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A B S T R A C T   

Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most 
devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading 
enzymes. However, SRP-plant interactions are not restricted to the production of these “brute force” weapons. 
Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of 
susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our 
review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the hetero-
geneity of SRP populations. The review shows that SRP are capable of adjusting the host’s hormonal balance, 
inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the 
accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metab-
olites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. 
During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced 
virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables 
SRP to perform self-contradictory tasks, which benefits a population’s overall fitness in various environments, 
including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.   

1. Introduction 

The bacteria of the Pectobacterium and Dickeya genera attributed to 
Soft Rot Pectobacteriaceae (SRP) belong to one of the most devastating 
and extensively studied phytopathogens [1]. Plant cell wall degrading 
enzymes (PCWDEs), which can be produced by SRP in high amounts, 
turning plant tissues into an amorphous rotting mass, are considered the 
major weapons of these bacteria [2]. Due to this, most studies on SRP 
have been oriented on the “brute force” side of their behavior as well as 
on searching for host plant defense reactions that can cause pathogen 
elimination or at least prevent or reduce its propagation. However, in 
addition to PCWDEs, virulence factors typical of stealth phytopathogens 
(e.g., type three secretion system, coronafacic acid) are required for full 
virulence of SRP, indicating that these bacteria rely on host plant 
manipulation to cause the disease [3–5]. In turn, the outcome of a 
plant-pathogen interaction largely depends on the induction of so-called 
plant susceptible responses [6] as well as on the morphophysiological 
structure of the microbial population, which, according to the 

contemporary view, consists of differentiated cell forms with different 
properties [7–9]. 

The activation of susceptible responses promotes pathogen fitness in 
planta and may also be the root cause of symptom formation [6]. 
Physiological transformation of the host plant due to the induction of 
susceptible responses may promote pathogen invasion and vascular 
colonization, provide nutrient and inorganic substance flow toward 
pathogens, facilitate plant cell wall decomposition, induce death or 
partial digestion of host cells, and reduce the levels of defense com-
pounds, all in favor of the pathogen [6]. Pathogens induce susceptible 
responses via manipulating the expression of the host susceptibility (S) 
genes [10–12]. 

Undoubtedly, different plant reactions, including susceptible re-
sponses, are perceived by pathogens and drive their population 
behavior. Moreover, pathogens may induce susceptible responses pre-
cisely in order to facilitate the diversification of their population struc-
ture within the host [13]. The bacterial population structure is 
determined by a set of differentiated microbial cell forms that can be 
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very different in morphological, physiological, and functional terms 
[7–9]. Such cell differentiation occurs because, under various environ-
mental conditions, bacteria need to simultaneously perform several 
tasks that are usually self-conflicting at the single cell level since a 
limited amount of resources makes a cell focus on a particular task. To 
allow the implementation of a number of complementary tasks, within a 
bacterial population, “the division of labor” takes place to distribute 
energetically costly functions among discrete coexisting subpopulations, 
minimizing the burden placed on individuals and benefiting a pop-
ulation’s overall fitness [8,14,15]. Here, some cells may be in charge of 
utilizing different substrates, others of intensive proliferation, others of 
the production of one or another virulence factor, others of spreading, 
others of resistance to different stressors, etc. Some morphological and 
physiological forms of bacterial cells with particular characteristics have 
been specifically named (e.g., swarmers, viable but non-culturable 
forms, L-forms [16–18]), while many other functionally specialized 
forms remain nameless to date. 

The dissociation of microbial populations resulting in the formation 

of specialized cells is generally studied using in vitro cultures. Much less 
is known about the morphophysiological heterogeneity of bacterial 
populations within host plants, in which different cells and tissues with 
different local conditions within them are likely to promote the disso-
ciation of microbial populations. Moreover, infection-related plant re-
sponses may exacerbate the dynamism and heterogeneity of the plant 
interior, thus making additional contributions to the manifestation of 
the heterogeneity of microbial populations. 

