∈ S, f (σ, γ) = 1,

2. для любых двух разных пар (σ1, γ1), (σ2, γ2) ∈ S, выполняется
либо f (σ1, γ2) ̸= 0, либо f (σ2, γ1) ̸= 0.
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Теорема 2.3 Для произвольной булевой функции f выполняется

NC1(f ) ≥ log |S|,

где S — 1-полное множество для функции f .

Доказательство: Пусть S = {(σ, γ)}— 1-полное множество
для функции f , Φ— односторонний недетерминированный прото-
кол минимальной сложности, вычисляющий f . Каждой паре (σ, γ) ∈
S должно соответствовать своё коммуникационное сообщение. Пред-
положим, это не так, и для двух различных пар (σ, γ), (σ′, γ ′) в про-
токоле используется одно и то же сообщение m. Так как для всех
пар ∈ S значение функции равно 1, а для пар (σ, γ ′) и (σ′, γ) значе-
ние функции равно 0, то на входах (σ, γ ′) и (σ′, γ) протокол будет
выдавать неверный ответ. Следовательно, NC1(Φ) ≥ log |S|. 2

2.2.2 Метод 1-прямоугольников

Ранее мы рассматривали метод доказательства нижней оценки де-
терминированной коммуникационной сложности произвольной бу-
левой функции f , основанный на разбиении коммуникационной мат-
рицы CM(f ) на одноцветные прямоугольники. В таком разбиении
каждый элемент матрицы мог принадлежать ровно одному прямо-
угольнику. Для доказательства нижних оценок в недетерминиро-
ванной модели может быть использован похожий метод, в котором
вместо разбиения на прямоугольники используется покрытие мат-
рицы монохромными прямоугольниками, при этом один и тот же
элемент матрицы может принадлежать сразу нескольким прямо-
угольникам.

Пусть f : {0, 1}n × {0, 1}n → {0, 1}— произвольная булева
функция, CM(f )— коммуникационная матрица функции f .

Определение 2.5 cov1(f ) – минимальное число 1-прямоугольников,
которыми можно покрыть все единицы матрицы CM(f ) (воз-
можно с перекрытиями); cov0(f ) – минимальное число 0-прямоу-
гольников, которыми можно покрыть все нули матрицы CM(f )
(возможно с перекрытиями).
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Свойство 1 Для любой функции f : {0, 1}n × {0, 1}n → {0, 1}

cov1(f ) ≤ χ(f ).

Теорема 2.4 Для произвольной функции f : {0, 1}n × {0, 1} →
{0, 1} выполняется

NC1(f ) ≤ ⌈log cov1(f )⌉ + 1,

NC(f ) ≥ log(cov1(f ).

Доказательство: Покажем NC1(f ) ≤ ⌈log cov1(f )⌉ + 1. По-
строим протокол, недетерминированно вычисляющий функцию f.
Пусть (σ, γ)— входной набор, Алиса получает на вход σ, Боб полу-
чает на вход γ.

• Алиса недетерминированным образом выбирает номер 1-прямо-
угольника, которому принадлежит её набор σ и отправляет этот
номер Бобу. Если не существует 1-прямоугольника, которому
принадлежит σ, Алиса отправляет Бобу 0.

• Боб проверяет, принадлежит ли его входной набор γ тому 1-
прямоугольнику, номер которого он получил от Алисы. Если
принадлежит, Боб выдаёт ответ 1, в противном случае Боб вы-
даёт ответ 0.

Проверим корректность построенного протокола. Если входной на-
бор (σ, γ) такой, что f (σ, γ) = 1, то (σ, γ) принадлежит хотя бы
одному 1-прямоугольнику, и существует вариант вычисления, при
котором Алиса выбирет именно этот прямоугольник, отошлёт его
номер Бобу и Боб выдает верный ответ 1. Если вход (σ, γ) та-
кой, что f (σ, γ) = 0, то не существует 1-прямоугольника, которому
бы принадлежали одновременно σ и γ, следовательно, Боб в этом
случае всегда выдаёт ответ 0. Сложность построенного протокола
NC1(Φ) = ⌈log cov1(f )⌉ + 1.

Покажем NC(f ) ≥ log(cov1(f ). Пусть Φ— недетерминирован-
ный протокол минимальной сложности, вычисляющий функцию
f и пусть Φ использует l различных сообщений, и следовательно
сложность протокола NC(Φ) ≥ log l.
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Покажем, что l не может быть меньше cov1(f ). Предположим
это не так, и l < cov1(f ). Тогда по принципу Дирихле, найдется
сообщение m, которое будет соответствовать двум различным 1-
прямоугольникам. Обозначим эти прямоугольники A×B и A′×B′.
Так как эти прямоугольники разные, то найдется пара (σ, γ) та-
кая что σ ∈ A и γ ∈ B′ либо σ ∈ A′ и γ ∈ B и при этом
f (σ, γ) = 0. На наборе (σ, γ) будет существовать вариант вычис-
ления, при котором Боб выдаст ответ 1. Это означает что протокол
неверно вычисляет функцию f . Следовательно, l ≥ cov1(f ) и зна-
чит NC(f ) ≥ log(cov1(f ). 2

Рассмотрим пример функции, для которой cov1(f ) значитель-
но меньше χ(f ). Проблема пересечения множеств (Set Intersection)
формулируется следующим образом: для двух множеств ⊆ [1, n]
требуется определить, имеют ли эти множества непустое пересече-
ние. На основе данной проблемы определим булеву функцию SI :

SI(x, y) =
n∨

i=1

(xi ∧ yi).

Утверждение 2.1
cov1(SI) ≤ n.

χ(SI) ≥ 2n − 1.

Доказательство: 1-прямоугольники Ai × Bi (i = 1, . . . , n),
где σ ∈ Ai если σi = 1 и γ ∈ Bi если γi = 1, покрывают все единицы
матрицы CM(SI). Следовательно, cov1(SI) ≤ n.

Мы знаем, что C(f ) ≥ χ(f ) ≥ rank(CM(f )) для любой функ-
ции f . При этом rank(CM(SI)) = 2n − 1, следовательно выполня-
ется χ(SI) ≥ 2n − 1. 2

Теорема 2.5 Недетерминированная сложность функции SI:

NC1(EQ) = log n + 1

Теорема 2.6 Недетерминированная сложность функции EQ:

NC1(EQ) ≥ n
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Теорема 2.7 Недетерминированная сложность функции ISA:

NC1(INDEX) ≥ log n + 1

2.2.3 Классы сложности и отношения между ними

Обозначим через Fn = {fn(x1, . . . , xn, y1, . . . , yn)} множество буле-
вых функций от 2n переменных. Определим несколько классов слож-
ности булевых функций.

Определение 2.6 Класс P−CC1 = {f ∈ Fn : существует детер-
минированный односторонний коммуникационный протокол Φ, вы-
числяющий f и имеющий сложность C(Φ) ≤ (log n)k, где k ≥ 0}.

Определение 2.7 Класс NP − CC1 = {f ∈ Fn : существует
недетерминированный односторонний коммуникационный прото-
кол Φ, вычисляющий f и имеющий сложность NC(Φ) ≤ (log n)k,
где k ≥ 0}.

Определение 2.8 Класс co− NP − CC1 = {g ∈ Fn : отрицание
этой функции ¬g ∈ NP− CC1}.

Теорема 2.8
P− CC1 ⊂ NP− CC1

Доказательство: P− CC1 ⊆ NP− CC1, так как любой де-
терминированный коммуникационный протокол, есть частный слу-
чай недетерминированного коммуникационного протокола. С дру-
гой стороны в предыдущем разделе было показано, что NEQ ∈
NP− CC1 \ P− CC1. 2

2.3 Обобщения модели k− вычислителей

Существует несколько способов обобщить рассмотренную ранее ком-
муникационную модель на модели, в которую входит более двух
вычислителей. Рассмотрим наиболее интересную: “number on the
forehead”. Она заключается в математической головоломке, в хо-
де которой людей собирают в одной комнате, у каждого человека
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на голове есть последовательность бит, которую могут видеть все
остальные, а он сам не видит. Фактически: существует функция
f : ({0, 1}n)k → {0, 1} и входной вектор (x1, x2...xk), где xi ∈ {0, 1}n,
i-ый игрок может видеть все xj, i ̸= j. Как и в случае двух игроков,
у игроков есть фиксированный коммуникационный протокол, об-
щение согласно которому основано на принципе “public blackboard”.
В завершении протокола все участники должны знать f (x1...xk).

Пример 2.1 Рассмотрим вычисление функции

f (x1, x2, x3) =
n
⊕
i=1

maj(x1i, x2i, x3i)

в модели с тремя участниками, где x1, x2, x3 вектора размерности
n бит. Коммуникационная сложность этой функции =3: каж-
дый игрок, читая число i, может определить то значение, кото-
рое составляет большинство из x1i, x2i, x3i, рассматривая биты
доступные ему. Он записывает ⊕ сумму этих чисел на доску, и
конечный ответ это ⊕ из битов игроков. Этот протокол верен
так как большинство из каждого ряда известно 1-ому или 3-ему
игроку (для нечётного номера).

