КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭКОЛОГИИ И ПРИРОДОПОЛЬЗОВАНИЯ

Кафедра почвоведения

Л.Ю. РЫЖИХ, А.И. ЛИПАТНИКОВ

РАСЧЕТЫ ДОЗ ПРИМЕНЕНИЯ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И СИДЕРАТОВ В СЕВООБОРОТАХ: УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ Принято на заседании учебно-методической комиссии Института экологии и природопользования Протокол № 2 от 2 апреля 2024 года

Рецензенты:

кандидат биологических наук, доцент кафедры почвоведения КФУ К.Г. Гиниятуллин кандидат биологических наук, доцент кафедры почвоведения КФУ Р.В. Окунев

Рыжих Л.Ю., Липатников А.И. Расчеты доз применения минеральных удобрений и сидератов в севооборотах: учебно-методическое пособие / Л.Ю. Рыжих, А.И. Липатников. — Казань: Казан. ун-т, 2024. - 24 с.

Учебно-методическое пособие содержит информацию о применении минеральных удобрений и сидератов, соблюдении норм и доз применения в севообороте. Предназначено для студентов, обучающихся по направлению «06.03.02 — Почвоведение» для аудиторных практических занятий.

© Рыжих Л.Ю., 2024 © Казанский университет, 2024

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. Классификация минеральных удобрений и способы внесения	5
2. Органические удобрения (сидераты)	8
3. Пример расчета баланса гумуса	9
4. Пример расчета доз удобрений в севообороте	11
5. Нуждаемость почв в известковании	14
СПИСОК ЛИТЕРАТУРЫ	16
ПРИЛОЖЕНИЯ	17

ВВЕДЕНИЕ

Минеральные удобрения – неорганические соединения, содержащие необходимые для растений элементы питания. Роль удобрений в агроценозах многофункциональна, они являются не только источником питательных веществ для растений, но и усиливают их мобилизацию в почве, повышают энергию жизненных процессов в ней, изменяют свойства почвы, выполняют экологические функции.

По своему химическому составу удобрения делятся на:

- ✓ Минеральные
- ✓ Органические

Минеральные удобрения могут быть простыми (содержат один основной питательный элемент) и сложными (содержат два или более основных питательных элементов). Также их подразделяют на макро- и микроудобрения. Макроудобрения содержат макроэлементы (N, P, K, иногда Ca, Mg, S). Микроудобрения содержат микроэлементы, потребляются растениями в микро- и ультрамикроколичествах (тысячные доли процента до 10⁻⁶, иногда 10⁻¹² процента на сухой вес растения).

Органические удобрения — это навоз, солома, зеленые (сидеральные) удобрения, торф, сапропель, отходы производства органического происхождения и др.

1. Классификация минеральных удобрений и способы внесения

Серные.

Азотные удобрения. Важнейшим источником азота в питании растений является сама почва. Обеспеченность растений почвенным азотом в конкретных условиях различных почвенно-климатических зон неодинакова. В этом отношении наблюдается тенденция к возрастанию ресурсов почвенного азота в направлении от более бедных почв подзолистой зоны к относительно обеспеченным азотом мощным и обыкновенным черноземам. Крайне бедны азотом легкие песчаные и супесчаные почвы.

При внесении азотных удобрений повышается урожай практически всех культур. Азотные удобрения в сельском хозяйстве применяются повсеместно: под овощные, зерновые культуры, под картофель, и др.

Исключением можно считать бобовые культуры (горох, бобы и др.), как правило, менее нуждающиеся во внесении азота.

В настоящее время в мире выпускаются азотные удобрения, содержащие азот в следующих формах: 1. аммиачно-нитратная (NH_4NO_3); 2. аммиачная (NH_4NO_3); 3. нитратная ($NaNO_3$), NH_4Cl); 3. нитратная ($NaNO_3$), NR_4Cl); 4. амидная ($NaNO_3$), NR_4Cl); 3. нитратная ($NaNO_3$), NR_4Cl); 4. амидная ($NaNO_3$), NR_4Cl); 6. амидная ($NaNO_3$), NR_4Cl); 6. амидная ($NaNO_3$), NR_4Cl); 7. амидная ($NaNO_3$), NR_4Cl); 8. амидная ($NaNO_3$), NR_4Cl); 9. амидная (NR_4Cl); 9.

