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Abstract—Let a von Neumann algebra M of operators act on a Hilbert space H, I be the unit of
M, τ be a faithful semifinite normal trace on M. Let S(M, τ) be the ∗-algebra of all τ-measurable
operators and L1(M, τ) be the Banach space of all τ-integrable operators, P,Q ∈ S(M, τ) be
idempotents. If P −Q ∈ L1(M, τ) then τ(P −Q) ∈ R. In particular, if A = A3 ∈ L1(M, τ),
then τ(A) ∈ R. If P −Q ∈ L1(M, τ) and PQ ∈ M, then for all n ∈ N we have (P −Q)2n+1 ∈
L1(M, τ) and τ((P −Q)2n+1) = τ(P −Q) ∈ R. If A ∈ L2(M, τ) and U ∈ M is an isometry, then
||UA−A||22 ≤ 2||(I − U)AA∗||1.
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1. INTRODUCTION

Let P and Q be idempotents on a Hilbert space H. If X = P −Q is a trace-class operator, then the
traces of all odd powers of X coincide:

tr(P −Q) = tr((P −Q)2n+1) = dim ker(X − I)− dim ker(X + I) ∈ Z, (1)

where I is the identity operator on H. If X is a compact operator, then the right-hand side of (1) yields
a natural “regularization” for the trace and shows that it is always an integer [1, 2]. In [3, Theorem 3]
we established a C∗ analogue of this statement: let ϕ be a trace on a unital C∗-algebra A, let Mϕ be the
definition ideal of the trace ϕ and consider tripotents P,Q ∈ A. If P −Q ∈ Mϕ, then ϕ(P −Q) ∈ R.

Pairs of idempotents play an important role in the quantum Hall effect [4]. For idempotents P,Q, and
R with the trace-class operators P −Q and Q−R, from the equality tr(P −Q) = tr(P −R) + tr(R−
Q) and (1), we obtain

tr
(
(P −Q)3

)
= tr

(
(P −R)3

)
+ tr

(
(R−Q)3

)
. (2)

The physical meaning of the additivity in Eq. (2) comes from the interpretation of tr((P −Q)3) as the
Hall conductance. The additivity (cubic) Eq. (2) can be considered as a variant of the Ohm’s law for
the additivity of conductivity [5]. In [6, Theorem 1] we established a C∗ analogue of the quantum Hall
effect and proved the reality of trace of differerces of wide class of symmetries from a unital C∗-algebra
(see Corollaries 2 and 3 in [6]).

We generalize these results to unbounded idempotents, tripotents, and symmetries, affiliated to a von
Neumann algebra (examples of such operators see in [7]). Let a von Neumann algebra M of operators
act on a Hilbert space H, let τ be a faithful normal semifinite trace on M. Let S(M, τ) be the ∗-
algebra of all τ-measurable operators, S(M, τ)id = {A ∈ S(M, τ) : A = A2}, and let L1(M, τ) be
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the Banach space of all τ-integrable operators. This paper continues the investigations of properties
of τ-measurable operators, started in [7] and is an English translation of the Russian-language paper
[8]. We obtain the following results: If P,Q ∈ S(M, τ)id and P −Q ∈ L1(M, τ), then τ(P −Q) ∈ R

(Theorem 1). If A = A3 ∈ L1(M, τ), then τ(A) ∈ R (Corollary 1). Let A,B ∈ S(M, τ) be tripotents.
If A−B ∈ L1(M, τ) and A+B ∈ M, then τ(A−B) ∈ R (Corollary 2). Let U, V ∈ S(M, τ) be
symmetries (U2 = I). If U − V ∈ L1(M, τ), then τ(U − V ) ∈ R (Corollary 4). Let P,Q ∈ S(M, τ)id