During the past two decades, reactions that can be regarded as sus-
ceptible responses during plant-SRP interactions have been reported. 
Gene products necessary for manipulation of host plants typical of 
stealth phytopathogens were revealed in both Pectobacterium and Dick-
eya species. Various differentiated cell forms and multicellular biofilm- 
like structures have been described for SRP both in vitro and in planta. 
However, there is no comprehensive overview of the induced plant 
susceptibility to SRP or the population structure of these phytopatho-
gens. This review aims to consider SRP-plant interactions from the 
perspectives of host physiological transformation and microbial 

Fig. 1. The summary of host plant susceptible responses induced due to the manipulations by the Soft Rot Pectobacteriaceae. SA – salicylic acid; JA – jasmonic acid; 
ABA – abscisic acid; RG – rhamnogalacturonan; SM – secondary metabolite; ROS – reactive oxygen species; PCD – programmed cell death. 
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population heterogeneity. 

2. Host plant reactions that may promote SRP fitness in planta 
and disease manifestation 

The crosstalk between partners is the basis of plant-pathogen in-
teractions and disease development. The pathogens cannot just consume 
plant-derived substances; they have to transform the interior of the host 
plant, creating a specific econiche from its body. In other words, a plant 
should be transformed from a relatively autonomous biological unit to a 
component of an integral pathosystem. The pathogen fails to systemi-
cally colonize the host plant and/or produce disease symptoms if the 
host plant does not undergo specific physiological changes throughout 
different interaction stages. Such host transformation is mediated by the 
susceptible responses—the reactions that promote pathogen fitness in 
planta and/or disease manifestation [6]. Confusingly, the susceptible 
and defense responses are often mediated by similar molecular actors, 
being the two sides of the same coin. Whether a particular reaction is a 
susceptible or defense response depends on the strength, timing, and 
dynamics of the response as well as on particular plant and pathogen 
species, environmental factors, infection stages, etc. All 
pathogen-induced plant responses are generally viewed through the lens 
of their involvement in defense reactions that reduce pathogen-caused 
damage. However, in fact, many of these responses encourage path-
ogen development and disease manifestation. Here, we consider how 
plant responses may determine their susceptibility to SRP (Fig. 1). 

2.1. Hormonal perturbations 

The most considered pathogen-induced plant responses are reactions 
related to salicylic (SA) and jasmonic (JA) acids. SA and JA, referred to 
as phytohormones of biotic stress, are often, but not always, mutually 
antagonistic, and thus a plant may usually give priority to only one type 
of response (either SA- or JA-mediated) [13,19]. SA is believed to 
mediate resistance to biotrophic pathogens, while JA – to necrotrophic 
ones [20]. However, since phytopathogenic bacteria (including SRP) are 
mostly hemibiotrophs [21], the role of SA and JA in bacteria-caused 
diseases is less univocal. Phytopathogens frequently exhibit a high sus-
ceptibility to one of these two phytohormones (or the result of its action) 
and tolerance to the other one. In the framework of a fraudulent tactic, 
some phytopathogens purposefully induce that host hormonal pathway, 
to which the microorganism displays tolerance or less susceptibility than 
to another one. The most explicit example of this is Pseudomonas syrin-
gae, which produces the phytotoxin coronatine, a functional analog of 
JA, in order to induce the JA pathway and thus repress the SA pathway 
that is lethal for this pathogen [22]. Both SA and JA have been shown to 
contribute to the resistant response to SRP [23–25]. However, there is 
strong evidence that these two phytohormones may also play important 
roles in mediating induced susceptibility to SRP. 

Pectobacterium ssp.-caused diseases are associated with the down-
regulation (or lack of regulation) of the SA pathway in susceptible plants 
[23–27], which is in accordance with the observation that these bacteria 
produce extracellular repressors of the SA pathway [23]. Presumably 
due to this, the SA-related mutant plants do not exhibit the increased 
susceptibility to Pectobacterium ssp. [23,24,28] since these bacteria 
themselves repress SA-regulated responses, and an additional exogenous 
repression of the SA pathway by genetic manipulations would hardly 
affect the host’s susceptibility. Herewith, the SA treatment increases 
plant resistance [29,30] and represses the quorum sensing in Pecto-
bacterium ssp. by binding the synthase and sensors of autoinducers [31, 
32]. 