Пример 2.2 Функция «inner product» (IP)

IPn,k =
n
⊕
i=1

k
∧
j=1

xij (2.1)

Заметим, что при = 2 получим функцию IP .

В модели с двумя вычислителями мы ввели понятие моно-
хромотических прямоугольников, чтобы доказать нижнюю оценку.
Для модели с k участниками мы будем использовать цилиндриче-
ские пересечения.

Определение 2.9 Цилиндр в i измерениях — это множество S
входных значений, таких что если (x1...xk) ∈ S, тогда для всех xi

мы получим (x1, ..., xi−1, xi, xi+1, ..., xk) также ∈ S.

Определение 2.10 Цилиндрическое пересечение — это
⋂k

i=1 Ti, где
Ti — цилиндр в i измерениях.
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Как было замечено в случае двух вычислителей, коммуника-
ционный протокол может быть рассмотрен как процесс разбиения
матрицы CM(f ) на монохроматические прямоугольники. Для мо-
дели с k участниками CM(f ) это k−размерный куб, и сообщение,
переданное i-ым участником, не зависит от xi. Тем не менее можно
показать, что если у f есть “multiparty” протокол, который пере-
дает c бит, тогда у CM(f ) есть разбиение, которое использует не
более 2c монохроматических цилиндрических пересечений.

Лемма 2.1 Если любое разбиение CM(f ) на монохроматические
цилиндрические пересечения требует не менее R цилиндрических
пересечений, то тогда k−вычислительная коммуникационная сло-
жность ≥ log2R.
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Глава 3

Вероятностная коммуникационная
модель

3.1 Определение модели

В данном разделе будем рассматривать следующую модель комму-
никационных вычислений. Даны два вычислителя A и B, на вход
которым подаются два входных набора σ и γ, соответственно. Вы-
числитель A, на основе входного набора строит множество возмож-
ных сообщений M(σ) = {m1, . . . ,mt}, которые можно отправить
B, где t = t(σ) также зависит от входа. Далее вычислитель выби-
рает сообщение из этого множества m ∈ M(σ) и отправляет его
B. Механизм выбора отправляемого сообщения вероятностный, то
есть имеется генератор случайных чисел, и вычислитель A, в со-
ответствии с полученной случайной величиной, выбирает одно из
сообщений. Вычислитель B, получив сообщение m и зная входной
набор γ, если может выдать ответ, выдаёт значение функции. Ина-
че строит своё множество возможных сообщений M(m, γ) = . . . и
также вероятностно выбирает сообщение m′ ∈ M(m,σ), затем от-
правляет его вычислителю B. Вычисления продолжаются до тех
пор, пока B не сможет выдать ответ. Если для обоих вычислителей
используется общий генератор случайных чисел, тогда эта модель
называется вероятностными коммуникационными вычислениями с
открытым ключом “public coin”. Если у каждого вычислителя свой
генератор, то эта модель называется коммуникационной моделью с
закрытым ключом “private coin”.
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Определение 3.1 Будем говорить, что протокол Φ вычисляет
функцию f (σ, γ) с неограниченной ошибкой (с вероятностью 1

2
),

если выполняется следующее:
1. Для любого входного набора (σ, γ): f (σ, γ) = 1, вероятность

принять входной набор PrΦaccept(δ, γ) >
1
2
,

2. Для любого входного набора (σ, γ): f (σ, γ) = 0, вероятность
принять входной набор PrΦaccept(δ, γ) ≤ 1

2
.

Определение 3.2 Будем говорить, что протокол Φ вычисляет
функцию f (σ, γ) с ограниченной ошибкой (с вероятностью 1

2
+ ε),

если существует такое ε ∈
(
0, 1

2

]
, что:

1. Для любого входного набора (σ, γ): f (σ, γ) = 1, вероятность
принять входной набор PrΦaccept(δ, γ) ≥ 1

2
+ ε,

2. Для любого входного набора (σ, γ): f (σ, γ) = 0, вероятность
принять входной набор PrΦaccept(δ, γ) ≤ 1

2
+ ε.

Определение 3.3 Вероятностной коммуникационной сложностью
функции f (σ, γ) называется величина

PC(f ) = minC(Φ)

сложность наилучшего протокола, который вычисляет функцию
f (x, y) с вероятностью 1

2
,

RC(f ) = minC(Φ)

сложность наилучшего протокола, который вычисляет функцию
f (x, y) с вероятностью 1

2
+ ε.

Свойство 2
C(f ) ≥ RC1

2+ε(f ) ≥ PC1
2
(f )

3.1.1 Вероятностная коммуникационная сложность функ-
ции «Равенство»

Рассмотрим пример вероятностного протокола для известной нам
функции EQ. Построим вероятностный протокол Φ, который вы-
числяет функцию EQ(x, y) с большой вероятностью правильно-
го ответа, используя при этом O(log n) битов при коммуникации.

33



Идея построения подобного вероятностного алгоритма принадле-
жит Р.В. Фрейвалду.

Входы трактуются как два натуральных числа x и y, 0 ≤
x, y ≤ 2n − 1. Вычислитель A выбирает (равновероятностно) про-
стое число p ≤ n2, вычисляет x′ = x (mod p) и пересылает пару
(x′, p) вычислителю B. Вычислитель B вычисляет y′ = y (mod p)
и сравнивает y′ с x′. Если y′ ̸= x′, то вычислитель B выдает ответ
x ̸= y. Если y′ = x′, то вычислитель B выдает ответ x = y.

Теперь посчитаем вероятности возможных ошибок.
• Если два числа x, y равны, то очевидно x′, y′ также равны, и

протокол Φ выдаст правильный ответ.

• Если два числа x, y различны, то тем не менее может оказаться,
что y′ = x′, и протокол Φ выдаст в этом случае неверный ответ.
Это может произойти, если p является делителем числа x− y.

Заметим, что |x − y| < 2n, следовательно x − y может иметь не
более n различных простых делителей. С другой стороны вычисли-
тель Px выбирает простые числа среди O( n2

log n
) простых чисел, таким

образом вероятность выбора делителя числа x− y очень мала.
Таким образом, доказали следующее утверждение:

Утверждение 3.1 RC(EQ) = O(log n)

3.2 Сравнение моделей “public coin” и “private coin”

В определении вероятностной коммуникационной модели “private
coin” вычислители Алиса и Боб по определению имеют свои датчи-
ки случайных чисел и следовательно, каждый использует своё ве-
роятностное распределение случайных чисел. Алиса и Боб не видят
случайные распределения друг друга. В модели “public coin” Алиса
и Боб имеют общий датчик случайных чисел и общее вероятност-
ное распределение случайных чисел. Более формально, существует
вероятностная строка r (выбираемая в соответствии с распределе-
нием вероятностей Π). При этом выбор передаваемого сообщения от
Алисы к Бобу зависит от входного набора σ Алисы и вероятност-
ного набора r, выбор передаваемого сообщения от Боба к Алисе
зависит от входного набора γ Боба и вероятностного набора r.
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Мы можем также смотреть на данную модель как на распре-
деление {Pr}r∈Π детерминированных протоколов. Алиса и Боб сов-
местно выбирают строку r (это выбор зависит только от распре-
деления вероятностей Π и не зависит от значений σ и γ) и затем
следуют детерминированному протоколу Φr.

Определение 3.4 Вероятностный протокол Φpub с общим дат-
чиком случайных чисел для функции f (X, Y )— это вероятност-
ное распределение над детерминированными протоколами {Φr}r∈Π.
Вероятность правильного результата на входе (σ, γ)— это есть
вероятность выбора детерминированного протокола Φr (основыва-
ясь на распределении вероятностей Π), такого, что Φr правильно
вычисляет функцию f на наборе (σ, γ).

Определение 3.5 RCpublic(f )— сложность наилучшего протоко-
ла с общим датчиком случайных чисел, вычисляющего функцию f
с ограниченной ошибкой.

Покажем, что произвольный “private coin” протокол может быть
промоделирован как “public coin” протокол.

Утверждение 3.2

RCpublic(f ) ≤ RC(f )

Доказательство: Пусть Φ— произвольный “private coin” про-
токол и пусть rA и rB — последовательности случайных чисел Али-
сы и Боба (каждая последовательность выбрана опираясь на соб-
ственное распределение и независимо друг друг от друга). Данный
протокол может быть промоделирован “public coin” протоколом, в
котором общая строка случайных чисел r образована как конкате-
нация строк rA и rB и рассматривается как public строка. 2

Теорема 3.1
RCpub

1 (EQ) = O(1)

Доказательство: Опишем следующий “public coin” протокол
для функции EQ на наборе σ, γ.
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1. Алиса и Боб совместно выбирают случайную строкуr, состоя-
щую из n бит.

2. Алиса вычисляет скалярное произведение b = ⟨σ, r⟩ по модулю
2 и передаёт вычисленное значение (один бит) Бобу.