with P −Q ∈ L1(M, τ) and PQ ∈ M. Then, for all n ∈ N we have (P −Q)2n+1 ∈ L1(M, τ) and
τ((P −Q)2n+1) = τ(P −Q) ∈ R (Theorem 2). If P,Q,R ∈ S(M, τ)id with P −Q,Q−R ∈ L1(M, τ)
and operators PQ,QR,PR lie in M, then τ((P −R)2n+1) = τ((P −Q)2n+1) + τ((Q−R)2n+1) for
all n ∈ N (Corollary 6). If A = A2 ∈ L2(M, τ) and Re(A) ≥ sA∗A− (s− 1)AA∗ for some s ∈ R,
then A is a projection (Corollary 9). If A ∈ L2(M, τ) and U ∈ M is a isometry, then ||UA−A||22 ≤
2||(I − U)AA∗||1 (Theorem 5).

2. NOTATION AND DEFINITIONS

Let a von Neumann algebra M of operators act on a Hilbert space H, I be the unit of M, let Mpr

be the lattice of projections (P = P 2 = P ∗) in M and P⊥ = I − P for P ∈ Mpr, let M+ be the cone
of all positive operators in M. An operator U ∈ M is called an isometry, if U∗U = I; unitary, if
U∗U = UU∗ = I.

A mapping ϕ : M+ → [0,+∞] is called a trace, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for
all X,Y ∈ M+, λ ≥ 0 (moreover, 0 · (+∞) ≡ 0); ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace ϕ is called
(see [9, Chap. V, § 2])

• faithful, if ϕ(X) > 0 for all X ∈ M+, X 	= 0;
• normal, if Xi ↑ X(Xi,X ∈ M+) ⇒ ϕ(X) = supϕ(Xi);
• semifinite, if ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for every X ∈ M+.
An operator on H (not necessarily bounded or densely defined) is said to be affiliated to the von

Neumann algebra M if it commutes with any unitary operator from the commutant M′ of the algebra
M. Let τ be a faithful normal semifinite trace on M. A closed operator X, affiliated to M and possesing
a domain D(X) everywhere dense in H is said to be τ-measurable if, for any ε > 0, there exists a
projection P ∈ Mpr such that PH ⊂ D(X) and τ(P⊥) < ε. The set S(M, τ) of all τ-measurable
operators is a ∗-algebra under passage to the adjoint operator, multiplication by a scalar, and operations
of strong addition and multiplication resulting from the closure of the ordinary operations [10, Chap. IX].

Let L+ and Lh denote the positive and Hermitian parts of a family L ⊂ S(M, τ), respectively. We
denote by ≤ the partial order in S(M, τ)h generated by its proper cone S(M, τ)+. If X ∈ S(M, τ) and
X = U |X| is the polar decomposition of X, then U ∈ M and |X| =

√
X∗X ∈ S(M, τ)+.

An operator A ∈ S(M, τ) is called an idempotent, if A2 = A; a tripotent, if A3 = A; a symmetry,
if A2 = I . Denote by [A,B] = AB −BA the commutator of operators A,B ∈ S(M, τ).

The generalized singular value function μ(·;X) : t → μ(t;X) of the operator X is defined by setting

μ(t;X) = inf{||XP || : P ∈ Mpr and τ(P⊥) ≤ t}, t > 0.

It is a non-increasing right-continuous function, and if A ∈ S(M, τ)id, then μ(t;A) ∈ {0} ∪ [1,+∞)
for all t > 0 [11, Theorem 3.3].