Фосфорные удобрения. Источник сырья для промышленного производства фосфорных удобрений являются природные фосфорные руды, подразделяемые на две группы: апатиты и фосфориты. Апатиты – породы эндогенного происхождения. Самые крупные запасы апатитов в нашей стране открыты в 1925 году в Хибинах. Эмпирическая формула апатита $Ca_5(PO_4)_3F$ или $[Ca_3(PO_4)_2]_3$. Фосфориты – осадочная порода, состоящая из кристаллических и аморфных кальциевых фосфатов с примесью кварца, глинистых частиц и других минералов. Фосфорная кислота в фосфоритах представлена

соединениями типа фторапатита $[Ca_3(PO_4)_2]_3 \cdot CaF_2$ и гидроксилапатита $[Ca_3(PO_4)_2]_3 \cdot Ca(OH)_2$.

Калийные удобрения. Чтобы правильно развиваться, растению необходимо своевременно получать питательные элементы. Важнейшим из них является калий. Недостаточное его количество в почвенных слоях помогают восполнять калийные удобрения. Принято рассчитывать содержание элемента в виде его оксида (K_2O).

Соликамское месторождение расположено по западному склону северной части Уральского хребта вблизи городов Соликамск и Березники. Калийные соли залегают под толщей наносных пород. Верхняя часть пласта представлена карналлитом KCl·MgCl·6H₂O с примесью NaCl, CaSO₄·2H₂O, глины и др.

Заволжское месторождение в России отличается содержанием преимущественно более ценных сернокислых солей. Основные минералы: полигалит, каинит, глазерит.

Калийные удобрения можно подразделить на сырые калийные соли и концентрированные калийные удобрения.

Известковые удобрения. Используют природные известковые породы: твёрдые — известняк (CaCO₃), доломит (MgCO₃), мел (перед внесением их размалывают или обжигают); мягкие — известковый туф, озёрную известь (гажу), мергель, природную доломитовую муку (не требуют размола, более эффективны и быстрее действуют, чем, например, молотый известняк); продукты переработки природных пород — жжёную известь (негашёную комовую и молотую, гашёную, или пушонку); отходы промышленности, содержащие известь: дефекационную грязь, сланцевую и торфяную золу, цементную пыль, белитовую муку (отход алюминиевого производства), отходы целлюлозно-бумажных комбинатов, доменный шлак и др.

Магниевые удобрения. Вносятся при недостатке магния, особенно на легких почвах. Магний влияет на все процессы в клетках растения, где происходит передача химической энергии и ее накопление (фотосинтез, дыхание, гликолиз и др.). Пример магниевых удобрений: сульфат магния MgSO₄.

Серные удобрения. Содержат серу, участвующую в обмене и транспорте веществ, в общих процессах ионного равновесия в клетках растений. Примеры серных удобрений:

сульфат аммония ($(NH_4)_2SO_4$), сульфат калия (K_2SO_4).

У каждой сельскохозяйственной культуры свой вынос элементов питания.

Сельскохозяйственные культуры имеют различные сроки посева и созревания, отличаются строением корневой системы, поэтому вынос питательных элементов из почвы будет различен. Учитывая это, необходимо соблюдать систему удобрений в севообороте. Севооборот - научно обоснованное чередование сельскохозяйственных культур и паров во времени и на территории или только во времени.

Внесение минеральных удобрений делится на:

Основное
Предпосевное
Припосевное
Подкормки: прикорневая, внекорневая

Основное внесение — вносятся в пару и под зяблевую обработку. Примеры основных удобрений: фосфорные, калийные, аммиачная вода. Азотные удобрения вносятся под озимые культуры в количестве 20% при посеве. Вносятся машинами Амазон, РУМ-5, РУМ-10.

Предпосевное внесение — вносится недостающее количество в почву перед ее обработкой. Примеры предпосевных удобрений: аммиачная вода, фосфорные удобрения, калийные удобрения.

Припосевное внесение – вносится при посеве сельскохозяйственных культур до 1 п/га.