Simultaneously, Pectobacterium ssp.-caused diseases are always 
associated with a strong upregulation of the JA pathway in susceptible 
plants, and this upregulation does not prevent the development of severe 
symptoms in Pectobacterium-infected plants of different species [5,25, 
33–35]. Furthermore, some Pectobacterium species produce coronafacic 

acid [36], a specific virulence factor that, similar to the coronatine of 
Pseudomonas syringae, induces the JA pathway of the host plant and thus 
promotes the transition from latent to symptomatic infection [5,34]. 
These facts indicate that the Pectobacterium-induced upregulation of the 
JA pathway represents a susceptible response, which likely prevents the 
activation of the SA-related responses that impede pathogen prolifera-
tion and/or reduce its aggressiveness. However, this scenario does not 
appear universal for all Pectobacterium-plant interactions, as the 
JA-related Arabidopsis thaliana mutants were more susceptible to 
P. carotovorum than wild type plants [24], and the treatment of calla lily 
plants with JA reduced P. carotovorum-caused symptoms more than 
treatment with the SA analog [33]. In Chinese cabbage, the JA also 
delayed disease development caused by P. carotovorum; however, the SA 
had a more pronounced effect on resistance, completely blocking 
symptom formation [37]. Whether JA can have a defensive effect 
against other Pectobacterium species besides P. carotovorum remains to 
be determined. 

In the case of Dickeya ssp.-caused diseases, both the SA and JA 
pathways are upregulated, presumably resulting in a specific interaction 
of the two phytohormone pathways [38–40]. On the one hand, it has 
been demonstrated that the SA treatment confers resistance to D. solani 
[41], and the SA deficiency contributes to the formation of symptoms 
caused by this species [39]. On the other hand, SA has been shown to 
participate in the induced plant susceptibility to D. dadantii: A. thaliana 
mutants with elevated post-infection SA levels had repressed JA-related 
responses, resulting in increased susceptibility to D. dadantii compared 
to wild type plants with lower post-infection SA levels and enhanced JA 
responses [42]. Some studies also support the hypothesis that JA is a 
more effective phytohormone against Dickeya ssp. than SA [38,43]. 
However, JA was also shown to serve as a chemoattractant for both 
Dickeya and Pectobacterium species and an inducer of D. dadantii viru-
lence gene expression [44,45]. Moreover, the treatment of D. dadantii 
cells by JA increased their virulence, and JA-deficient plants were more 
resistant to invasion by this species [44]. Such a dualistic role of JA can 
be explained by the fact that JA and JA-mediated responses can have 
opposite effects on plant-D. dadantii interactions at different infection 
stages, contributing to pathogen virulence at initial stages and 
improving plant tolerance at advanced stages. 

Thus, the scenario of the SRP-plant interactions depends on the 
balance of the SA- and JA-related responses, and both Pectobacterium 
and Dickeya species interfere with these hormonal pathways by inducing 
plant responses that can shift the priority toward one or another 
phytohormone. In turn, pathogen-manipulated shifts in SA-JA balance 
can promote host plant susceptibility. Some SRP species even have 
specific virulence factors (e.g. coronafacic acid) whose action is required 
to alter the SA-JA balance. Since the abovementioned studies performed 
on different pathosystems yielded contradictory results on the roles of 
SA and JA in plant-SRP interactions, it can be assumed that represen-
tatives of the Pectobacterium and Dickeya genera (as well as species 
within a common genus) probably need genus- or species-specific exact 
parameters of SA-JA balance to thrive in the host plant. The exact roles 
of these two phytohormones in SRP-plant interactions may also depend 
on the amplitude, timing, and force of the SA and JA responses. The SRP- 
susceptibility-related parameters of SA-JA balance may also vary 
depending on the host plant species, its physiological status, and infec-
tion stages (including biotrophic and necrotrophic stages). For example, 
JA-deficient A. thaliana mutants were more tolerant to D. dadantii at the 
initial infection stages but more susceptible at the advanced interaction 
stages compared to wild type plants [44]. It is worth emphasizing that 
the increased resistance to Pectobacterium/Dickeya species induced by 
many different factors (e.g. iron-deficiency [46], treatment with hex-
adecane [47], overexpression of a negative regulator of ABA responses 
ERD15 [48] or WRKY70 transcription factor [49], down-regulation of 
chlorophyllase AtCLH1 [50]) is coupled with the upregulation of SA 
responses but not JA responses or even the suppression of the latter. This 
presumably suggests that SRP-induced activation of the JA pathways 
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more often reflects the susceptible response rather than the resistant 
one. 