Let m be the linear Lebesgue measure on R. Noncommutative Lebesgue Lp-space (0 < p < ∞),
assosiated with (M, τ), may be defined as

Lp(M, τ) = {X ∈ S(M, τ) : μ(·;X) ∈ Lp(R
+,m)}

with the F-norm (norm for 1 ≤ p < ∞) ||X||p = ||μ(·;X)||p , X ∈ Lp(M, τ). The extension of τ to the
unique linear functional on the whole space L1(M, τ) we denote by the same letter τ . A linear subspace
E ⊂ S(M, τ) is called an ideal space on (M, τ), if

1. X ∈ E ⇒ X∗ ∈ E ;
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2. X ∈ E , Y ∈ S(M, τ) and |Y | ≤ |X| ⇒ Y ∈ E .

Such are, for example, the algebra M, the collection of all elementary operators F(M, τ) and
Lp(M, τ) for 0 < p < ∞. For every ideal space E on (M, τ) we have MEM ⊂ E [12, Lemma 5]. An
ideal space E on (M, τ), equipped with an F-norm || · ||E , is called anF -normed ideal space on (M, τ),
if

1. ||X||E = ||X∗||E for all X ∈ E ;

2. X,Y ∈ E and |Y | ≤ |X| ⇒ ||Y ||E ≤ ||X||E (see [13, 14]).

If M = B(H), the ∗-algebra of all bounded linear operators on H, and τ = tr is the canonical trace,
then S(M, τ) coincides with B(H), the space Lp(M, τ) coincides with the Shatten–von Neumann ∗-
ideal Sp(H) of compact operators in B(H) and

μ(t;X) =

∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of the operator X; χA is the indicator function of the
set A ⊂ R.

If M is Abelian (i.e., commutative), then M � L∞(Ω,Σ, ν) and τ(f) =
∫
Ω fd ν, where (Ω,Σ, ν) is

a localized measure space, the ∗-algebra S(M, τ) coincides with the algebra of all complex measurable
functions f on (Ω,Σ, ν), bounded everywhere but for a set of finite measure. The function μ(t; f) coin-
cides with the nonincreasing rearrangement of the function |f |; see properties of such rearrangements
in [15].

3. DIFFERENCES OF UNBOUNDED IDEMPOTENTS AND A TRACE

Lemma 1 ([10], Chap. IX, Theorem 2.13). If A ∈ M andB ∈ L1(M, τ), then AB,BA ∈ L1(M, τ).
Lemma 2 [16]. If A,B ∈ S(M, τ) and AB,BA ∈ L1(M, τ), then τ(AB) = τ(BA).
Lemma 3 ([17], Theorem 2.23). For every P = P 2 ∈ S(M, τ) there exists the unique represen-

tation P = P̃ + Z, where P̃ ∈ Mpr and a nilpotent Z belongs to S(M, τ) with Z2 = 0, moreover,
ZP̃ = 0, P̃Z = Z.

Theorem 1. If P,Q ∈ S(M, τ)id and P −Q ∈ L1(M, τ), then τ(P −Q) ∈ R.

Proof. Let P = P̃ + Z, Q = Q̃+ T be representations of Lemma 3 for P,Q ∈ S(M, τ)id. By
Lemma 1, we have

P̃ − Q̃P̃ = (P −Q)P̃ − Q̃(P −Q)P̃ ∈ L1(M, τ).

It can be analogously be verified that Q̃− P̃ Q̃ ∈ L1(M, τ). Therefore,

P̃ − Q̃ = P̃ − Q̃P̃ − (Q̃− P̃ Q̃)∗ ∈ L1(M, τ)

and Z − T = P −Q− (P̃ − Q̃) ∈ L1(M, τ). According Lemma 1 operators

T P̃ = (T − Z)P̃ , ZQ̃ = (Z − T )Q̃, Z − P̃ T = P̃ (Z − T ), Q̃Z − T = Q̃(Z − T )

lie in L1(M, τ), hence, Q̃Z − P̃ T = Z − P̃ T + (Q̃Z − T )− (Z − T ) ∈ L1(M, τ). Therefore,

P̃ T − T = Q̃Z − T − (Q̃Z − P̃ T ) ∈ L1(M, τ).

