КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ГЕОЛОГИИ И НЕФТЕГАЗОВЫХ ТЕХНОЛОГИЙ

Кафедра технологии нефти, газа и углеродных материалов

Д.З. Валиев, А.Г.-Х. Алфаяад, Р.А. Кемалов

МОДЕЛИРОВАНИЕ РЕАКТОРНОГО БЛОКА УСТАНОВКИ ИЗОМЕРИЗАЦИИ В ASPEN HYSYS

Учебно-методическое пособие

Казань 2023 Печатается по решению учебно-методической комиссии ФГАОУ ВО «Казанский (Приволжский) федеральный университет» Института геологии и нефтегазовых технологий Протокол №1 от 11 октября 2023 г. Заседания кафедры технологии нефти, газа и углеродных материалов Протокол № 6 от 26 июня 2023 года

Рецензенты:

кандидат технических наук, ведущий специалист ПАО «Транснефть» Борисов С.В. кандидат химических наук, доцент КФУ Ибрагимова Д.А.

Валиев Д.З.

Моделирование реакторного блока установки изомеризации в Aspen Hysys: учебно-методическое пособие / Д.З. Валиев, А.Г.-Х. Алфаяад, Р.А. Кемалов – Казань: Казанский федеральный университет, 2023. – 26 с.

В данной работе изложены принципы моделирования реакторного блока Penex установки изомеризации в Aspen Hysys.

Учебное пособие предназначено для студентов, которые обучаются в бакалавриате, магистратуре, аспирантуре по направлениям подготовки «Нефтегазовое дело» и может быть использовано в системах непрерывного профессионального образования по компьютерным технологиям.

© Валиев Д.З., 2023 © Казанский федеральный университет, 2023

Оглавление

ВВЕДЕНИЕ	4
1 Процесс изомеризации	.7
2 Описание моделирования модели технологической схемы установки	4 B
Aspen HYSYS	10
2.1 Этапы моделирования технологической схемы установки в Aspen	
HYSYS	10
2.1.1 Задание перечня компонентов и выбор метода расчета свойств	
смесей	10
2.2 Задание перечня аппаратов и схемы их коммутации	13
2.2.1 Добавление материальных потоков в схему установки	15
2.3 Задание состава потока	16
Вывод	24
ЗАКЛЮЧЕНИЕ	25
Литература	26

введение

Изомеризат, продукт установки изомеризации, представляет собой компонент смеси бензина с высоким октановым числом, характеризующийся низким (или отсутствующим вообще) содержанием ароматических веществ и серы, который также удовлетворяет как экономические, так и экологические требования. На качество изомеризата влияет ряд параметров, таких как состав сырья, параметры процесса, внимание инженера-технолога к повседневной работе и т.д. оптимизирован инженером-технологом. Во время оптимизации температуры на выходе из реактора регулируются в ведущем и ведомом реакторах, чтобы максимизировать скорость реакции в ведущем реакторе и управлять равновесными концентрациями в ведомом реакторе. Эта комбинация максимизирует желаемое соотношение компонентов продукта, так называемое изо-соотношение. Оптимальный вариант можно выбрать из двух вариантов: произвести максимальное количество баррелей изомеризата (максимальный выход жидкости) или произвести максимальное октановое число продукта. В этом учебном пособии рассматриваются возможность моделирования реактора Penex и установки изомеризации в Aspen Hysys. Схема реактора Penex представлена на рисунке 2.

Установка предназначена для непрерывной каталитической изомеризации пентанов, гексанов и их смесей. Реакции протекают в атмосфере водорода, над неподвижным слоем катализатора и в рабочих условиях, которые способствуют изомеризации и сводят к минимуму гидрокрекинг. В состав установки входят колонна деизопентанизатора, осушители жидкого сырья и подпиточного газа, реакторы Penex (ведущий и отстающий), стабилизатор продукта, щелочной скруббер и колонна деизогексанизатора, как показано на рисунках 1 и 2. Расчетные данные представляют собой основу для расчетов, обеспечивающих эффективную работу агрегата. Ho необходимо было дополнительно оптимизировать работу реакторов и активность катализатора в отношении реального сырья, перерабатываемого на установке.