Внесение большего количества нежелательно, так как это соли, в почве образуется осмотическое давление, и влага семени выходит наружу.

Подкормки — прикорневая, при этой подкормке вносят азотные и сложные удобрения в период кущения растений сеялками. Внекорневая (листовая) — вносят карбамид опрыскивателями по вегетирующим растениям.

Микроэлементы и биоудобрения вносятся при обработке, опрыскиванием против сорняков, болезней и вредителей и листовых подкормках.

2. Органические удобрения (сидераты)

Сидераты— одно из самых эффективных природных удобрений, основанное на выращивании растений с последующей заделкой их в почву. Это способствует улучшению структуры почвы, предотвращает вымывание и выветривание гумуса, способствует подавлению сорняков и накоплению органической массы, азота, фосфора и калия, а также снижает кислотность почвы, повышает активность полезной микрофлоры.

Сидератами можно считать любые однолетние растения, которые выращивают для улучшения и восстановления плодородия почвы. Сидераты довольно разнообразны, но большинство из них — хорошо известные злаковые и бобовые культуры.

Один из лучших сидератов, улучшающий агрофизические свойства почвы — это клевер красный.

Ценное растение часто включают в севооборот, чередуя с основными культурами, потому что клевер имеет ряд достоинств:

- ✓ Корневая система выполняет дренажную функцию и разрыхляет грунт, делая его проницаемой для воздуха и воды.
- ✓ Усиливает сцепление почвы.
- ✓ Подходит для высадки в любых почвах.
- ✓ В процессе развития формирует плотный дерн, который выполняет защитную функцию для растений при морозах или засухе.
- ✓ Сдерживает распространение сорных трав.
- ✓ Ферменты из корней растения отпугивают вредителей.
- ✓ Клевер является отличным медоносом, привлекая к себе насекомых, которые опыляют не только его, но и растущие рядом культуры.
- ✓ Удерживает питательные элементы у поверхности.

3. Пример расчета баланса гумуса

Агрохимические приемы воспроизводства плодородия в первую очередь должны быть направлены на поддержание положительного баланса гумуса или создание в почвах его оптимальных запасов. Доведение содержания гумуса в почвах до оптимального уровня достигается внесением навоза, торфокомпостов, сидератов, а также соблюдением научно обоснованных севооборотов и приемов обработки почвы.

Баланс гумуса в зернотравопропашном севообороте на опытных полях Татарского научно-исследовательского института сельского хозяйства (расчет выполнен по данным Волго - Вятского филиала ВНИПТИХИМ)

Таблина 1.

	т/га (ия са,		ца ат- ой и	Накопление гумуса за счет пожнивно- корневых остатков, т/га			
Культура	Урожайность,	Минерализация (потери) гумуса, т/га	Коэфф. выхода пожнивно- корневых остат- ков от основной продукции урожайности	Выход пожнивно- корневых остатков, т/га	Выход гумуса из пожнивно-корневых остатков, т/га	Баланс гумуса+/- т/га	
Озимая пшеница	4	0,6	1,1	4,4	0,66	+0,06	
Картофель	25	0,8	0,1	2,5	0,25	-0,55	
Ячмень + клевер	4	0,6	0,9	3,6	0,54	-0,06	
Клевер 1г.п. на сидерат	20	0,2	0,3	6,0	1,08	+0,88	
Итого		2,2		16,5	2,53	0,33	
Среднее по севообороту		0,6		4,1	0,63	0,08	

При расчёте баланса гумуса учитывают его минерализацию (приложение 2).

Часть гумуса восполняется за счёт органического вещества пожнивных и корневых остатков. Количество пожнивных и корневых остатков разных культур определяют по формуле:

$$\Pi KO = Y \times Kn \ (1)$$

где ПКО - выход пожнивных и корневых остатков, т/га; У — урожайность культуры, т/га; Кп — коэффициент выхода пожнивных и корневых остатков (приложение 1).

Выход гумуса из пожнивных и корневых остатков разных культур определяют по формуле:

$$\Gamma = \Pi KO \times K\varepsilon$$
 (2),

 Γ де Γ – выход гумуса из пожнивно-корневых остатков, т/га; Кг- коэффициент гумификации (приложение 2); ПКО – выход пожнивно-корневых остатков, т/га.