By Lemmas 1 and 2, we have 0 = τ([Z − T, Q̃]) = τ(ZQ̃− Q̃Z + T ). Since the operators

(P̃ − Q̃)T = P̃ T − T, T (P̃ − Q̃) = T P̃

lie in L1(M, τ), by Lemma 2, with A = P̃ − Q̃, B = T we obtain

τ(P̃ T − T ) = τ(T P̃ ). (3)
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Since 0 = τ([Z − T, P̃ ]) = τ(−T P̃ − Z + P̃ T ), from (3) we have

0 = τ(−T + P̃ T − T P̃ ) = τ(Z − T + (−Z + P̃ T − T P̃ ))

= τ(Z − T ) + τ(−Z + P̃ T − T P̃ ) = τ(Z − T ).

Thus, τ(P −Q) = τ(P̃ − Q̃) + τ(Z − T ) = τ(P̃ − Q̃) ∈ R, since the operator P̃ − Q̃ is selfadjoint. �

Corollary 1. If A = A3 ∈ L1(M, τ), then τ(A) ∈ R.

Proof. Every tripotent (A = A3) from an arbitrary algebra is the difference of two idempotents from
this algebra [18, Proposition 1]. �

Note that Corollary 1 simultaneously reinforces both Corollary 2.31 from [17] (here we get rid of
superfluous condition A−A2 ∈ M) and Corollary 3.13 from [7] (here we get rid of superfluous condition
A2 ∈ L1(M, τ)).

Corollary 2. Assume that A,B ∈ S(M, τ) are tripotents. If A−B ∈ L1(M, τ) and A+B ∈ M,
then τ(A−B) ∈ R.

Proof. Let A = P1 −Q1, B = P2 −Q2 be the representations from [18, Proposition 1], i.e. Pk, Qk ∈
S(M, τ)id and PkQk = QkPk = 0 for k = 1, 2. It seems clear that the operators A2 = P1 +Q1 and
B2 = P2 +Q2 lie in S(M, τ)id. Since the operator A−B = P1 −Q1 − P2 +Q2 lies in L1(M, τ), by
Lemma 1, the operator

A2 −B2 =
1

2
((A+B)(A−B) + (A−B)(A+B)) = P1 +Q1 − P2 −Q2

also lies in L1(M, τ). Then, the operators

P1 − P2 =
1

2
(A−B +A2 −B2), Q2 −Q1 =

1

2
(A−B − (A2 −B2))

belong to L1(M, τ) and τ(P1 − P2), τ(Q2 −Q1) ∈ R according to Theorem 1. Thus,

τ(A−B) = τ(P1 −Q1 − P2 +Q2) = τ(P1 − P2) + τ(Q2 −Q1) ∈ R

and the assertion is proved. �

Corollary 3. Let P ∈ S(M, τ)id and P = P̃ + Z be representation of Lemma 3. We have the
equivalence

P ∈ L1(M, τ) ⇐⇒ P̃ , Z ∈ L1(M, τ),

and in this case τ(P ) = τ(P̃ ) = τ(
√

|P ||P ∗|
√

|P |) = τ(P ∗) ∈ R
+.

Proof. If P ∈ L1(M, τ), then PP̃ = P̃ ∈ L1(M, τ), by Lemma 1, and the operator Z = P − P̃

lies in L1(M, τ). From Theorem 1 for Q = 0, we obtain τ(P ) = τ(P̃ ); hence, τ(Z) = τ(P − P̃ ) = 0.
We have P = |P ∗| |P | [7, Theorem 3.3] and τ(P ) = τ(

√
|P ||P ∗|

√
|P |) [7, Corollary 3.4]. In particular,

τ(P ∗) = τ(P ) = τ(P̃ ) = τ(P ) ∈ R
+. �

Corollary 4. Let U, V ∈ S(M, τ) be symmetries. If U − V ∈ L1(M, τ), then τ(U − V ) ∈ R.

Proof. The formula U = 2P − I (P ∈ S(M, τ)id) establishes a bijection between S(M, τ)id and the
set of all symmetries from S(M, τ). �

Corollary 5. Let τ(I) < +∞ and P,Q ∈ S(M, τ)id. If P +Q ∈ L1(M, τ), then τ(P +Q) =

τ(P̃ ) + τ
((

Q̃⊥
)⊥)

= τ(P̃ ) + τ(Q̃) ∈ R
+.