На качество продукта установки изомеризации (изомеризации) влияет несколько факторов, таких как состав сырья, параметры процесса, ориентация инженеров-технологов на повседневную работу установки и т. д. Хотя некоторые параметры процесса устанавливаются проектной основой или отделом производства / планирования, другие, как и температура в реакторе, может быть оптимизирована инженером-технологом Penex. Если температуры реактора не регулируются в соответствии с составом сырья и параметрами процесса, число ниже октановое продукта снижается максимально достижимого значения, что представляет собой недостаточную загрузку установки, худшее качество продукта и прямые финансовые потери.

4

Поскольку реакция изомеризации является равновесной, равновесие изои нормальных парафинов будет достигаться на выходе из реактора. Когда это равновесие достигнуто, будет получено максимальное соотношение продуктов равновесное соотношение продуктов. Любая попытка превысить ИЛИ равновесное соотношение продуктов с идеей производства большего количества изо парафинов в выходящем потоке реактора могут привести только к меньшему выходу изопарафинов и увеличению пропана и меньшему выходу из-за гидрокрекинга.1 Параметры процесса, при которых равновесие изо- и нормальных парафинов, достигнутое в выходящем потоке реактора, близко к теоретическим значениям, определяются оптимизацией температур реактора. Это равновесие представляет собой максимально достижимое качество продукции Penex.

В основу универсальной системы моделирования HYSYS заложены общие принципы расчетов материально-тепловых балансов технологических схем. Как правило, любое производство состоит из стадий (элементов), на каждой из которых производится определенное воздействие на материальные потоки и превращение энергии. Последовательность стадий обычно описывается с помощью технологической схемы, каждый элемент которой соответствует определенному технологическому процессу (или группе протекающих процессов). Соединения между совместно элементами технологической схемы соответствуют материальным и энергетическим потокам, протекающим в системе. В целом моделирование технологической схемы основано на применении общих принципов термодинамики к отдельным элементам схемы и к системе в целом.

HYSYS включает набор следующих основных подсистем, обеспечивающих решение задачи моделирования химико-технологических процессов:

- набор термодинамических данных по чистым компонентам (база данных) и средства, позволяющие выбирать определенные компоненты для описания качественного состава рабочих смесей;

- средства представления свойств природных углеводородных смесей, главным образом – нефтей и газоконденсатов, в виде, приемлемом для описания качественного состава рабочих смесей, по данным лабораторного анализа;

- различные методы расчета термодинамических свойств, таких как коэффициента фазового равновесия, энтальпии, энтропии, плотности, растворимости газов и твердых веществ в жидкостях и фугитивности паров;

- набор моделей для расчета отдельных элементов технологических схем – процессов;

-средства для формирования технологических схем из отдельных элементов;

5

-средства для расчета технологических схем, состоящих из большого числа элементов, определенным образом соединенных между собой.

Библиотека программы HYSYS содержит данные по более чем 2500 чистым веществам, что дает возможность использовать программу практически для любых технологических расчетов процессов добычи и переработки углеводородного сырья, нефтехимии и химии. На практике, при решении задач, характерных для газовой и нефтяной промышленности, используются не более 100 компонентов.

В данном учебном пособии рассматривается один из программных продуктов компании AspenTech – Aspen HYSYS, на наш взгляд, очень удобный для технолога.

Программный продукт Aspen HYSYS является лидером на рынке инструментов по моделированию и оптимизации химико-технологических процессов и систем в химической промышленности.

1 Процесс изомеризации

Система DIP-Penex-DIH установки изомеризации легкой нафты HПЗ в Сисаке показана на рисунке 1. Установка производит продукт с самым высоким октановым числом и самый высокий выход продукта по сравнению с другими технологиями UOP для изомеризации легкой нафты3.

Рис.1. Система UOP DIP-Penex-DIH для производства высокооктановых изомеризатов

Сырье для установки изомеризации представляет собой смесь двух потоков: гидроочищенной легкой нафты, из установки гидроочистки и легкий продукт риформинга из колонны дегептанизатора. Изомеризация легкой нафты секции Пенекс и октановое происходит В число увеличивается при превращении линейных углеводородов C5 / C6 В разветвленные. Высокооктановые изопентаны отделяются от нормальных парафинов, гексанов и C7 +. углеводороды в колонке DIP. Реакторы Penex загружены платиновым катализатор на основе, в котором протекают реакции изомеризации. Раздел Пенекс проиллюстрировано на рисунке 2.