3. Боб проверяет равенство b = ⟨γ, r⟩ и выдает ответ 1, если b =
⟨γ, r⟩, и 0, если b ̸= ⟨γ, r⟩.
Очевидно, что если выполняется σ = γ, то ответ всегда 1 и

протокол не ошибается.
Пусть σ ̸= γ. Оценим вероятность ошибки в этом случае. По-

скольку σ ̸= γ, то существует позиция i такая что σi ̸= γi. Пусть
для определенности σi = 1, γi = 0. Существует 2n−1 наборов r дли-
ны n, в которых на позициях j ̸= i могут стоять произвольные
значения, а значение ri выбрано таком образом, чтобы обеспечить
⟨σ, r⟩ ≠ ⟨γ, r⟩. Поэтому

Prr[⟨σ, r⟩ ≠ ⟨γ, r⟩] = 1/2,

и поэтому Боб выдает правильный ответ 0 с вероятностью 1/2 и
с вероятностью 1/2 ошибается. Повторяя эту процедуру дважды
(с двумя независимыми выборами r) и выдавая ответ 0 только в
том случае, если оба повтора выдадут ответ 0, вероятность ошибки
уменьшается до 1/4. Применяя данную технику мы можем пони-
зить вероятность ошибки до сколь угодно малого значения ϵ. Таким
образом, мы показали, что RCpublic

1 (EQ) = O(1). 2

Теорема 3.1 показывает, что разрыв между C(f ) и RCpublic(f )
может быть произвольно большим. В то же время мы знаем, что
для модели “private coin” выполняется RC(EQ) ≤ O(log n). Следо-
вательно, данный пример демонстрирует, что “public coin” может
быть лучше, чем “private coin”. Далее мы покажем, что преиму-
щество модели “public coin” над моделью “private coin”, получен-
ное для функции EQ— наибольшее, которое может быть достиг-
нуто. То есть “public coin” протокол может быть преобразован в
“private coin”протокол с небольшим увеличением сложности прото-
кола вероятности ошибки вычисления. При этом полученный про-
токол также будет вычислять функцию f с ограниченной ошибкой.
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Теорема 3.2 Пусть f (X, Y )— булева функция. Для любого δ > 0
и любого ϵ > 0 выполняется следующее:

RCϵ+δ(f ) ≤ RCpub
ϵ (f ) +O(log n + log(

1

δ
)).

Доказательство: Нам достаточно доказать, что произволь-
ный “public coin” протокол Φ, использующий произвольное число
вероятностных бит, может быть преобразован в другой “public coin”
протокол Φ′ такой, что протокол Φ′, использующий только O(log n+
log 1

δ
) вероятностных бит, и вероятность ошибки протокола Φ′ увели-

чится не более чем в δ раз. Если мы докажем это, то доказательство
Теоремы будет следовать из того, что Алиса может произвести это
количество вероятностных бит сама и передать их Бобу, и далее
вычислители просто следуют “public” протоколу Φ′.

Пусть Φ— “public coin” протокол, использующий произвольное
число вероятностных бит. Обозначим через Z(σ, γ, r)— вероятност-
ную переменную, которая принимает значение 1, если протокол Φ
выдаёт на наборе σ, γ и вероятностной строке r неверный ответ (от-
личный от значения f (σ, γ)). Соответственно, Z(σ, γ, r) принимает
значение 0, если протокол Φ на наборе σ, γ и вероятностной строке
r выдаёт правильный ответ (равный f (σ, γ)). Так как Φ вычисляет
f (X, Y ) с ошибкой ϵ, то выполняется Er∈Π[Z(σ, γ, r)] ≤ ϵ для любых
входов (σ, γ) ∈ {0, 1}2n.

Будем строить новый “public coin” протокол Φ′, который ис-
пользует меньшее число вероятностных бит, используя «вероятност-
ный метод».

Доказательство при помощи вероятностного метода. Идея
«вероятностного метода» доказательства следующая. Пусть R =
{r1, . . . , rd}— множество вероятностных строк, используемых в про-
токоле Φ. Для каждого входного набора (σ, γ) существует подмно-
жество случайных строк R(σ, γ) ⊆ R, при использовании которых
протокол не ошибается. При этом для каждого (σ, γ) это подмноже-
ство R(σ, γ) своё. Назовем его «подходящим множеством» для вхо-
да (σ, γ). Надо показать, что существует подмножество R′ ⊆ R, ко-
торое является «подходящим» для всех (σ, γ). Мы докажем, что ве-
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роятность существования такого «подходящего множества» не рав-
на нулю. Тем самым доказывается, что такое множество существует.

Для доказательства нам понадобится оценка Чернова.

Оценка Чернова. Пусть X1, . . . , Xt — независимые случайные ве-
личины, принимающие значения из множества {0, 1} с вероятно-
стью Pr(Xi = 1) = p, Pr(Xi = 0) = 1 − p для любого i = 1, . . . , t.
Тогда для любого δ ≥ 0 выполняется

Pr(|1
t

t∑
k=1

Xk − p| ≥ δ) ≤ 2e−2tδ2.

Зафиксируем параметр t (значение t определим позднее). Пусть
R = {r1, . . . , rd}— множество всех вероятностных строк, использу-
емых в протоколе Φ. Определим “public coin” протокол ΦR следую-
щим образом:

1. На входном наборе (σ, γ) Алиса и Боб равновероятно выбира-
ют значение i (1 ≤ i ≤ t) и запускают вычисления согласно
протоколу Φ, используя ri в качестве вероятностной строки.
Далее необходимо показать, что существует «подходящее» мно-

жество Rt = {r1, . . . , rt} такое, что
Ei[Z(σ, γ, ri)] ≤ ϵ + δ

для любых входов (σ, γ) ∈ {0, 1}2n. Для такого выбора множества
Rt построенный протокол ΦR и будет искомым протоколом Φ′.

Чтобы построить такое «подходящее» множество Rt будем вы-
бирать t значений r1, . . . , rt вероятностно (в соответствии с вероят-
ностным распределением Π).

Рассмотрим фиксированную пару σ, γ и посчитаем вероят-
ность того, что Ei[Z(σ, γ, ri)] > ϵ + δ (где i имеет равномерное рас-
пределение) (то есть множество R для набора (σ, γ)— «плохое»).
Это есть в точности вероятность того, что 1

t

∑t
i=1Z(σ, γ, ri) > ϵ+ δ.

Согласно неравенству Чернова, так как Er[Z(σ, γ, r)] ≤ ϵ, то

PrR[(
1

t

t∑
i=1

Z(σ, γ, ri)− ϵ) > δ] ≤ 2e−2δ2t.
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При t = O(n/δ2) это значение строго меньше чем 2−2n. Поэто-
му для конкретного вероятностного выбора R = {r1, . . . , rt} веро-
ятность того, что множество R окажется «неподходящим» хотя бы
для одного входа (σ, γ) , то есть Ei[Z(σ, γ, ri)] > ϵ+ δ, строго мень-
ше чем 2n2−n = 1. Следовательно, существует выбор множества R,
которое является «подходящим» для всех наборов (σ, γ) ∈ {0, 1}2n.

Отметим теперь, что число вероятностных бит, используемых
протоколом Φ′ равно log t = O(log n + log 1

δ
). 2

3.3 Методы доказательства нижних оценок
для вероятностной коммуникационной модели

Проблема доказательства нижних оценок для вероятностных мо-
делей требует новой техники. В случае детерминированных прото-
колов методом доказательства существования функций с высокой
(асимптотически линейной) коммуникационной сложностью мог слу-
жить метод (неконструктивный) подсчета. Данный метод основан
на следующем. Существует всего 22

2n различных булевских функ-
ций f (X, Y ), X, Y ∈ {0, 1}n. С другой стороны, существует только
22

O(l) различных детерминированных протоколов длины l.
Если же мы имеем дело с вероятностной моделью, то суще-

ствует несчётно много вероятностных протоколов длины l, так как
вероятности могут быть произвольны. В случае ограниченных веро-
ятностных вычислений (вычислений с ограниченной ошибкой) до-
казательство как линейных, так и логарифмических нижних оценок
существенным образом используют в качестве аргумента факт, что
ошибка вычисления ограничена константой.

3.3.1 Топологический метод

В данном разделе рассмотрим метод доказательства нижней оцен-
ки вероятностной коммуникационной сложности для вычисления с
ограниченной ошибкой.
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Теорема 3.3 Пусть f : {0, 1}n × {0, 1}n → {0, 1}— произвольная
булева функция, ε ∈ (0, 1/2], p = 1/2 + ε. Тогда выполняется

RCp(f ) ≥ log(DC(f )− 1)− log log(1 + 1/ε).

Введем необходимые понятия из теории множеств и метриче-
ских пространств.

Пусть S — это метрическое пространство с метрикой ρ. Конеч-
ное множество элементов s1, s2, . . . , st пространства S называется
ε-цепью, если ρ(si, si+1) < ε для i ∈ {1, 2, . . . , t − 1}. Говорят, что
элементы s1 и st соединимы ε-цепью.

Подмножество Cε пространства S называется ε-компонентой
пространства S, если два любых элемента s, s′ ∈ Cε cоединимы ε-
цепью. Метрическое подпространство S ′ пространства S называет-
ся ограниченным, если существует такая константа c, что для про-
извольных двух элементов s, s′ ∈ S ′ выполняется ρ(s, s′) ≤ c. Для
произвольного ε > 0 ограниченное подпространство конечномерно-
го векторного пространства разбивается на конечное число своих
ε-компонент.