Баланс гумуса определяется по формуле:

$$B\Gamma = \Gamma - M(3)$$
,

где Б Γ – баланс гумуса (+ или -), Γ – выход гумуса из пожнивно- корневых остатков, т/га, М – минерализация (потери) гумуса, т/га

4. Пример расчета доз удобрений в севообороте

Севооборот: зернотравопропашной Чередование культур в севообороте:

- 1. озимая пшеница
- 2. картофель
- 3. ячмень + клевер
- 4. клевер 1 г.п. (сидерат)

Планируемая урожайность: озимая пшеница — 40 ц/га, картофель — 250 ц/га, ячмень — 40 ц/га, клевер 1 г.п. (сидерат) — 200 ц/га.

Почва: Серая лесная, $N_{\text{шг.}}-9$ мг/100 г почвы, P_2O_5-28 мг/100 г почвы, K_2O-18 мг /100 почвы.

Расчет доз удобрений для получения урожайности озимой пшеницы 40 ц/га (по пунктам):

- 1. См. приложение 3.
- 2. Планируемая урожайность сельскохозяйственной культуры × Вынос NPKна 1 ц урожая.
 - 3. Содержание в почве элементов питания.
 - 4. См. приложение 4.
 - 5. См. приложение 3а.
- 6. Коэффициенты перевода элементов питания от мг/100 г почвы в $\kappa \Gamma/\Gamma a \times K$ оэффициент использования NPK из почвы.
- 7. Общий вынос на запланированную урожайность Использование NPK из почвы.
 - 8. -
- 9. См. приложение 3, исходя из соотношения 1:4 (для приготовления 1 т сена клевера необходимо 4 т зеленой массы).
- 10. Внесение клевера на сидерат, 200 ц/га × Содержание NPK в 1 ц клевера на сидерат.
 - 11. См. приложение 5.
 - 12. Внесено NPK с клевером на сидерат × Коэффициент использования NPK из

клевера на сидерат.

- 13. Общий вынос на запланированную урожайность Использование NPK из почвы Будет использовано NPK из клевера на сидерат.
 - 14. См. приложение 5.
- 15. Недостающее количество NPK / Коэффициент использования NPK вносимых туков.

Таблица 2. Расчет доз удобрений для получения урожайности озимой пшеницы 40 ц/га

No			Элементы			
п/п	Показатели	питания				
11/11		N	P_2O_5	K_2O		
1	Вынос NPK на 1 ц урожая, кг	3,25	1,15	2,0		
2	Общий вынос на запланированную урожайность, кг/га	130	46	80		
3	Содержание элементов питания в почве, мг/100 г	9	28	18		
4	Коэффициенты перевода элементов питания от мг/100 г почвы в кг/га, (x26)	234	728	468		
5	Коэффициент использования NPK из почвы	0,2	0,05	0,13		
6	Использование NPK из почвы, кг/га	46,8	36,4	60,84		
7	Недостающее количество NPK в почве, кг/га	83,2	9,6	19,16		
8	Внесение клевера на сидерат, 200 ц/га	-	-	-		
9	Содержание NPK в 1 ц клевера на сидерат, кг	0,5	0,14	0,4		
10	Внесено NPK с клевером на сидерат, кг/га	100	28	80		
11	Коэффициент использования NPK из клевера на сидерат	0,25	0,3	0,5		
12	Будет использовано NPK из клевера на сидерат, кг/га	25	8,4	40		
13	Недостающее количество NPK, кг/га	58,2	1,2	+20,84		
14	Коэффициент использования NPK вносимых туков (в год внесения)	0,7	0,25	0,7		
15	Необходимо внести NPK с туком, кг/га	83	4,8	-		

Вносим азота: 1 ц/га сложных удобрений (азофоска — $N_{12}P_{12}K_{12}$) **при посеве** (осень) —

12 кг/га – улучшает укоренение растений

Подкормки (карбамид) первая весенняя подкормка (кущение) – 20% от нормы азотных удобрений — 10 кг/га — улучшает кущение

Вторая подкормка (выход в трубку) -30% от нормы азотных удобрений -15,3 кг/га— способствует формированию продуктивного стебля

Третья подкормка (колошение) -30 % от нормы азотных удобрений -15,3 кг/га - увеличивает содержание белка в зерне (приложение 6)

5. Нуждаемость почв в известковании

Известняк - распространённая осадочная горная порода, практически полностью состоящая из карбоната кальция. Добывается, главным образом, в открытых карьерах.