Рис. 2. Упрощенная схема участка Репех легкой нафты. установка изомеризации

Перед входом комбинированного потока жидких углеводородов и газа, богатого водородом в загрузочный нагреватель и в ведущий / ведомый реакторы оба потока сырья сушатся в осушители жидкости и подпиточного газа. Сушилки для подачи жидкости и газа предназначены для удалить кислородсодержащие соединения, которые навсегда деактивируют катализатор. После Комбинированное сырье нагревается до температур реактора, поступает в опережающий и запаздывающий

Реакторы Репех, работающие последовательно. После подачи сырья / выходящего потока реактора теплообменники и перед нагревателем загрузки, органические хлориды впрыскиваются в чтобы поддерживать кислотную функцию катализатора. После выхода из лаг-реактора поток продукта охлаждается в теплообменниках и затем направляется в стабилизатор для отделение легких углеводородов от жидкого потока. Хлориды очищаются от легких углеводородов в скруббере щелочным раствором. Нижняя часть стабилизатора направляется в колонку DIH, где находятся высокоценные изогексаны и соединения C5 отделяются как верхний продукт, в то время как метилпентаны, н-гексан и часть C6 циклические соединения рециркулируют обратно в ведущий реактор, обеспечивая высокое октановое число продукта. В нижний продукт содержит остатки циклов C6 и углеводороды C7 +. В

Продукт изомеризации, изомеризат, который представляет собой смесь головного погона DIP и DIH, в основном состоит из высокооктановых соединений, таких как изопентан, 2,2-диметилбутан и 2,3-диметилбутан.

2 Описание моделирования модели технологической схемы установки в Aspen HYSYS

Моделирование реакторного блока установки изомеризации проводилось нами в профильном программном обеспечении Aspen HYSYS при помощи термодинамического пакета Peng-Robinson.

В модели задавался состав исходной газовой смеси, представленный в рис. 6.

2.1 Этапы моделирования технологической схемы установки в Aspen HYSYS 2.1.1 Задание перечня компонентов и выбор метода расчета свойств смесей

При запуске программы открывается окно главного меню системы HYSYS, в котором необходимо выбрать «New» (рисунок 3).

Рис. 3. Окно главного меню системы HYSYS: создание новой Задачи

В открывшемся окне (рисунок 4) выберите пункт «Components Lists» и нажмите на кнопку «Add» для создания перечня выбранных компонентов (он первоначально пуст и по умолчанию называется «Component List-1»), откроется окно «Component List-1» (рисунок 5).

💽 i 🔒 🤊 🖃 🗊 📴 🔹 🕫 i) 📊 🔿 🚍 🗊 📴 🗧 🗧 Untitled - Aspen HYSYS V9 - aspenONE												
File Home View Cu	stomize Resources	Search aspenONE Exchange 🔎 🛆 🔞											
Kut Copy- Paste Clipboard	Image: Components Im	Convert to Refining Assay Options Oil PVT Laboratory Measurements OVI Data											
Properties <	Component Lists × +	-											
All Items Component Lists Fluid Packages Component Maps Component	List Name Source Associated Fluid Packages Statu Add Copy Delete Import Front.	5											
	<pre></pre>												
	Messanes												
Safety Analysis	Required Info : Fluid Packages Select property package Required Info : Components Empty component list Required Info : Master Component List Empty component list	***											
		100% \ominus 🗌 🕀 🛄											

Рис. 4. Окно компонентов

Home View Ci	istomize Resources				Untitled - Aspen	HYSYS V9 - aspe	nONE			Search as	penONE Exchange	• •
tut opy Paste Component Lists Navis	Methods Assistant AB Reactions User Properties Jate	K Map Components Update Properties Components	Petroleum Assays Refining 5	 Hypotheticals Mana Convert Remove Duplicates Hypotheticals 	ger Oil Manager	Convert to Refining Assay	Associ Definit	ate Fluid Package ions* ns	PVT Laboratory Measurements PVT Data			
oerties <	Component List - 1	× +										
Component Lists Component List - 1 Fluid Packages Petroleum Assays	Source Databank: HY	SYS Type		Group		Sel	ect: rch for:	Pure Compone	nts •	Filter: Search by:	All Families Formula	•
Reactions Component Maps							Circulati	N	Full Name	(S	Family	
User Properties							Simulau	Talvara	Full Mame,	DharailMathara	Formula	
					< Add			Toluene		PrienylMethane	C/H8	
								Toluene		Teluel	C7H8	
					Replace			Toluene		Methacide	C7H8	
						_		Toluene		Toluene	C7H8	
								PhC1DiClSila	Silane, Dich	loromethylphenyl-	C7H8CI2Si	
					Remove			PhC1DiCISila	Phenylm	ethyldichlorosilane	C7H8CI2Si	
								PhC1DiCISila	Dichloroer	nethylphenylsilane	C7H8Cl2Si	
								PhC1DiClSila	Methylph	enyldichlorosilane	C7H8Cl2Si	
								PhC1DiClSila	F	henyIC1DiCISilane	C7H8CI2Si	
								BZol		PhenylMethanol	C7H8O	
								BZol		BZol	C7H8O	
Properties Simulation Safety Analysis Energy Analysis	Status: Messages Required Info : Fluid P Required Info : Master Required Info : Comp Required Info : Comp	Empty.com ackages Select proper Component List Emp onent List - 1 [HYSYS Da prents Empty.compo.	ty package ty compone tabanks] E	nt list mpty component list								