Proof. Since P +Q− I = P −Q⊥ ∈ L1(M, τ), by Theorem 1, we have

τ(P +Q) = τ(P +Q− I) + τ(I) = τ(P −Q⊥) + τ(I)

= τ
(
P̃ − Q̃⊥

)
+ τ(I) = τ(P̃ ) + τ

(
I − Q̃⊥

)
= τ(P̃ ) + τ

((
Q̃⊥

)⊥)
∈ R

+.
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On the other hand, P̃ + Q̃ ∈ L1(M, τ), so, Z + T = P +Q− (P̃ + Q̃) ∈ L1(M, τ). Then, the
operators

T P̃ = (Z + T )P̃ , ZQ̃ = (Z + T )Q̃, Z + P̃ T = P̃ (Z + T ), T + Q̃Z = Q̃(Z + T )

lie in L1(M, τ). Therefore,

Q̃Z + P̃ T = (Z + P̃ T ) + (Q̃Z + T )− (Z + T ) ∈ L1(M, τ)

and P̃ T − T = (Q̃Z + P̃ T )− (Q̃Z + T ) ∈ L1(M, τ). Since (P̃ − Q̃)T = P̃ T − T ∈ L1(M, τ) and
T (P̃ − Q̃) = T P̃ ∈ L1(M, τ), equation (3) holds true via Lemma 2 with A = P̃ − Q̃, B = T . Hence,

τ(Z + P̃ T ) = τ(P̃ (Z + T )) = τ((Z + T )P̃ ) = τ(T P̃ ) = τ(P̃ T − T )

according to Lemma 2 with A = P̃ , B = Z + T and τ(Z + P̃ T − (P̃ T − T )) = τ(Z + T ) = 0. Thus,

τ(P +Q) = τ(P̃ ) + τ(Q̃) and τ
((

Q̃⊥
)⊥)

= τ(Q̃). �

Example 1. Let τ(I) < +∞ and an idempotent P ∈ S(M, τ)id be represented as the sum P =

P̃ +Z by Lemma 3. Since P̃ ∈ L1(M, τ), we have P ∈ L1(M, τ) ⇔ Z ∈ L1(M, τ). Examples of such
unbounded idempotents are [7, Example 3.2] and [17, Example 2.4]. Let Z /∈ L1(M, τ) and Q = P⊥.
Then, P +Q = I ∈ L1(M, τ), but {P,Q}

⋂
L1(M, τ) = ∅ (cf. with item (ii) of Lemma 3 from [19]).

Theorem 2. Let P,Q ∈ S(M, τ)id with P −Q ∈ L1(M, τ) and PQ ∈ M. Then, for all n ∈ N we
have (P −Q)2n+1 ∈ L1(M, τ) and τ((P −Q)2n+1) = τ(P −Q) ∈ R.

Proof. We may easily verify by induction that

(P −Q)2n+1 = P −Q+ λ1(PQP −QPQ) + · · ·+ λn(PQP · · ·QP︸ ︷︷ ︸
2n+1

−QPQ · · ·PQ︸ ︷︷ ︸
2n+1

)

with some λk ∈ Z, k = 1, 2, . . . , n, see step 1 of the proof of Theorem 1 from [6]. By Lemma 1, the
operators PQP −QPQ = PQ(P −Q) + (P −Q)PQ and PQ−QPQ = (P −Q)PQ lie in L1(M, τ).
Since τ([P −Q,PQ]) = 0, see Lemma 2, we have

τ(PQP −QPQ) = τ(PQP −QPQ+ [P −Q,PQ]) = τ(PQ−OPQ). (4)