Along with SA and JA, SRP also affect the auxin- and abscisic acid 
(ABA)-mediated hormonal systems of the host plants. Pectobacterium and 
Dickeya species induce the accumulation of both auxin and ABA in 
infected plants [26,37,51], contributing to plant susceptibility. 
ABA-overproducing, ABA-hypersensitive, and auxin-hypersensitive 
mutant plants, and mutants deficient for the negative regulator of 
auxin transport were more susceptible to SRP, whereas ABA-deficiency 
resulted in increased plant resistance [48,51–56]. Exogenous spraying of 
plants with ABA or auxin makes them more susceptible to these path-
ogens [37,52,57]. Besides, Dickeya species produce auxin themselves, 
and auxin-deficient mutants of these bacteria have reduced virulence 
[58]. 

The role of ABA and auxin in plant susceptibility to SRP is likely 
related to the potential of these phytohormones to divert resources to 
abiotic stress response (ABA) and growth and development (auxin), 
reducing the power of an immune response [59]. Indeed, ABA has been 
demonstrated to repress the oxidative stress responsible for improved 
resistance to D. dadantii and P. carotovorum [51,57]. Auxin, in addition 
to its immunity-repressing potential [53,56], can also activate plant 
enzymes and proteins (expansins) involved in plant cell wall loosening 
[60], thus contributing to the manifestation of rotting symptoms 
following SRP infection. Thus, SRP may force host plants to accumulate 
those phytohormones that lower plant defense efficiency and promote 
other disease-related traits. 

2.2. Plant cell wall modification 

Many processes taking place in muro (i.e. in the plant cell wall) are 
widely known to contribute to pathogen resistance (e.g. lignification, 
polymer cross-linking, suberinization, callose deposition, etc.) [61]. 
Simultaneously, specific reactions implemented by host plant gene 
products in muro are required to make a plant susceptible to a pathogen. 
Phytopathogens may recruit plant cell wall enzymes and proteins to 
effectively interact with this complex compartment and induce "natural" 
host-mediated cell wall loosening that normally takes place during 
extension growth or fruit ripening [6]. Herewith, plant cell wall proteins 
of the host can presumably provide the breakdown of those polymer 
parts that are inaccessible to microbial PCWDEs or enable plant cell wall 
modification and polymer decomposition when bacterial density is 
insufficient to produce enough PCWDEs. 

P. atrosepticum induces host-mediated modification of the plant cell 
wall [12]. During the initial stages of the colonization of the primary 
xylem vessels, when bacterial density is very low, P. atrosepticum stim-
ulates considerable plant-mediated remodeling of the vessel cell wall 
structure, resulting in the release of pectic polysaccharide rhamnoga-
lacturonan from cell walls into the vessel lumen. The released rham-
nogalacturonan is used by bacteria as a component of the extracellular 
matrix to build up specific biofilm-like structures [12]. Based on the 
results of the transcriptomic analysis of infected tobacco and potato 
plants, xyloglucan endotransglycosylase/hydrolases, expansins, rham-
nogalacturonan lyases, and polygalacturonases were hypothesized to 
provide the release of rhamnogalacturonan [35,62]. It is also possible 
that the products of infection-upregulated plant genes related to the 
plant cell wall may assist P. atrosepticum enzymes in maceration of the 
parenchymatous tissues in the advanced stages of infection. 

2.3. Reactive oxygen species and programmed cell death 

The oxidative burst due to the accumulation of reactive oxygen 
species (ROS) and various ROS-mediated forms of programmed cell 
death (PCD), including the hypersensitive response, are conventional 
attributes of plant defense reactions [63,64]. However, both PCD 
upregulation and ROS accumulation are often required for in planta 
pathogen accommodation and/or disease development [6]. Herewith, 

upregulation of PCD may enable pathogens to promote the selective 
elimination of defense compounds and digestion of host cells to release 
nutrients, whereas ROS can mediate PCD and cause polysaccharide 
scission. 

ROS burst and “dead zones” in plant tissues formed due to PCD have 
been demonstrated to mediate increased resistance to both Pectobacte-
rium and Dickeya species [38,40,65–67]. However, both ROS and PCD 
are also needed to promote plant susceptibility to SRP. Furthermore, the 
SRP, the bacteria that can pass through a relatively prolonged 
necrotrophic stage in plants, synthesize specific virulence factors 
(DspE/F type III effectors) whose function consists in inducing PCD in 
plants, which is necessary for further tissue maceration [68]. Addi-
tionally, the accumulation of ROS in the walls of the primary xylem 
vessels was hypothesized to promote polymer scission, thereby 
contributing to the release of rhamnogalacturonan into the lumen [12]. 