В d-мерном векторном пространстве Rd определим метрику
ρ следующим образом. Для элементов µ = (p1, p2, ..., pd) и µ′ =
(p′1, p

′
2, ..., p

′
d) пространства Rd положим

ρ(µ, µ′) =
d∑

i=1

| pi − p′i | .

Пусть f : {0, 1}n × {0, 1}n → {0, 1}— произвольная булева
функция, а Φ— односторонний вероятностный протокол, p-вычис-
ляющий функцию f , p = 1/2 + ε, ε ∈ (0, 1/2]. Пусть dim(Φ) = d.
Обозначим Rd

Φ подпространство пространства Rd, состоящее из все-
возможных распределений вероятностей сообщений протокола Φ.

Rd
Φ =

{
µ ∈ Rd / µ = µ(x), x ∈ {0, 1}n

}
.

По определению, метрическое подпространство Rd
Φ ограничено.

Мы докажем нижнюю оценку для p-коммуникационной раз-
мерности булевой функции, которая связана с величиной p-комму-
никационной сложности.

40



Теорема 3.4 Пусть f : {0, 1}n × {0, 1}n → {0, 1}— произвольная
булева функция, ε ∈

(
0, 1

2

]
, p = 1/2 + ε. Тогда выполняется

dimp(f ) ≥
log dim(f )

log(1 + 1/ε)

Доказательство: Пусть Φ— это произвольный односторон-
ний вероятностный протокол, p-вычисляющий функцию f . Для про-
извольных двух слов x, x′ из множества представителей X функции
f точки µ(x) = {p1(x), p2(x), . . . , pd(x)} и µ(x′) = {p1(x′), p2(x

′), . . . ,
pd(x

′)} принадлежат различным 2ε-компонентам пространства Rd
Φ.

Действительно, предположим, что существует 2ε-компонента
C2ε ∈ Rd

Φ такая, что µ(x), µ(x′) ∈ Cε. Положим x1 = x, а x2 = x′.
Пусть точки µ(x1), µ(x2), . . . , µ(xt) образуют 2ε-цепь. Последнее
означает, что для i ∈ {1, 2, . . . , t− 1} выполняется

ρ(µ(xi), µ(xi+1)) < 2ε. (3.1)

Применяя последнее неравенство, получаем, что для произ-
вольного слова y из множества Y тест функции f выполняется

µ(x)ν(y)− µ(x′)ν(y) ≤
d∑

i=1

| pi(x)− pi(x
′) | qi(y)

≤ ρ(µ(x), µ(x′)) < 2ε.

(3.2)

В силу условия теоремы 3.3 вероятностный протокол имеет на-
дежность ε, поэтому для произвольных последовательностей u, v ∈
{0, 1}n выполняется либо µ(u)ν(v) ≥ 1

2
+ ε, либо µ(u)ν(v) ≤ 1

2
+ ε.

Содержательно µ(u)ν(v)— это вероятность выдачи 1 протоколом Φ
на входе uv.

Из определения вероятностного коммуникационного протокола
и соотношений следует, что f (x, y) = f (x′, y) для всех последова-
тельностей y ∈ {0, 1}n. Это противоречит тому, что x, x′ ∈ X .

Оценим теперь число K 2ε-компонент пространства Rd
f . Нам

достаточно оценить K следующим образом. В каждую 2ε-компо-
ненту C2ε пространства Rd

f поместим сферу радиуса ϵ с центром в
соответствующей точке µ(x), x ∈ X . Все эти сферы могут пере-
секаться разве что по границе. Пространство Rd

f вместе со своими
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сферами радиуса ϵ поместим в большую сферу радиуса 1 + ϵ c цен-
тром в точке (0, 0, . . . , 0).

Объем сферы радиуса r в пространстве Rd равен crd, где кон-
станта c зависит от используемой метрики ρ. Таким образом спра-
ведлива оценка

K ≤ c(1 + ϵ)d

cϵd
=

(
1 +

1

ϵ

)d

.

Так как K ≥ dim(f ), то теорема доказана. 2

Так как для произвольной функции f ее вероятностная p-раз-
мерность dimp(f ) cвязана с величиной PCp(f ) p-коммуникацион-
ной сложности соотношением 2PCp(f) ≥ dimp(f ), то из теоремы и
того, что log dim(f ) > DC(f )− 1 следует утверждение теоремы.

3.3.2 Геометрический метод

Теорема 3.5 Пусть f : {0, 1}n × {0, 1}n → {0, 1}— произвольная
булева функция, p = 1/2. Тогда выполняется

PCp(f ) ≥ log(DC(f )− 1)− log log ts(f ).

В последующей части излагается доказательство теоремы, ко-
торое состоит из двух утверждений. Введем необходимые опреде-
ления и обозначения.

Обозначим Rd d-мерное Евклидово пространство. (d−1)-мерная
гиперплоскость

a1z1 + a2z2 + · · · + adzd = b

делит Rd на две связные области. Условимся, что эти две связные
области определяются следующими двумя неравенствами

a1z1 + a2z2 + · · · + adzd > b,

a1z1 + a2z2 + · · · + adzd ≤ b.

Обозначим k(d, t) максимальное число связных областей, кото-
рые могут быть образованы в d-мерном Евклидовом пространстве
Rd t различными (d− 1)-мерными гиперплоскостями. Следующий
факт установлен О.Б.Лупановым.
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Лемма 3.1 Если d = 1 и t ≥ 1, тогда k(d, t) = t + 1. Если d ≥ 2 и
t ≥ 2, тогда k(d, t) ≤ td.

Для полноты изложения приведём доказательство леммы.
Доказательство: Если d = 1, то очевидно, что прямая раз-

бивается t различными точками (0-мерными гиперплоскостями) на
k(d, t) = t + 1 частей.

Доказательство второй части проведем методом индукции по
числу t гиперплоскостей. Легко видеть, что для произвольного d ≥
2 выполняется k(d, 2) ≤ 2d.

Пусть t > 2 и d > 2. Рассмотрим t произвольных (d − 1)-
мерных гиперплоскости α1, α2, . . . , αt. t − 1 гиперплоскость α1,
α2, . . . , αt−1 могут определить в пространстве Rd самое большее
k(d, t− 1) различных связных областей. Обозначим эти области че-
рез D1, D2, . . . , Dl (l ≤ k(d, t− 1)).

Гиперплоскость αt можно рассматривать как (d − 1)-мерное
Евклидово пространство. Число связных областей в пространстве
αt, определяемое гиперплоскостями α1, α2, . . . , αt−1 равно числу
связных областей в пространстве αt, образованное пересечением αt

с гиперплоскостями α1, α2, . . . , αt−1 (каждое такое пересечение яв-
ляется (d− 2)-мерной гиперплоскостью). Следовательно это число
не превосходит k(d− 1, t− 1).

Каждое из этих связных областей пространства αt лежит в
некоторой области Di. Следовательно

k(d, t) ≤ k(d, t− 1) + k(d− 1, t− 1).

По предположению индукции для произвольного d ≥ 2 имеем
k(d, t−1) ≤ (t−1)d. Поэтому, для произвольного d ≥ 3 выполняется

k(d, t) ≤ (t− 1)d + (t− 1)d−1 ≤ td.

В случае d = 2 мы имеем k(d, t) ≤ (t−1)2+(t−1)+1 ≤ t2 = td.
Таким образом для d ≥ 2 мы получаем k(d, t) ≤ td. 2
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3.4 Вероятностные коммуникационные вычисления
с неограниченной ошибкой

Неограниченная вероятностная модель не является основой для тео-
рии «разумной, используемой в практике передачи информации».
Скорее, мы заинтересованы в понимании мощи неограниченных
вероятностных вычислений для сопоставления её с ограниченны-
ми вероятностными вычислениями. Сравнение показывает, что эта
мощь значительна.

Рассмотрим для примера функцию равенства EQ(X, Y ). Ранее
было показано

C(EQ) ≥ n,

RC(EQ) ≤ O(log n).

PC(EQ) = O(1).

Возникает естественный вопрос, не является ли модель неогра-
ниченных вероятностных вычислений слишком тривиальной и не
является ли оценка вида O(1) общей оценкой для всех функций.
Как мы увидим далее, это не так.

3.4.1 Нижняя оценка. Метод гиперплоскостей

Метод гиперплоскостей основан на геометрических свойствах мно-
гомерных пространств.

Гиперплоскость h в Rd характеризуется при помощи вектора
ã = (a1, . . . , ad+1) ∈ Rd+1. Точка b ∈ Rd принадлежит гиперплоско-
сти h, если

⟨(a1, . . . , ad), b⟩ = ad+1.

Гиперплоскость (a1, . . . , ad)— гиперплоскость, проходящая че-
рез начало координат.

Определение 3.6 Размещением Arr(H) называется конечное мно-
жество гиперплоскостей H = {h1, . . . , hm} в пространстве Rd для
некоторого d. Данные гиперплоскости делят пространство Rd на
области. Область размещения Arr(H)— это непустая связанная
компонента в Rd, образованная гиперплоскостями Arr(H).
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Поскольку каждая гиперплоскость делит пространство Rd на
два полупространства — положительное и отрицательное, то каж-
дая область r размещения Arr(H) может быть однозначно характе-
ризована m-битной строкой s = s1, . . . , sm, где si = 1, если область r
находится в положительном полупространстве относительно гипер-
плоскости hi, и si = 0, если область r находится в отрицательном
полупространстве относительно гиперплоскости hi. Будем называть
строку s сигнатурой области r.