Рис. 5. Окно списка компонентов: редактирование перечня Компонентов

В правой части этого окна содержится список имеющихся библиотечных компонентов системы HYSYS. Найдите в библиотечном списке метан (CH₄) (либо ваш первый компонент из состава), либо просматривая список, либо, что гораздо проще, осуществить поиск по названию или формуле компонента. Выберите в пункте поиск по «Search by» поиск по формуле «Formula» и введите

формулу метан (CH₄) а в поле «Search for» (рисунок 6); отметьте курсором в библиотечном списке метан и нажмите кнопку «Add», при этом компонент будет перемещен из библиотеки в левый раздел выбранных компонентов. Аналогичным образом поступите для других компонентов (рисунок 6).

Dutabank. This is				Select:	Pure Components	Filter:	All Families	
Component	Туре	Group		Search for:		Search by:	Full Name/Synonym	
Hydrogen	Pure Component							
Methane	Pure Component			Simul	lation Name	Full Name / Synonym	Formula	
Ethane	Pure Component		< Add		n-Heptane		C7 C7H1	
Propane	Pure Component				n-Octane		C8 C8H1	
i-Butane	Pure Component				n-Nonane		C9 C9H2	
n-Butane	Pure Component		Replace		n-Decane	(C10 C10H2	
i-Pentane	Pure Component				n-C11	(C11 C11H2	
n-Pentane	Pure Component				n-C12	(C12 C12H2	
Cyclopentane	Pure Component		Remove		n-C13	(C13 C13H2	
22-Mbutane	Pure Component				n-C14	(C14 C14H3	
23-Mbutane	Pure Component				n-C15	(C15 C15H3	
2-Mpentane	Pure Component				n-C16	(C16 C16H3	
3-Mpentane	Pure Component				n-C17	(C17 C17H3	
n-Hexane	Pure Component				n-C18	(C18 C18H3	
Mcyclopentan	Pure Component				n-C19	(C19 C19H4	
Cyclohexane	Pure Component				n-C20	(C20 C20H4	
22-Mpentane	Pure Component				n-C21	(C21 C21H4	
24-Mpentane	Pure Component				n-C22	(C22 C22H4	
Benzene	Pure Component				n-C23		C23 C23H4	
					n-C24		C24 C24H5	
					n-C25		C25 C25H5	
					n-C26	(C26 C26H5	
					n-C27		C27 C27H5	
					n-C28	(C28 C28H5	
					n-C29		C29 C29H6	
					n-C30		C30 C30H6	
					22-Mpropane	22-N	4C3 C5H1	
					2-Mhexane	2-N	4C6 C7H1	
					3-Mhexane	3-N	1C6 C7H1	
					3-Epentane	3-	EC5 C7H1	
					23-Mpentane	23-N	1C5 C7H1	
					33-Mpentane	33-N	4C5 C7H1	
					223-Mbutane	223-N	1C4 C7H1	
					2-Mheptane	2-N	1C7 C8H1	
					3-Mheptane	3-N	AC7 C8H1	

Рис. 6. Окно выбранных компонентов

Когда Ваш перечень будет готов, перейдите на закладку *пакетов свойств* «**Fluid Packages**» (рисунок 7) и нажмите кнопку *добавить* «**Add**». Это действие выполняется для того, чтобы добавить пакет свойств, с помощью которого будут рассчитываться свойства смесевых композиций выбранных компонентов.