Since the successful infection cycle of SRP implies the accumulation 
of ROS in host plant tissues, SRP must cope with the increased ROS level. 
For this purpose, SRP synthesize various metabolites and enzymes with 
antioxidant properties: indigoidine, siderophores, exopolysaccharides, 
superoxide dismutase and other antioxidant enzymes [30,69,70]. Due to 
this, SRP can withstand host-produced ROS [71] even in mutant plants 
with an increased ROS level [72]. 

The particular role of ROS (resistance- or susceptibility-related) in 
plant-SRP interactions may be determined by the timing of ROS gener-
ation. It has been shown that in more resistant potato cultivar, ROS 
peaked as early as 6 h post infection with P. brasilense and then 
decreased, while in susceptible cultivar, the peak of ROS level was 
observed 24 h post inoculation [67]. Additionally, the outcome of the 
interaction may be determined by the type of generated ROS and the 
type of induced PCD. 

2.4. Iron transport 

Iron is essential for both plant defense responses and pathogen 
virulence [46,73,74]. Therefore, iron assimilation is an important part 
of plant-pathogen interactions. D. dadantii became a classical object for 
studying how pathogens steal host plant iron. For this purpose, 
D. dadantii produces the siderophores achromobactin and chrysobactin 
that sequester iron from host proteins and then transfer it into bacterial 
cells [75,76]. Importantly, chrysobactin also acts as a systemic 
iron-deficiency signal, causing plants to increase iron assimilation from 
the environment [77–79]. The assimilated iron can then be used for the 
pathogen’s needs. It cannot be ignored that assimilated iron can also 
mediate plant defense responses. However, since siderophore-deficient 
mutants of D. dadantii are avirulent [77,80], and plants grown under 
iron-deficient conditions have increased resistance to D. dadantii and 
D. solani [46,81], the pathogen-induced iron assimilation by plants 
during the infection is likely to have more beneficial traits for the 
pathogen and thus represents a susceptible response. 

2.5. Secondary metabolite synthesis 

The activation of the secondary metabolism in infected plants is 
routinely considered a defense response, although antiherbivorous 
properties are mostly described for the defense-related secondary me-
tabolites and much less is known about the influence of these com-
pounds on phytopathogenic bacteria [82]. During plant-SRP 
interactions, plant secondary metabolism is strongly induced [25,26,35, 
83,84]. However, although several plant secondary metabolites sup-
press the quorum sensing and PCWDEs in Pectobacterium species [31,32, 
85,86], no clear evidence has been obtained that plant secondary me-
tabolites, even those produced by SRP-resistant plants, have apparent 
toxicity to SRP [85]. Particularly, since indole glucosinolate-deficient 
and wild-type A. thaliana plants exhibit similar levels of susceptibility 
to P. carotovorum or D. dadantii, it seems unlikely that indole glucosi-
nolates prevent the spread of these pathogen species, although the 
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synthesis of these secondary metabolites is strongly activated following 
infection [43,87]. 

SRP are able to tolerate host plant secondary metabolites (at least 
some of them) due to the presence of genes whose products can provide 
their detoxication [88–90]. Furthermore, the spectrum of hosts that the 
pathogen can infect may depend on whether such genes are present or 
absent. For example, P. odoriferum and P. versatile have genes (saxA) 
encoding isothiocyanate hydrolase that catalyzes the cleavage of iso-
thiocyanates that are accumulated in plants of the Brassicaceae family 
following infection [89]. The knockout of the saxA gene reduces the 
virulence of P. odoriferum and P. versatile on A. thaliana and Brassica 
oleraceae, whereas the heterologous expression of this gene makes the 
potato-limited species P. parmentieri (which normally lacks the saxA 
gene) able to cause disease in A. thaliana and B. oleraceae [90]. Taken 
together, the SRP have evidently adapted to the activated secondary 
metabolism of the host, and the synthesized defense metabolites (at least 
some of them) do not pose a serious threat to these pathogens. This casts 
doubt on the defensive nature of the activation of secondary metabolism 
during plant-SRP interactions. 