Известь является продуктом обжига карбонатных пород и находит широкое применение в различных отраслях промышленности. Это один из наиболее распространенных, всесторонне используемых химпродуктов, производимых и потребляемых по всему миру.

Кальциевая известь содержит 70 - 96% CaO и до 2% MgO. Маломагнезиальная известь состоит из 70 - 90% CaO и в пределах 2 - 5% MgO.В магнезиальной извести MgO содержится в пределах -5 - 20%, в доломитовой 20 - 40%. В зависимости от вариантов дальнейшей обработки обожженного продукта различают несколько видов воздушной извести:

 ✓ негашеную комовую известь — кипелку, состоящую главным образом из Ca(OH);

✓ негашеную молотую известь — порошкообразный продукт помола комовой извести; гидратную известь (гашеная) — пушонку — тонкий порошок,получаемый в результате гашения комовой извести определенным количеством воды и состоящий в основном из Ca(OH);

✓ известковое тесто — тестообразный продукт гашения комовой извести, состоящей в основном из Ca(OH) и механически примешанной воды;

✓ известковое молоко — белая суспензия, в которой гидроксид кальция находится частично в растворенном, а частично во взвешенном состоянии.

Известкование проводят в первую очередь на сильно кислых, средне кислых и в последнюю очередь на слабо кислых почвах.

Дозы извести можно также рассчитать по формуле:

$$\mathcal{A}$$
 CaCO3 = H г× K

где Д — доза CaCO₃, т/га, Нг - гидролитическая кислотность почвы, мг.экв/100г, К - коэффициент пересчета (1,5 при условии, что масса пахотного горизонта почвы на 1 га равна 3 млн. кг, 1,25 при условии, что масса пахотного горизонта почвы на 1 га равна 2,5 млн. кг).

СПИСОК ЛИТЕРАТУРЫ

- 1. Алямовский Н. И., Известковые удобрения в СССР / Н.И. Алямовский, А. В. Петербургского, С. Г. Шедерова. М.: Колос, 1966.
- 2. Практическое руководство по освоению интенсивной технологии возделывания озимой пшеницы. М.: Министерство сельского хозяйства СССР, ВАСХНИЛ, 1985. $64\ c.$
- 3. Шакиров Р.С. Земное плодородие / Р.С. Шакиров. Казань: Татарское кн. изд-во, $1989.-120~\mathrm{c}.$
- 4. Новоселов, С.И. Эффективность использования биологического азота в земледелии Нечерноземья: монография / С.И. Новоселов, Е.С. Новоселова, А.А. Завалин. Йошкар-Ола: Мар. гос. ун-т, 2012. 149 с.
- 5. Справочник агрохимика Республики Татарстан / под ред. д.б.н., академика РАСХН П.А. Чекмарева. Казань, 2015. 322 с.
- 6. Система ведения отраслей агропромышленного комплекса Республики Татарстан / под ред. Л.П. Зариповой. Казань: Татарское книжное изд-во, 1992. $525~\rm c.$

приложения

Приложение 1

Коэффициенты выхода пожнивно-корневых остатков на 1 т основного продукта (1- урожайность, т/га; 2- накопление пожнивно-корневых остатков на 1 т основного продукта)