Будем говорить, что размещение Arr(H) реализует множество
SH ⊆ {0, 1}m сигнатур, если SH = {w ∈ {0, 1}m |w есть сигнатура
некоторой области r в Arr(H)}.

Будем называть каждое w ∈ {0, 1}m требованием. Требование
w ∈ {0, 1}m удовлетворяет размещению Arr(H) в Rd для некоторо-
го d, если w ∈ SH . Будем говорить, что булевская матрица M по-
рядка k×m удовлетворяет размещению Arr(H)m гиперплоскостей
H в Rd, если каждая строка матрицы M может быть рассмотрена
как требование, принадлежащее SH .

Теорема 3.6 Пусть M — коммуникационная матрица функции f .
Пусть d— наименьшая размерность пространства, в котором су-
ществует размещение Arr(H) 2n гиперплоскостей, которое удо-
влетворяет матрице M . Тогда выполняется

log d ≤ PC(f ) ≤ log d + 1.

PC(f ) = O(log d).

Доказательство: Будем называть длиной протокола Φ ко-
личество различных сообщений, используемых Φ . Ясно, что если
длина протокола d, то PC(Φ) = log d.

Доказательство в одну сторону: Пусть для функции f суще-
ствует протокол, вычисляющий f с неограниченной ошибкой и име-
ющий длину d. Покажем, что в этом случае существует размещение
Arr(H) в пространстве Rd, удовлетворяющее CM(f ).

Предположим для простоты, что все строки коммуникацион-
ной матрицы CM(f ) различны. Пусть Φ— протокол, вычисляющий
f с неограниченной ошибкой и имеющий длину d и пусть M =
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{m1, . . . ,md}— множество всех различных сообщений, используе-
мых протоколом Φ . Обозначим µ(σ) = (p1, . . . , pd)— вероятност-
ный вектор, где pi — вероятность того, что Алиса на входе σ пере-
даст Бобу сообщение mi. Ясно, что выполняется p1 + · · · + pd = 1.
Обозначим ν(γ) = (q1, . . . , dd), 0 ≤ qI ≤ 1— вектор, такой, что qi —
вероятность того, что Боб при получении от Алисы сообщения mi

и имея на входе набор γ, выдаст ответ 1. Поскольку Φ вычисляет
функцию f с неограниченной ошибкой, то выполняется следующее:

• для любого входного набора (σ, γ) ∈ {0, 1}2n: f (σ, γ) = 1 выпол-
няется ⟨µ(σ)ν(γ)⟩ > 1/2;

• для любого входного набора (σ, γ) ∈ {0, 1}2n: f (σ, γ) = 0 выпол-
няется ⟨µ(σ)ν(γ)⟩ < 1/2.

Образуем новый вектор ν ′(γ) = ν(γ) − (1/2, . . . , 1/2). Тогда
µ(σ)ν ′(γ) = µ(σ)(ν(γ) − (1/2, . . . , 1/2)) = µ(σ)ν(γ) − 1/2. Поэтому
верно следующее:

• для любого входного набора (σ, γ) ∈ {0, 1}2n: f (σ, γ) = 1 выпол-
няется ⟨µ(σ)ν ′(γ)⟩ > 0,

• для любого входного набора (σ, γ) ∈ {0, 1}2n: f (σ, γ) = 0 выпол-
няется ⟨µ(σ)ν ′(γ)⟩ < 0.

Вектора µ(σ), ν ′(γ) можно трактовать

1. как точки в пространстве Rd,

2. как гиперплоскости в Rd, содержащие начало координат.

Точка µ(σ) лежит в положительном полупространстве относи-
тельно гиперплоскости ν ′(γ), если выполняется ⟨µ(σ), ν ′(γ)⟩ > 0,
то есть если f (σ, γ) = 1. Аналогично, точка µ(σ) лежит в отрица-
тельном полупространстве относительно гиперплоскости ν ′(γ), если
выполняется ⟨µ(σ), ν ′(γ)⟩ < 0, то есть если f (σ, γ) = 0.

Пусть H — множество 2n полупространств, P — множество 2n

точек. Легко видеть, что для любого σ сигнатура области r — это
есть σ-строка матрицы CM(f ).
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Доказательство в обратную сторону: Пусть существует разме-
щение Arr(H) в пространстве Rd, удовлетворяющее коммуникаци-
онной матрице CM(f ). Каждый столбец матрицы CM(f ) задаёт
гиперплоскость. Каждая строка матрицы CM(f ) задаёт область
(или точку внутри области) в размещении Arr(H).

Будем строить протокол Φ, вычисляющий f с неограниченной
ошибкой, имеющий длину d + 2.

Для размещения Arr(H) пусть p = (p1, . . . , pd)— точка внутри
области, q = (q1, . . . , qd) - гиперплоскость.

Преобразуем вектор p следующим образом.

1. Построим по вектору p вектор p′:

p′ = (p1, . . . , pd, 0,−
d∑

i=1

pi).

Сумма компонент вектора p′ равна нулю. Компоненты вектора
p′ могут быть как положительные так и отрицательные.

2. Умножим каждый элемент вектора p′ на положительную кон-
станту c такую, чтобы каждый элемент вектора p′ стал по мо-
дулю меньше 1

d+2
.

3. Построим вектор a = cp′ + ( 1
d+2

, . . . , 1
d+2

). Очевидно, что вектор
a— стохастический.

Преобразуем вектор q следующим образом

1. Построим по вектору q вектор q′:

q′ = (q1, . . . , qd,−
d∑

i=1

qi, 0)

2. Умножим каждый элемент вектора q′ на положительную кон-
станту c′ такую, чтобы каждый элемент вектора q′ стал по мо-
дулю меньше 1

2
.

3. Построим вектор b = cq′ + (1
2
, . . . , 1

2
). Для каждого элемента

вектора выполняется 0 ≤ bi ≤ 1.
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Построим протокол Φ следующим образом. На входе (σ, γ) ве-
роятностный вектор µ(σ), соответствующий набору σ — это вектор
a(σ), вектор, соответствующий набору γ — это вектор b(γ).

Тогда

a(σ)b(γ) =
(
c(p1, . . . , pd, 0,−

d∑
i=1

pi) + (
1

d + 2
, . . . ,

1

d + 2
)
)
×

c
(
q1, . . . , qd,−

d∑
i=1

qi, 0
)
+
(1
2
, . . . ,

1

2

)
=

cc′(p1, . . . , pd)(q1, . . . , qd) + 0 + 0 +
d + 2

(d + 2)2

.

Нетрудно убедиться, что это значение > 1/2, если f (σ, γ) = 1
и < 1/2, если f (σ, γ) = 0. 2

3.4.2 Применение метода гиперплоскостей

Пример 1. Функция «Равенство». Рассмотрим функцию EQ:

EQ(σ, γ) =

{
1, если σ = γ;

0, если σ ̸= γ.

Теорема 3.7
PC(EQ) = 1

Доказательство: Согласно теореме 3.6, протокол для вычис-
ления функции EQ с неограниченной ошибкой может быть постро-
ен, если возможно построить размещение 2n гиперплоскостей с 2n

областями, удовлетворяющее коммуникационной матрице CM(EQ)
в пространстве Rd для некоторого d. Так как CM(EQ) содержит
единицы на главной диагонали и нули во всех остальных позициях,
любое множество гиперплоскостей H = {h1, . . . , h2n} и любое мно-
жество точек P = {p1, . . . , p2n}, удовлетворяющее условию, что лю-
бая точка p ∈ P отделяется от всех остальных точек из множества
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P какой то гиперплоскостью h ∈ H будет являться размещени-
ем, удовлетворяющим коммуникационной матрице CM(EQ). По-
кажем, что такое размещение может быть достигнуто в простран-
стве размерности 2. Согласно теореме 3.6 это будет означать что
существует коммуникационный протокол сложности 1, вычисляю-
щий функцию EQ с неограниченной ошибкой.

Расположим точки p ∈ P равномерно в первой четверти R2

на окружности радиуса 1 с центром в начале координат. Чтобы
отделить каждую точку от остальных, возьмём в качестве гипер-
плоскости касательную к этой точке, слегка смещённую к центру
окружности. Формально:

• β = π/2n + 1, δ = β/2,

• P = {(cos iβ, sin iβ) | 0 ≤ i ≤ 2n − 1},
• H = {(cos iβ, sin iβ, cos δ) | 0 ≤ i ≤ 2n − 1}. 2

Пример 2. Функция INDEX. Рассмотрим функцию INDEX :

INDEX(σ, γ) =

{
σi, если в наборе γ одна единица в позиции i;

0, если в наборе γ число единиц не равно 1.

Теорема 3.8

⌈log n⌉ ≤ PC(INDEX) ≤ ⌈log n⌉ + 1.