In turn, the activation of secondary metabolism may contribute to 
the progression of diseases, including SRP-caused ones. Plant secondary 
metabolites can induce virulence in several phytopathogens, including 
D. dadantii [91]. Moreover, secondary metabolites can be toxic to plant 
cells and may thus impair defense reactions, exacerbate plant cell death, 
and promote increased susceptibility [92–94]. Furthermore, by forcing a 
host to synthesize "ineffective defense compounds", a pathogen can 
divert plant resources from effective defense reactions, making it more 
susceptible. 

Taken together, as part of a manipulation tactic, SRP induce host 
plant reactions related to hormonal regulation, plant cell wall modifi-
cation, PCD, ROS accumulation, iron transport, and secondary metab-
olite production in order to make the host more susceptible to pathogen 
propagation (Fig. 1). By now, it is difficult to conclude which of these 
reactions have a common susceptibility-related outcome for all (or most) 
plant-SRP interactions and which are specific for the susceptibility of 
particular plant species/genera to particular SRP species/genera. 
Nonetheless, it is clear that manipulating host plant reactions is a 
requirement for the progression of any SRP-caused disease. Deciphering 
the mechanisms of induced plant susceptibility to SRP will promote the 
improvement of disease management based on making plants less 
manipulable by the pathogen by using all classical and molecular 
breeding, genome editing, chemical, and biological approaches. 

3. Morphological heterogeneity of SRP populations 

Most studies on SRP consider microbial population as a summary of 
similar cells. The fact that a microbial population consists of heteroge-
neous differentiated cell forms is often neglected, except for some 
studies that are given below to create a contemporary picture of the SRP 
population heterogeneity (Fig. 2). 

3.1. Biofilm-like structures 

Biofilms have received special attention in studies of bacterial pop-
ulation heterogeneity and multicellular behavior. These structures are 
widely described for various bacteria, including phytopathogenic ones 
[95]. The major condition for biofilm formation is the synthesis of 
exopolysaccharides (EPS), which constitute an extracellular matrix that 
consolidates individual bacterial cells in a holistic structure. Within a 
biofilm, bacterial cells acquire “improved” properties, including 
enhanced stress resistance and virulence. 

Biofilms formed by the Dickeya species were classified into two types: 
1) surface-air-liquid interface biofilms (SAL-biofilms), which look like 
rings attached to the edge of the culture tube, and 2) air-liquid interface 
biofilms (or pellicles) – smooth and thick structures covering the air- 
liquid culture surface (without attachment to the solid surface of the 

tube) [96–101]. SAL-biofilms and pellicles are genetically and chemi-
cally distinct. A type III secretion system is necessary for only pellicle but 
not SAL-biofilm formation. The assemblage of SAL-biofilms and pellicles 
is induced under different conditions [96]. Bacterial cellulose is the 
major structural component of pellicles but not SAL-biofilms. However, 
cellulose-deficient mutant can also form pellicles with more fragile 
cellulase-resistant matrix [96–98]. 

Dickeya species were demonstrated to form biofilm-like structures 
not only in vitro but also inside the host plant and on its surface [102, 
103]. However, it is unclear, which type of biofilm Dickeya species form 
in planta. The fact that bacterial cellulose is required for D. dadantii to 
attach to the plant surface presumably indicates that pellicle-like 
structures are involved in plant surface colonization [103]. 

Within Pectobacterium genus, P. brasilense has been shown to form 
biofilms both in vitro and in planta [104,105]; however, the details of 
their structure and composition have not been elucidated. Moreover, the 
formation of biofilms in xylem vessels has been attributed to the 
aggressive behavior of P. brasilense since these structures were formed 
only in susceptible but not resistant plants. In contrast, P. atrosepticum 
has been shown to be cryptic in its biofilm-forming capacity under in 
vitro conditions. However, its di-GMP-overproducing mutant was able 
to form biofilms, and therefore, it was suggested that the formation of 
biofilms might be induced in P. atrosepticum under those conditions that 
promote the increase in the di-GMP level [106]. 