Урожайность, т/га	Озимые зерновые	Яровыезерновые	Урожайность, т/га	Многолетние травы (сено)	Однолетниетравы (сено)	Урожайность, т/га	Многолетние травы (3/м)	Однолетние травы (3/м)	Силосные без кукурузы	Кукуруза на силос	Картофель, корнеплоды, овощи	Люпин	Урожайность, т/га	Гречиха
1	2	2	1	2	2	1	2	2	2	2	2	2	1	2
0-1,0	2,0	1,5	0-1,0	2,6	1,1	0-5,0	0,55	0,35	0,28	0,13	0,18	0,20	0-0,5	2,6
1,1-1,5	1,8	1,3	1,1-2,0	1,9	0,9	5,1-10,0	0,45	0,28	0,23	0,12	0,14	0,18	0,6-1,0	2,5
1,6-2,0	1,5	1,2	2,1-3,0	1,6	0,9	10,1-15,0	0,35	0,25	0,17	0,12	0,13	0,15	1,1-1,5	2,2
2,1-2,5	1,3	1,1	3,1-4,0	1,4	0,8	15,1-20,0	0,31	0,20	0,14	0,12	0,12	0,13	1,6-2,0	2,0
2,6-3,0	1,2	1,0	4,1-5,0	1,3	0,8	20,1-25,0	0,29	0,15	0,12	0,11	0,12	0,12	2,1-2,5	1,6
3,1-3,5	1,1	0,9	5,1-6,0	1,2	0,7	25,1-30,0	0,27	0,13	0,11	0,11	0,12	0,11	2,6-3,0	1,5
3,6-4,0	1,1	0,9	6,1-70	1,1	0,7	30,1-35,0	0,25	0,11	0,11	0,10	0,11	0,11	3,1-4,0	1,4

1. Минерализация гумуса.т/га:

чистый пар -0.8-1.0; пропашные культуры -0.8; яровые и озимые зерновые -0.6;травы -0.2; зернобобовые -0.5.

2. Коэффициенты гумификации (Кг):

многолетние травы -0.18; озимые и яровые зерновые -0.15; силосные и пропашные культуры -0.10.

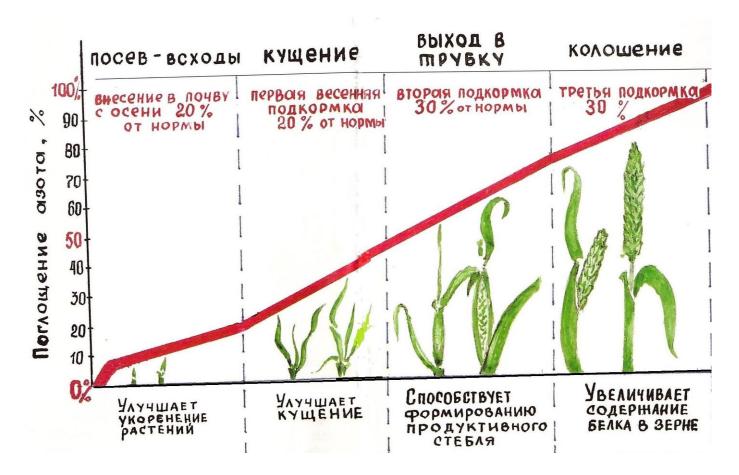
Вынос NPK на 1 ц основной и соответствующее количество побочной продукции, кг (обобщенные данные)

Культура	Продукция	N	P ₂ O ₅	K ₂ O
Пшеница озимая	зерно	3,25	1,15	2,00
Пшеница яровая	- >>>	4,27	1,24	2,05
Рожь озимая	»»	3,10	1,37	2,60
Ячмень	>>>	2,50	1,09	1,75
Овес	»»	2,95	1,31	2,58
Кукуруза	»»	3,03	1,02	3,13
Просо	»»	3,30	1,02	3,26
Гречиха	»»	3,00	1,51	3,91
Сорго	»»	3,68	1,12	1,54
Рис	»»	2,80	1,30	3,40
Горох	семена	6,60	1,52	2,00
Люпин	>>>	6,80	1,91	4,69
Соя	»»	7,24	1,41	1,93
Вика	»»	6,23	1,31	1,56
Вика	сено	2,27	0,62	1,00
Хлопчатник	хлопок-сырец	4,00	1,20	4,78
Лен-долгунец	семена	8,00	4,00	7,00
Лен-долгунец	соломка	1,22	0,72	1,72
Конопля	>>>	2,00	0,62	1,00
Подсолнечник	семена	6,00	2,60	18,60
Свекла сахарная	корнеплоды	0,59	0,18	0,75
Свекла кормовая	»»	0,40	0,13	0,46
Картофель	клубни	0,62	0,30	1,45
Капуста белокочанная	кочаны	0,33	0,13	0,44
Морковь	корнеплоды	0,23	0,15	0,67
Огурцы	плоды	0,30	0,15	0,45
Помидоры	>>>	0,35	0,15	0,50
Люцерна	сено	2,60	0,65	1,50
Клевер красный	»»	1,97	0,56	1,50
Тимофеевка	»»	2,05	0,60	1,80
Кострец безостый	»»	2,20	0,64	1,76
Кукуруза	зеленая масса	0,45	0,15	0,37