Доказательство: Рассмотрим коммуникационную матрицу
функции INDEX . На пересечении строки σ = σ1 . . . σn и столбца
γ = γ1 . . . γn стоит значение σi, если в наборе γ ровно одна единица
в позиции i, и стоит значение 0, если в наборе γ нет единиц или бо-
лее одной единицы. Переупорядочим столбцы в коммуникационной
матрице CM(INDEX) таким образом, чтобы сначала шли столб-
цы, пронумерованные γ с одной единицей, потом — все остальные.
После переупорядочивания вторая половина матрицы состоит толь-
ко из нулей, а на пересечении строк и первых n столбцов находятся
всевозможные двоичные последовательности длины n. Таким обра-
зом, в размещении, удовлетворяющем коммуникационной матрице
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функции INDEX , должно быть n гиперплоскостей (соответству-
ющим столбцам), и 2n областей.

Известно, что число областей, образованных n гиперплоскостя-
ми в пространстве Rd не превышает

d∑
i=0

(
n

i

)
=

d∑
i=0

n!

i!(n− i)!
= 2d.

Следовательно, d ≥ n. Применяя теорему 3.6, завершаем доказа-
тельство теоремы. 2

Пример 3. Функция ISA. Функция ISA(x, y) (Indirect Storage
Access) определяется следующим образом:

ISA(σ, γ) = σbin(γ) mod n

Теорема 3.9
log n ≤ PC(ISA) ≤ log n + 1.

Доказательство: Нижняя оценка. Известно (может быть по-
казано), что число различных областей в любом размещении n ги-
перплоскостей в d-мерном пространстве Rd ограничено сверху ве-
личиной

∑d
i=0

(
n
i

)
что равно 2n, так как

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k = 2n при x = y = 1.

Следовательно, d не может быть меньше n (d ≤ n), что даёт
нижнюю оценку.

Верхняя оценка. Существует размещение d гиперплоскостей в
Rd, следовательно, мы может достигнуть верхнюю оценку. 2

Теорему можно легко расширить, чтобы получить иерархию
сложности для 0 ≤ C ≤ [log n].
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Глава 4

Приложения коммуникационных
вычислений

В данной главе мы покажем, каким образом могут применяться
результаты и техники теории коммуникационных вычислений для
доказательства нижних оценок для различных вычислительных мо-
делей: машин Тьюринга, схем из функциональных элементов и ко-
нечных автоматов.

4.1 Машины Тьюринга

Машина Тьюринга — является наиболее универсальной вычисли-
тельной моделью с потенциально бесконечной памятью в виде лен-
ты, неограниченной в обе стороны. Машина работает в соответ-
ствии со своей программой, выполняя на каждом шаге простей-
шие действия, заключающиеся в смене текущего состояния, записи
символа в текущую ячейку на ленте (лентах) и сдвиге на ленте
(лентах) на одну ячейку влево/вправо. Модели машины Тьюрин-
га различаются числом используемых лент. Известно, что исполь-
зование большего количества лент не даёт существенного преиму-
щества. Мы будем рассматривать модель с двумя лентами: вход-
ной лентой, предназначенной только для чтения, где располагают-
ся входные данные, и рабочей лентой, предназначенной для чтения
и записи, представляющей из себя рабочую память. Машины Тью-
ринга также различаются тем, решают ли они задачу распознава-
ния (desicion problem) или задачу преобразования входа в выход.
Машина Тьюринга-преобразователь преобразует входное слово в
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выходное, являющееся результатом её работы. Машина Тьюринга-
распознаватель выдает в качестве ответа «Да» или «Нет», в зависи-
мости от того, удовлетворяет ли вход заданным свойствам (принад-
лежит ли он заданному языку). Мы будем рассматривать машины-
распознаватели. Мерами сложности модели машины Тьюринга яв-
ляются время — число тактов работы машины, и память — число ис-
пользованных ячеек рабочей ленты. В данном разделе мы покажем,
как с помощью теории коммуникационных вычислений доказыва-
ется нижняя оценка для этих сложностных мер.

4.1.1 Определение машины Тьюринга

Определение 4.1 Детерминированная машина Тьюринга (МТ) —
это вычислительная модель, которую можно представить как

M = ⟨Σ, Q, δ, q0, qacc, qrej⟩,

где Σ— конечный входной алфавит, Q— конечное множество со-
стояний устройства управления, q0 — начальное состояние, qacc —
финальное принимающее состояние, qrej — финальное отвергающее
состояние, δ : Q× Γ× Γ → Q× Γ× {L, S,R}— функция перехода,
где Γ = Σ∪Λ, Λ— пустой символ, который содержат все пустые
ячейки ленты.

Машина M состоит из входной ленты, предназначенной только
для считывания, рабочей ленты, предназначенной для считывания
и записи, потенциально бесконечных в обе стороны и разбитых на
ячейки и устройства управления, которое в каждый момент време-
ни может находиться в одном из состояний множества Q. Машина
работает в дискретные моменты времени t = 0, 1, 2, . . . . В началь-
ный момент времени t = 0 на входной ленте записано входное слово
w, каждая ячейка содержит одну букву входного слова, остальные
ячейки пусты, читающая головка обозревает первую букву вход-
ного слова. Рабочая лента пуста. Машина начинает работу в на-
чальном состоянии q0. На каждом шаге работы в соответствии с
функцией перехода δ машина меняет свое состояние, меняет сим-
вол в текущей ячейке на рабочей ленте и сдвигается на входной и
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рабочей ленте на одну ячейку влево, вправо или остается на месте:

δ : Q× Σ× Γ → Q× Γ× {L,R, S} × {L,R, S}.

Когда машина переходит в состояние основа, работа машины пре-
кращается и машина соответственно принимает или отвергает слово
w в зависимости от того, является ли конечное состояние состояни-
ем qacc или qrej.

Число шагов, которая делает машина до момента останова,
определяет время обработки слова w. Количество ячеек рабочей
ленты, которое использует машина в процессе обработки, опреде-
ляет память, используемую при обработке слова w.

Определение 4.2 Будем говорить, что машина Тьюринга M при-
нимает язык L, если машина принимает все слова из L, а на сло-
вах не из L либо не останавливается, либо не принимает их.

Определение 4.3 Будем говорить, что машина Тьюринга M рас-
познает язык L, если машина принимает все слова из L и отвер-
гает все слова не из L.

Мы рассматриваем машины Тьюринга «распознаватели» (для
каждого входного слова машина останавливается через конечное
число шагов).

Определение 4.4 Если язык L распознается некоторой машиной
Тьюринга M , то L называется рекурсивным языком.

4.1.2 Меры сложности

Для заданной машины Тьюринга M определим функции timeM(w)
и spaceM(w), где timeM(w) : Σ∗ → N равна числу шагов машины
M на входе w и spaceM(w) : Σ∗ → N равна числу ячеек рабочей
ленты, которые использовались машиной M на входе w.

Нас интересует, как ведет себя сложность по времени и слож-
ность по памяти с ростом длины входа. Определим функции, зави-
сящие от параметра n ∈ N, являющимся длиной входа (n = |w|).
Обозначим их так же: time и space. При этом нас будет интересо-
вать асимптотическое поведение этих функций.
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Определение 4.5 Пусть M — машина Тьюринга. Временна́я слож-
ность определяется как timeM(n) : N → N, где

timeM(n) = max
w∈Σ∗

|w|=n

timeM(w).

Определение 4.6 Пусть M — машина Тьюринга. Пространствен-
ная сложность определяется как spaceM(n) : N → N, где

spaceM(n) = max
w∈Σ∗

|w|=n

spaceM(w).

Как правило, временная и пространственная сложность реше-
ния одной и той же задачи взаимосвязаны между собой. Часто при
существенном ограничении одного из ресурсов второй начинает рас-
ти: пытаясь уменьшить время работы нам придётся увеличить па-
мять (произвести предварительные расчеты, сохранить их и впо-
следствии использовать), пытаясь сократить память, придётся за-
платить за это увеличением времени работы (вместо хранения про-
межуточных результатов придётся их перевычислять). Ниже мы
продемонстрируем данный эффект на примере распознавания язы-
ка Палиндром.

4.1.3 Язык Палиндром

Язык Палиндром определяется следующим образом:

PALINDROM = {wwR : w ∈ {0, 1}∗},

где wR представляет из себя строку w, записанную в обратном по-
рядке: wR = wnwn−1 . . . w1 для w = w1w2 . . . wn.

Мы можем построить разные алгоритмы распознавания дан-
ного языка для модели машины Тьюринга, которые различаются
сложностными характеристиками: необходимым временем работы
и требуемой памятью.

Алгоритм 1.

1. Перепишем входное слово w на рабочую ленту.
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2. Установим читающую головку на входной ленте на первый сим-
вол входного слова w (слева), читающую/пишущую головку на
рабочей ленте — на последний символ слова w (справа).

3. Будем сравнивать текущий символ на входной ленте и текущий
символ на рабочей ленте. Если символы совпадают, передвинем
головки на входной ленте на одну ячейку вправо, на рабочей
ленте на одну ячейку влево.

4. Если на очередном шаге работы текущая пара символов не сов-
падает, машина переходит в состояние qrej и останавливает ра-
боту. Если головки доходят до конца слова — машина переходит
в состояние qacc и также останавливает работу.