For operators A = PQ, B = P −QP we have AB = 0 ∈ L1(M, τ) and BA = PQ−OPQ ∈
L1(M, τ). Therefore, 0 = τ(0) = τ(AB) = τ(BA) via Lemma 2. Thus, from (4) we obtain τ(PQP −
QPQ) = 0. Now, we apply the mathematical induction. Consider a number n ≥ 2 and an operator

X := PQP · · ·QP︸ ︷︷ ︸
2n−1

−QPQ · · ·PQ︸ ︷︷ ︸
2n−1

∈ L1(M, τ)

with τ(X) = 0. Then, the operators

PQP · · ·QP︸ ︷︷ ︸
2n+1

−PQP · · ·PQ︸ ︷︷ ︸
2n

= PQ ·X, Y := PQP · · ·QP︸ ︷︷ ︸
2n+1

−QPQ · · ·PQ︸ ︷︷ ︸
2n+1

= PQ ·X +X · PQ

lie in L1(M, τ) according to Lemma 1. For the operators

A1 := PQ, B1 := PQP · · ·QP︸ ︷︷ ︸
2n−1

−QPQ · · ·QP︸ ︷︷ ︸
2n

we have A1B1 = 0 ∈ L1(M, τ) and

B1A1 = PQP · · ·PQ︸ ︷︷ ︸
2n

−QPQ · · ·PQ︸ ︷︷ ︸
2n+1

= X · PQ ∈ L1(M, τ).

Therefore, τ(B1A1) = τ(A1B1) = τ(0) = 0 by Lemma 2. Thus,

τ(Y ) = τ(Y +B1A1) = τ(PQP · · ·QP︸ ︷︷ ︸
2n+1

−PQP · · ·PQ︸ ︷︷ ︸
2n

).
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Since (PQ)n ∈ M and P −Q ∈ L1(M, τ), the operator

Z := [(PQ)n, P −Q] = PQP · · ·QP︸ ︷︷ ︸
2n+1

−2 PQP · · ·PQ︸ ︷︷ ︸
2n

+QPQ · · ·PQ︸ ︷︷ ︸
2n+1

belongs to L1(M, τ). Hence, τ(Z) = 0 via Lemma 2 with A2 = (PQ)n and B2 = P −Q. Since
0 = τ(Z) = τ(Y −B1A1) and τ(B1A1) = 0, we have τ(Y ) = 0. Now τ((P −O)2n+1) = τ(P −O) ∈ R

by Theorem 1. �

Corollary 6. If P,Q,R ∈ S(M, τ)id with P −Q,Q−R ∈ L1(M, τ) and operators PQ,QR,
PR ∈ M, then τ

(
(P −R)2n+1

)
= τ

(
(P −Q)2n+1

)
+ τ

(
(Q−R)2n+1

)
for all n ∈ N.

Corollary 7. Let U, V,W ∈ S(M, τ) be symmetries with U − V, V −W ∈ L1(M, τ) and opera-
tors UV + U + V,UW + U +W,VW + V +W ∈ M. Then,

τ
(
(U −W )2n+1

)
= τ

(
(U − V )2n+1

)
+ τ

(
(V −W )2n+1

)

for all n ∈ N.

Proof. Let U = 2P − I, V = 2Q− I and W = 2R− I with P,Q,R ∈ S(M, τ)id. Then, U −W =
2(P −R) and, according to Corollary 6 for every n ∈ N, we have

τ((U −W )2n+1) = 22n+1τ
(
(P −R)2n+1

)
= 22n+1

(
τ

(
(P −Q)2n+1

)
+ τ

(
(Q−R)2n+1

))

= τ
(
(U − V )2n+1

)
+ τ

(
(V −W )2n+1

)
.