Fig. 2. Specialized cell phenotypes formed by the Soft Rot Pectobacteriaceae in 
host plants or environments. VBNC – viable but non-culturable; CWD – cell wall 
deficient; CRC – cells with reduced cytoplasm; TTSS – type three secretion 
system; EPS – exopolysaccharides; RG – rhamnogalacturonan; SAL – surface-air- 
liquid; BC – bacterial cellulose. 
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Under in planta conditions, P. atrosepticum has been shown to form 
specific biofilm-like structures called bacterial emboli [62,107]. Bacte-
rial emboli are formed exclusively in the primary xylem vessels of the 
host plants and have distinctive features compared to typical biofilms in 
terms of morphological traits and the formation process. As a basis for 
the assemblage of bacterial emboli, a matrix not of bacterial EPS but of 
the plant pectic polysaccharide rhamnogalacturonan serves. Rhamno-
galacturonan is released from the plant cell walls into the vessel lumen 
due to a specific plant susceptible response described above [12]. Thus, 
the "story" of bacterial emboli demonstrates that the differentiation of 
microbial cells may depend on the host plant’s susceptible responses. 
EPS were also revealed in the composition of the extracellular matrix of 
bacterial emboli, but only at advanced stages of their development 
[108]. Importantly, unlike P. brasilense biofilms, the formation of bac-
terial emboli is unlikely to be coupled with the aggressive behavior of 
P. atrosepticum. The formation of bacterial emboli occurs during not only 
symptomatic but also asymptomatic colonization and affects only pri-
mary vessels, not secondary ones, and thus cannot significantly reduce 
water transport in the host plant as a whole [5]. 

The formation of different biofilm-like structures by SRP in the xylem 
vessels of the host plant likely promotes the downward xylem-mediated 
migration of bacteria toward subterranean host organs, which is widely 
described for SRP [102,104,105,107,109]. The entire or partial 
blockage of particular vessels by biofilm-like structures may locally 
reduce water transport, creating the conditions for the downward 
translocation of bacterial cells. Due to such a downward translocation, 
bacteria can invade subterranean host organs, including vegetative 
reproduction organs (tubers or bulbs), and thus transmit to the subse-
quent generation of the host plant. Therefore, the formation of 
biofilm-like structures, especially in xylem vessels, seems an important 
aspect of SRP-plant interaction. 

3.2. Motility-related cells 

Specific cell phenotypes are in charge of bacterial social motility 
(swarming and twitching). "Swarmers"—hyperflagellated and often 
elongated cells—implement flagella-mediated swarming motility [16]. 
SRP implement swarming [97,110]; however, whether this motility type 
is carried out by SRP during plant colonization remains contradictory. 
On the one hand, flagella genes of P. brasiliense were up-regulated during 
infection of potato tubers [111]. On the other hand, initially flagellated 
P. brasiliense cells lost flagella during plant colonization, and the mutant 
impaired in flagellar motility was still able to systemically colonize 
potato plants, albeit more slowly than the wild type [105]. Additionally, 
flagella-related genes in P. atrosepticum were down-regulated by plant 
extract and during the colonization of tobacco plants [5,112]. It is 
possible that flagellar-mediated motility and swarmers are involved in 
the colonization of tubers, but not shoots. 

In turn, twitching motility, which is mediated by pili and imple-
mented by hyperpiliated cells, seems important for SRP to systemically 
colonize host plant shoots. The P. brasiliense hyperpiliated mutant, in 
spite of lacking the flagella, was able to colonize potato plants system-
ically [105]. Besides, pili-related genes were upregulated in 
P. atrosepticum during the colonization of tobacco plants [5]. This agrees 
with the fact that bacterial downward migration via xylem vessels re-
quires pili-mediated twitching motility [113,114]. 

3.3. Filamentous cells responsible for the increased metabolism 

To establish a large population in planta, bacteria should manifest a 
high level of metabolic activity directed toward the consumption of a 
substrate and its expenditure for rapid reproduction. However, within 
the host plant, phytopathogens have to spend a lot of energy on the 
synthesis of virulence factors at the expense of resources that could be 
spent on proliferation. The simultaneous execution of both of these self- 
conflicting functions (vegetative growth and production of virulence 

factors) during host plant colonization in D. dadantii was shown to be 
provided by the specific dissociation of the bacterial population [115]. 
At late infection stages, the specific filamentous cells responsible for 
enhanced vegetative growth are formed in the D. dadantii population. 
These filamentous cells are non-motile and exhibit reduced production 
of virulence factors and enhanced metabolic activity compared to 
typical rod-shaped cells responsible for virulence properties [115]. Even 
though filamentous cells themselves produce few (if any) virulence 
factors, they are likely to play a significant role in the pathogen’s 
aggressive behavior since their emergence results in an extensive in-
crease in the bacterial population that rapidly depletes the resources of 
the host plant. Furthermore, by re-differentiation, filamentous cells may 
give rise to heaps of virulent "typical" rod cells. 