Коэффициенты использования NPK из почвы (обобщенные данные)

Приложение За

Культура	N	P ₂ O ₅	K ₂ O
Пшеница озимая	0,20-0,35	0,05-0,10	0,08-0,15
Пшеница яровая	0,20-0,30	0,05-0,08	0,06-0,12
Рожь озимая	0,20-0,35	0,05-0,12	0,07-0,14
Ячмень	0,15-0,35	0,05-0,09	0,06-0,10
Овес	0,20-0,35	0,05-0,11	0,08-0,14
Кукуруза(зерно)	0,25-0,40	0,06-0,18	0,08-0,28
Просо	0,20-0,40	0,06-0,12	0,07-0,12
Гречиха	0,15-0,35	0,05-0,09	0,06-0,09
Сорго	0,15-0,40	0,06-0,13	0,07-0,15
Рис	0,25-0,45	0,08-0,16	0,08-0,16
Горох	0,30-0,55	0,09-0,16	0,06-0,17
Люпин	0,30-0,65	0,08-0,16	0,07-0,36
Соя	0,30-0,45	0,09-0,14	0,06-0,12
Вика (семена)	0,25-0,40	0,06-0,10	0,05-0,11
Вика (сено)	0,20-0,35	0,06-0,09	0,05-0,10
Хлопчатник	0,35-0,45	0,07-0,12	0,06-0,16
Лен-долгунец (семена)	0,25-0,35	0,03-0,14	0,07-0,20
Лен-долгунец (соломка)	0,22-0,32	0,03-0,12	0,06-0,18
Конопля	0,20-0,35	0,08-0,15	0,06-0,13
Подсолнечник	0,30-0,45	0,07-0,17	0,08-0,24
Свекла сахарная	0,25-0,50	0,06-0,15	0,07-0,40
Свекла кормовая	0,20-0,45	0,05-0,12	0,06-0,25
Картофель	0,20-0,35	0,07-0,12	0,09-0,40
Капуста белокочанная	0,25-0,35	0,06-0,10	0,08-0,36
Морковь	0,20-0,30	0,05-0,11	0,06-0,12
Огурцы	0,25-0,40	0,07-0,13	0,07-0,18
Помидоры	0,20-0,35	0,08-0,15	0,08-0,19
Люцерна (сено)	0,35-0,70	0,07-0,20	0,08-0,25
Клевер красный (сено)	0,30-0,65	0,05-0,18	0,06-0,16
Тимофеевка (сено)	0,15-0,25	0,03-0,10	0,05-0,12
Кострец безостый (сено)	0,30-0,45	0,06-0,16	0,07-0,18
Кукуруза (зел.масса)	0,20-0,40	0,06-0,18	0,08-0,28


Коэффициенты перевода элементов питания от мг/100 г почвы в кг/га

Mayayyyyaayy aaaman wayny	Пахотный слой, см					
Механический состав почвы	0 - 22	0 - 25	0 - 28	0 - 30		
Суглинистый	26	30	34	36		
Супесчаный	28	32	36	39		
Песчаный	30	35	39	42		

Коэффициент использования элементов питания растениями из органических и минеральных удобрений

Г	Из мине	ральных уд	обрений	Из органических удобрений			
Год действия	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O	
1-й год	0,5-0,7	0,2-0,25	0,5-0,7	0,25-0,3	0,3-0,4	0,5-0,6	
2-й год	0,05	0,1-0,15	0,2	0,2	0,1-0,15	0,1-0,15	
3-й год	0,05	0,05	-	0,1	0,05	-	

Поглощение азота растениями и сроки внесения азотных туков под озимую пшеницу