�

Theorem 3. Let an operator P ∈ S(M, τ)id. Then,
(i) |P | = |P |P = P ∗|P |;
(ii) if P ∗ = P̃ + Z is the representation of Lemma 3, then |P | ≥ P̃ and |P | ≥ |Z∗|.
Proof. (i) Let P = U |P | be the polar decomposition of the operator P . Then, P ∗ = U∗|P ∗| is the

polar decomposition of the operator P ∗ and U∗U |P | = |P |. Since P = |P ∗| |P | [7, Theorem 3.3], left
multiplying both parts of the equality U |P | = |P ∗| |P | by the operator U∗, allows us to conclude that
|P | = P ∗|P |. Passing to adjoint operators, we obtain |P | = (P ∗|P |)∗ = |P |P .

(ii) We have 0 = ZP̃ = (ZP̃ )∗ = P̃Z∗ and |P | =
√

(P̃ + Z)(P̃ + Z)∗ =
√

P̃ + ZZ∗. Since

P̃ , ZZ∗ ∈ S(M, τ)+, by the operator monotonocity of the function f(t) =
√
t (t ≥ 0) [20, Chap. 1,

Proposition 4.4], we obtain
√

P̃ + ZZ∗ ≥
√

P̃ = P̃ and
√

P̃ + ZZ∗ ≥
√
ZZ∗ = |Z∗|.

�

Corollary 8. Let 〈E , || · ||E 〉 be an F -normed ideal space on (M, τ) and P = P 2 ∈ E , P = P̃ + Z

be the representation of Lemma 3. Then, P̃ , Z ∈ E and

||P̃ ||E + ||Z||E ≥ ||P ||E = ||P ∗||E ≥ max{||P̃ ||E , ||Z||E}.

Proof. Let P ∗ = P̃ +Z be the representation of Lemma 3. By item (ii) of Theorem 3, we have P̃ , Z ∈
E . By properties of the F-norm || · ||E , we obtain ||P ∗||E = ||P ||E = |||P |||E ≥ ||P̃ ||E and ||P ∗||E =
||P ||E = |||P |||E ≥ |||Z∗|||E = ||Z∗||E = ||Z||E . The rest is clear. �

Theorem 4. Let an operator A ∈ L2(M, τ) and A2 +A2∗ ≥ tA∗A− (t− 2)AA∗ for some t ∈ R.
Then, A = A∗.

Proof. We have τ(A∗A−AA∗) = ||A||22 − ||A∗||22 = 0 and

0 ≤ ||A−A∗||22 = τ((A∗ −A)(A−A∗)) = τ
(
A∗A−A∗2 −A2 +AA∗)

≤ (1− t)τ(A∗A−AA∗) = 0.

Hence, A = A∗ by faithfulness of the norm || · ||2. �

Corollary 9. If an operator A = A2 ∈ L2(M, τ) and Re(A) ≥ sA∗A− (s− 1)AA∗ for some
s ∈ R, then A ∈ Mpr.
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Theorem 5. Let an operator A ∈ L2(M, τ) and U ∈ M be an isometry. Then, ||UA−A||22 ≤
2||(I − U)AA∗||1. In particular, if A = A∗, then ||UA−A||22 ≤ 2||UA2 −A2||1.

Proof. We have

||UA−A||22 = τ((UA−A)∗(UA−A)) = τ(A∗A−A∗U∗A−A∗UA+A∗A)

= τ(A∗(I − U∗)A+A∗(I − U)A) = 2τ(Re(A∗(I − U)A)) = 2τ(A∗(I − Re(U))A)

≤ 2|τ(A∗(I − Re(U))A) − iτ(A∗(Im(U))A)|
= 2|τ(A∗(I − U)A)| = 2|τ((I − U)AA∗)| ≤ 2τ(|(I − U)AA∗|) = 2||(I − U)AA∗||1,

according to Lemma 2 with the operators A∗ and (I − U)A and the inequality |τ(X)| ≤ τ(|X|) for all
X ∈ L1(M, τ), see [21, p. 1463]. �

For the algebra M = B(H), endowed with the trace τ = tr, an operator A ≥ 0 and a unitary U
Theorem 5 was established in [22, Lemma 1].
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