5. Если слово w является палиндромом, все сравниваемые симво-
лы будут равны и машина примет такое слово. Если слово w —
не палиндром, обязательно найдутся два символа wi, wn−i+1 та-
кие, что wi ̸= wn−i+1, и машина отвергнет такое слово.

Оценим сложность машины M1, работающей по Алгоритму 1:

timeM1
(n) = O(n),

spaceM1
(n) = O(n).

Алгоритм 2.

1. Пусть n = |w|. На каждом этапе i работы алгоритма (i =
1, . . . , n) будем сравнивать i-ый символ слова w с соответству-
ющим ему символом wn−i+1.

2. Для этого будем хранить на рабочей ленте номер текущего сим-
вола i, увеличивая его на 1 после сравнения очередной пары.

3. При выполнении очередного сравнения машина устанавлива-
ется на левую границу слова w, сдвигается на i шагов, счи-
тая количество сделанных сдвигов, уменьшая счетчик на рабо-
чей ленте, запоминает i-ый символ входного слова при помощи
состояния, и сдвигается на правую границу слова. Затем про-
делывает аналогичные действия, сдвигаясь от правой границы
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слова влево на i шагов, считая количество сделанных сдвигов,
уменьшая счетчик на рабочей ленте, и затем сравнивает символ
wn+1−i с символом wi.

4. Если на очередном шаге работы текущая пара символов не сов-
падает, машина переходит в состояние qrej и останавливает ра-
боту. Если на очередном этапе сдвигов головки доходят до кон-
ца слова — машина переходит в состояние qacc и также останав-
ливает работу.

5. Если слово w является палиндромом, все сравниваемые симво-
лы будут равны и машина примет такое слово. Если слово w —
не палиндром, обязательно найдутся два символа wi, wn−i+1 та-
кие, что wi ̸= wn−i+1, и машина отвергнет такое слово.

Оценим сложность машины M2, работающей по Алгоритму 2:

timeM2
(n) = O(n2),

spaceM2
(n) = O(log n).

Как мы видим, Алгоритм 1 лучше по времени, а Алгоритм 2
лучше по памяти. Встает вопрос: можем ли мы построить алгоритм,
эффективный и по времени и по памяти, т.е. который имел бы вре-
менную сложность O(n) и пространственную сложность O(log n)?

Теорема 4.1 Пусть f : {0, 1}n → {0, 1}— произвольная функция и
пусть M — машина Тьюринга, которая принимает слова из мно-
жества

{x0ny : |x| = |y| = n, f (x, y) = 1}
и отвергает слова из множества

{x0ny : |x| = |y| = n, f (x, y) = 0}.

Тогда выполняется

timeM(n) · spaceM(n) = Ω(n · C(f )).

Доказательство: По машине M построим коммуникацион-
ный протокол Φ для вычисления функции f следующим образом.
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Алиса и Боб получают на вход x и y, соответственно. Алиса вы-
полняет вычисления согласно программе машины M до тех пор,
пока читающая готовка на входной ленте находится в зоне x0n. Как
только головка переходит в зону y Алиса передаёт управление Бо-
бу. Соответственно, Боб выполняет вычисления согласно программе
машины M до тех пор, пока читающая готовка на входной ленте
находится в зоне 0ny. Как только головка переходит в зону x Боб
передаёт управление Алисе. Когда машина M останавливается, то
участники выдают ответ 1, если финальное состояние qacc, и выдают
ответ 0, если финальное состояние qrej.

Оценим коммуникационную сложность полученного протокола
Φ. При передаче управления от Алисы к Бобу и наоборот, участник
передаёт другому описание текущей конфигурации машины, чтобы
тот смог продолжить вычисление. Описание текущей конфигура-
ции включает: текущее состояние управляющего устройства, пол-
ное описание рабочей ленты, положение головки на рабочей ленте,
что составляет не более c · spaceM(n) бит, где c— некоторая кон-
станта. Для того чтобы один участник передал управление друго-
му участнику, он должен преодолеть зону между x и y, состоящую
из n нулей. Следовательно, такая передача управления может про-
изойти не менее чем через n шагов после того, как участник на-
чал процесс вычисления. Поэтому количество передач управления
от одного участника к другому составит не более timeM(n)/n раз.
Сложность протокола оценивается как количество переданных бит
на раунде умноженное на количество раундов. Получаем, что

C(Φ) = c · spaceM(n) · timeM(n)/n.

Отсюда получаем

c · spaceM(n) · timeM(n)/n ≥ C(f ).

И следовательно

spaceM(n) · timeM(n) = Ω(n · C(f )).

2
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Следствие 1 Для любой машины Тьюринга M , распознающей язык
PALINDROM выполняется

spaceM(n) · timeM(n) = Ω(n2).

Доказательство: Пусть M — машина Тьюринга, распозна-
ющая язык PALINDROM . Рассмотрим множество входов S ⊂
{0, 1}∗ такое, что
S = {w = xyR : |x| = |y|, и 1/3 последних бит в x и y равна 0}.

Каждая строка из множества S представляется в виде x0n
′
yR, где

n′ = 2n/3 и x, y ∈ {0, 1}n′
, n ∈ N.

Проверка x0n
′
yR ∈ PALINDROM эквивалентна проверке,

верно ли, что EQ2n/3(x, y) = 1. Так как C(EQ2n/3) = Ω(n), то по
Теореме 4.1 выполняется spaceM(n) · timeM(n) = Ω(n2). 2

4.2 Схемы из функциональных элементов

Схемы из функциональных элементов (circuits в анлг. литерату-
ре) — это неоднородная вычислительная модель без памяти, кото-
рая предназначена для вычисления булевых функций или булевых
операторов.

4.2.1 Определение схемы из функциональных
элементов

Определение 4.7 Схема из функциональных элементов (далее —
СФЭ) — это ациклический ориентированный граф, вершины кото-
рого бывают трёх видов:

• вершины без входящих ребер (входные вершины);

• вершины без исходящих ребер (выходные вершины);

• внутренние вершины с входящими и выходящими рёбрами.
Каждая входная вершина помечена переменной из множества X =
{x1, . . . , xn}. Каждая внутренняя вершина (называется функцио-
нальным элементом) помечена булевой функцией g из используе-
мого базиса и имеет входную степень, соответствующее арности
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соответствующей функции g. Для определённости, далее будем
рассматривать схемы в базисе {∧,∨,¬}.

Схема C с n входными вершинами представляет вычисление
на входной строке длины n. При подаче на вход схемы значений 0
или 1, на выходе схемы генерируется выходное значение. Будем го-
ворить, что схема C вычисляет булеву функцию f : {0, 1}n → {0, 1}
(булев оператор F : {0, 1}n → {0, 1}m), если для любого σ ∈ {0, 1}n
результат, генерируемый на выходе (выходах) схемы, совпадает со
значением f (σ) (F (σ)).

4.2.2 Меры сложности

Определение 4.8 Глубиной Depth(C) схемы C будем называть
длину самого длинного пути от входной вершины до выходной.

Определение 4.9 Сложностью Size(C) схемы C будем называть
количество функциональных элементов (внутренних вершин) схе-
мы C.

Определим схемную сложность функции f :

Depth(f ) = min
схема C вычисляет функцию f

Depth(C)

Size(f ) = min
схема C вычисляет функцию f

Size(C)

4.2.3 Определение формулы

Формулы — это частный вид схем. Будем рассматривать формулы,
составленные из пропозициональных переменных с помощью свя-
зок ∧,∨,¬ (конъюнкция, дизъюнкция и отрицание). Каждую фор-
мулу можно описать в виде схемы определённого вида, где каждая
внутренняя вершина имеет выходную степень равную 1, операция
отрицания может применяться только к входным переменным.

Определение 4.10 Формулой над множеством переменных {x1,
. . . , xn} называется схема следующего вида:

• Граф, представляющий схему, является деревом.
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• Внутренние вершины помечены ∧ или ∨.

• Входные вершины помечены xi или ¬xi.

Минимальную глубину и сложность формулы, реализующей
функцию f , будем обозначать также Depth(f ) и Size(f ), соответ-
ственно. Минимальная сложность Size(f ) схемы, представляющей
формулу, соответствует (с точностью до умножения на некоторую
константу) числу символов в обычной записи булевой формулы,
Depth(f ) соответствует «глубине вложенности» скобок в стандарт-
ной линейной записи формулы.

4.2.4 Задача Карчмера-Вигдерсона

Для произвольной функции f : {0, 1}n → {0, 1} рассмотрим сле-
дующую коммуникационную задачу. Пусть Алисе дано слово x ∈
{0, 1}n такое что f (x) = 1, Бобу дано слово y ∈ {0, 1}n, такое что
f (y) = 0. Алиса и Боб должны найти номер i ∈ {1, . . . , n} такой,
что xi ̸= yi. Назовём эту задачу KWf . Поскольку f (x) ̸= f (y), то
существует по крайней мере один ответ для этой задачи. Отметим,
что для пар слов x, y, которые различаются в нескольких позициях,
корректными ответами могут быть несколько значений i; каждое из
них допускается в виде ответа.