3.4. Stress-related cell forms 

Several stress-related cell forms have been described for the Pecto-
bacterium genus: viable but non-culturable (VBNC) cells, cell wall- 
deficient (CWD)-forms or L-forms, and specific cells with reduced 
cytoplasm that are formed in starved cultures with low population 
density. VNBC cells characterized by the proliferative dormancy and 
specific morphology are formed by P. atrosepticum under starvation 
conditions in vitro as well as in host plant remnants [107,116]. 
D. dianthicola cells were also shown to transform to a VNBC state after 
treatment with copper sulfate [117]. 

CWD-forms can be formed by P. atrosepticum under starvation and in 
potato tubers [118,119]. The absence of a cell wall, which houses most 
elicitors, may make CWD-forms "invisible" to the plant immune system. 
Besides, it has been suggested that it is the L-form formation that enables 
P. atrosepticum to penetrate plant cell protoplasts and thus to behave as 
an intracellular pathogen [118]. 

Specific cells with reduced cytoplasm are formed by P. atrosepticum 
when the bacterial cell density is too small to implement the population 
behavior and the exogenous growth substrate is absent [120]. The 
reduction of the cytoplasm enables cells to support cell division until the 
population density reaches the quorum level, allowing effective adap-
tation and invasiveness [121]. Thus, various stress-related forms can 
promote SRP survival under unfavorable conditions, including nutrient 
deficiency, toxic compounds, and maybe plant defense compounds, 
since these forms possess increased stress tolerance [119,120,122]. 
Moreover, stress-related forms can serve as a reserve of the microbial 
population since they may revert to a "normal" state. 

3.5. Cells with increased production of virulence factors 

Cells within the SRP population were also shown to be differentiated 
in terms of virulence gene expression. Only a minor proportion of the 
D. dadantii’s population expressed genes related to the type three 
secretion system (TTSS) [123]. Herewith, the percentage of 
TTSS-expressing cells varied depending on the colonized host plant 
organ and infection stage. Such dissociation of the D. dadantii population 
was provided by epigenetic mechanisms rather than permanent genetic 
mutations since clonal populations derived from either TTSS+ or TTSS- 
cells became heterogeneous in terms of TTSS gene expression [123]. 
Differential production of particular virulence factors likely enables cells 
to share their responsibilities, leading to the formation of a consortium 
where particular cells are in charge of producing a particular virulence 
factor. 

Thus, SRP cells within a population are multifaced and different cell 
types are specialized for implementing distinct tasks (Fig. 2). Within 
different populations of a species, different "sets" of specialized cell types 
are formed depending on environmental conditions. Due to heteroge-
neity, a population can perform self-contradictory tasks, which benefits 
a population’s overall fitness in various environments, including host 
plants. The formation of a certain SRP cell variant in planta can be timed 
to a particular infection stage, colonized tissue type, and interaction 

V. Gorshkov and O. Parfirova                                                                                                                                                                                                               



Seminars in Cell and Developmental Biology 148-149 (2023) 33–41

39

strategy (latent/moderate/acute infection). Different cell types are 
likely to contribute differentially to the devastating potential of SRP. 
Herewith, some cell types seem to determine a relatively commensalistic 
SRP behavior. 

4. Concluding considerations 

SRP are more than just PCWDE producers. To thrive in planta, SRP 
should be able to manipulate their host plants by inducing susceptible 
responses, thus transforming the plant’s interior into a "proper" 
ecological niche. Within this niche, SRP create complex and heteroge-
neous populations, in which different cells acquire functional speciali-
zation and share different tasks. It is challenging to distinguish which 
susceptible responses or population structure parameters are genus- or 
species-specific and which are more or less universal for various SRP- 
plant interactions because our understanding of the global picture of 
SRP-induced susceptible responses and population heterogeneity is still 
in its infancy. A more comprehensive view on these issues will form the 
basis for the identification of plant S-genes targeted by SRP and for 
controlling SRP behavior during interactions with plants. 
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