Задача KWf интересна тем, что детерминированная коммуни-
кационная сложность решения этой задачи в точности равна мини-
мальной глубине схемы, вычисляющей функцию f .

Теорема 4.2 Для любой функции f : {0, 1}n → {0, 1} выполняется

C(KWf) = Depth(f ).

Доказательство: Докажем C(KWf) ≤ Depth(f ). Для этого
по схеме C, вычисляющая функцию f , построим коммуникацион-
ный протокол с коммуникационной сложностью Depth(C).

Предположим, для определённости, что Алисе дан набор би-
тов x = (x1, . . . , xn), для которого f (x) = 1, а Бобу — набор битов
y = (y1, . . . , yn), для которого f (y) = 0. И у Алисы и у Боба есть
схема, в соответствии с которой они строят протокол. Коммуни-
кационный протокол будет работать следующим образом. Алиса и
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Боб двигаются по дереву формулы, начиная с корня по направле-
нию к листьям вдоль пути, на котором функциональные элементы
для входов Алисы и Боба выдают разные значения.

На первом шаге Алиса и Боб находятся в корневой вершине де-
рева, на вход которой подаются выходы двух поддеревьев. По усло-
вию задачи на выходе генерируются разные значения: 1 у Алисы и
0 у Боба. Предположим для определённости, что корневой элемент
помечен операцией ∨. Тогда для входного набора x хотя бы на один
из входов этого элемента должно подаваться значение 1, а на вхо-
де y на оба входа корневого элемента подаются значения 0. Входы
корневого элемента являются выходами поддеревьев T1 и T2. Зна-
чит для входа x выход по крайней мере одного из этих поддеревьев
должен возвращать значение 1, а на входе y оба поддерева должны
возвращать значение 0. Алиса выбирает одно из двух поддеревьев
(T0 или T1), на выходе которого для входа x генерируется значение
1 и отправляет номер выбранного поддерева (0 или 1) Бобу. Далее
игроки рекурсивно применяют данную стратегию для выбранного
поддерева, на выходе которого значения для входов Алисы и Боба
различаются. Если же корневая вершина помечена операцией ∧, то
для входа x оба поддерева T1 и T2 должны генерировать значение 1,
а для входа y по крайней мере одно из этих двух поддеревьев долж-
но генерировать значение 0. В этом случае Боб выбирает поддерево,
на выходе которого генерируется значение 0, и также отправляет
Алисе номер выбранного поддерева, после чего игроки продолжают
вычисление для данного поддерева. Когда Алиса и Боб попадают
в лист дерева, они тем самым узнают литерал, для которого значе-
ния наборе x и в наборе y различны, что и требовалось. Ясно, что
коммуникационная сложность построенного протокола совпадает с
глубиной формулы. Следовательно C(KWf) ≤ Depth(f ).

Докажем, что C(KWf) ≥ Depth(f ). Пусть Φ— оптимальный
протокол, вычисляющий KWf , то есть протокол, который для лю-
бых x, y, являющихся входами Алисы и Боба, соответственно, та-
ких, что f (x) ̸= f (y), выдает i такое, что xi ̸= yi. Преобразуем Φ в
дерево-формулу. Будем строить дерево, начиная с корня. Каждую
вершину, в которой Алиса передает Бобу бит, пометим операцией ∨,
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а каждую вершину, в которой Боб передает бит Алисе, пометим опе-
рацией ∧. Каждый лист дерева пометим индексом ∈ {1, . . . , n}, яв-
ляющимся результатом протокола. Рассмотрим множество входов
S×T ⊆ f−1(0)× f−1(1) таких, для которых протокол Φ приводит в
одну и ту же листовую вершину дерева, помеченную i ∈ {1, . . . , n}.
Тогда выполняется один из следующих пунктов:

1. либо xi = 1 ∀x ∈ S и yi = 0 ∀y ∈ T ,

2. либо xi = 0 ∀x ∈ S и yi = 1 ∀y ∈ T .

Действительно, предположим, это не так, и существует две пары
(x, y), (x′, y′) ∈ S × T такие, что xi = 1, yi = 0 и x′

i = 0, y′i = 1.
Из этого следует, что (x, y′) и (x′, y) также принадлежат S × T .
Следовательно, протокол на этих входах также выдает ответ i, что
противоречит тому, что протокол правильно вычисляет KWf . По-
метим эту листовую вершину литералом zi, если она соответствует
случаю 1, и литералом ¬zi, если она соответствует случаю 2.

Глубина построенной формулы в точности равна C(KWf). Оста-
лось показать, что построенная формула вычисляет функцию f.

Лемма 4.1 Для каждой внутренней вершины v построенной фор-
мулы, функция f ′, соответствующая этой вершине, удовлетворя-
ет свойству: f ′(x) = 1, для всех x ∈ A, и f ′(y) = 0, для всех y ∈ B,
где A×B — множество входов, на которых достижима вершина
v в дереве протокола.

Доказательство: Проведем доказательство индукцией по
глубине d формулы.

База индукции: Формула глубины d = 0 состоит только из
литерала. Очевидно, что в этом случае условие леммы выполняется.

Индукционный шаг: Пусть вершина v является выходом фор-
мулы глубины d, вычисляющей функцию f ′. На вход вершины v
подаются выходы вершин v0 и v1, являющихся выходами формул
глубины не более d − 1, вычисляющих функции f ′

0 и f ′
1, соответ-

ственно. Пусть A × B — множество входов, на которых достижи-
ма вершина v. Предположим, что в вершине v Алиса передает бит
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Бобу, и, следовательно, вершина v помечена операцией ∨. В зави-
симости от значения передаваемого бита множество A разбивается
на две части A0 и A1 таким образом, что на входах A0 × B дости-
жима вершина v0, а на входах A1 × B достижима вершина v1. По
предположению индукции, ∀y ∈ B выполняется f ′

0(y) = f ′
1(y) = 0,

и ∀x ∈ A0 выполняется f0(x) = 0 и ∀x ∈ A1 выполняется f ′
1(x) = 1.

Так как f ′ = f ′
0 ∨ f ′

1, то ∀y ∈ B выполняется f ′(y) = 0 и ∀x ∈ A
выполняется f ′(x) = 1. Случай, если в вершине v Боб передает бит
Алисе, и, следовательно, вершина v помечена операцией ∧, рассмат-
ривается аналогично. 2

Из доказанной леммы следует, что на выходе формулы вычис-
ляется функция f , так как на выходе генерируется значение 1 для
всех x ∈ f−1(1) и генерируется значение 0 для всех y ∈ f−1(0). 2

4.3 Конечные автоматы

Конечные автоматы — вычислительная модель с конечной памятью.
Автомат-преобразователь преобразует входное слово в выходное,
автомат-распознаватель для входного слова выдает ответ «Да» или
«Нет» в зависимости от того, удовлетворяет ли вход заданному пра-
вилу. Кроме классической модели одностороннего конечного авто-
мата также рассматриваются и другие ее разновидности: двусто-
ронние конечные автоматы, многоголовочные конечные автоматы
и т.д. Мы будем рассматривать наиболее простую модель — одно-
сторонние конечные автоматы-распознаватели.

Определение 4.11 Конечный односторонний детерминированный
автомат A (автомат без выхода) — это пятерка

A = ⟨Σ, Q, δ, q0, Accept⟩,

где Σ— конечный входной алфавит, Q— конечное множество со-
стояний, δ : Q× Σ → Q— функция переходов, q0 ∈ Q— начальное
состояние, Accept ⊆ Q— множество принимающих состояний.
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Функция δ естественным образом доопределяется на множе-
стве Q × Σ∗. Автомат A распознает язык L ⊆ Σ∗, если δ(q0, σ) ∈
Accept для любого σ ∈ L, и δ(q0, σ

′) ̸∈ Accept для любого σ′ ̸∈ L.
Сложностью Size(A) конечного автомата A называется число

его состояний.
Покажем, как c помощью теории коммуникационных вычисле-

ний можно доказывать нижние оценки сложности конечных авто-
матов, распознающих заданный язык L. Для простоты будем рас-
сматривать двоичный входной алфавит Σ = {0, 1}.

Лемма 4.2 Пусть L ⊆ {0, 1}∗ — язык. Пусть f : {0, 1}2n → {0, 1}
такая, что f (x, y) = 1 ⇔ xy ∈ L. Тогда для любого автомата A,
распознающего язык L выполняется

logSize(A) ≥ C(f ).

Доказательство: Пусть A— автомат с наименьшим числом
состояний, распознающий L. По автомату A построим коммуника-
ционный протокол Φ. На входе xy, где x, y ∈ {0, 1}n Алиса моде-
лирует работу автомата на части x входа, Боб — на части y. При
переходе читающей головки с зоны x на зону y Алиса передает
Бобу текущее состояние q автомата, чтобы он мог продолжить об-
работку. Совместно, Алиса и Боб, моделируют работу автомата на
входе xy. По построению, если xy ∈ L, то f (x, y) = 1, если xy /∈ L,
то f (x, y) = 0. Сложность построенного протокола C(Φ) = log |Q|.
Следовательно, C(f ) ≤ logSize(A). 2
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