🖲 🔒 n 🗖 🔍 📴 🔹 🕫	Untitled - Aspen HYSYS V9 - aspenONE	
File Home View Cr & Cut Component Fluid Lists Fluid Component Navie Properties	witchnick Resources Map Components Image: Compone	search aspenUnic Exchange
All Items Component Lists Component Lists Component List - 1 Finid Packages Component Maps Component Maps User Properties	Fluid Package Component List Property Package Status	
Properties	Add T Edit Copy Delete	
Closed Simulation	Import Export	
Safety Analysis Energy Analysis	Messages Required Info : Fluid Packages Select property package	* 9 X
	· · · · · · · · · · · · · · · · · · ·	100% 🕀 💮 🕀

Рис. 7. Окно добавления пакета свойств

В открывшемся окне пакета свойств выберите один из термодинамических пакетов, имеющихся в HYSYS. Для нашей задачи выберите метод расчета Peng-Robinson (рисунок 8).

Properties <	Basis-1 × +				
All Items •	Set Up Binary Coeffs StabTest Pha	se Order Tabular Notes			
4 📷 Component Lists					
Component List - 1	Package Type: HYSYS		Component List Selection	Component List - 1 [HYSYS Databanks]	- View
Fluid Packages					
Co Basis-1	Property Package Selection	Options		Parameters	
Detroleum Assays	<70082	Enthalpy	Property Pack	age EOS	
Reactions	Acid Gas - Physical Solvents	Density		Costald	
Lo Component Maps	Acid Gas - Liquid Treating	Modify Tc, Pc for H2, He	Modify Tc. Pc fo	r H2, He	
Lo User Properties	Acid Gas - Chemical Solvents	Indexed Viscosity	HYSYS	Viscosity	
	Antoine A SME Steam	Peng-Robinson Options		HYSYS	
	Braun K10	EOS Solution Methods	Cubic EOS Analytical	Method	
	BWRS	Phase Identification		Default	
	Chao Seader	Surface Tension Method	HYSYS	Method	
	Chien Null Clean Evels Dire	Thermal Conductivity	API 12A3.2-1	Method	
	CPA	mennercondocting			
	Esso Tabular				
	Extended NRTL				
	GCEOS				
	General NRTL Chural Dackage				
	Gravson Streed				
	IAPWS-IF97				
	Kabadi-Danner				
	Lee-Kesler-Plocker				
	MBWR				
	NBS STEDIO AUDT				
	Pena-Robinson				
	PR-Twu				
	PRSV				
	Sour PR				
	Sour SRK				
	SRK SRF. Turre				
	Sulsim (Sulfur Recovery)				
	Tww-Sim-Tassone				
	UNIQUAC				
	Wilson				
T Properties		Property Dire	0		
		Property Pkg			
□-{□ Simulation					
60)	Messanes				

Рис. 8. Окно выбора пакета свойств

После выбора пакета свойств, переходим к моделирование.

2.2 Задание перечня аппаратов и схемы их коммутации

Каждый объект технологической схемы имеет цветовуюстроку состояния, которая находится в нижней части формы объекта.

Цветовые индикаторы для объектов технологической схемы:

Красный – у объекта отсутствуют основные параметры или объект содержит ошибки;

Жёлтый – все соединения имеются, но оператор определён не полностью или содержит предупреждения;

Зелёный – этот оператор решён без ошибок.

Перейдите на закладку моделирование «Simulation». Одновременно с графическим планшетом (первоначально он пуст) на экране монитора появится окно объектов «Palette» со схематическими изображениями различных аппаратов химической технологии, снабженными всплывающими подсказками (рисунок 9).

File Home Economics J Cut St Image: Cut of the state of the stat	Untitled - Aspen HVSYS V9 - asper Dynamics View Customize R Process Utility Manager Adjust Manager Fluid Package Associations Simulation Ta Solver Ta Economics Capital Cost Utility Cost	NONE Plowsheet tesources Flowsheet/Modify Format Model Summary Workbook Reports Input Summaries Energy Available Energy Savings	Case Studies Stream Analysis* Pressure Relief Case Studies Stream Analysis* Stream Analysis* Stream Analysis* Stream Analysis* EDR Exchanger Feasibility Unknown OK At Risk	Search aspenONE Exchange 2 & 0
C UnitOps C Streams C Streams C Equipment Design C Model Analysis C Data Tables C Strip Charts C Case Studies C Data Fits	USD USD/Year	MW % of Actual		Upstream Refining Custom Dynamics Common Columns
Properties	·			
Safety Analysis	Messages			
Solver (Main) - Ready				112% 🖂 🗌 🕀 🖼 👘

Рис. 10. Окно моделирования системы HYSYS и окно объектов «Palette»

В процессе дальнейшей работы это окно может исчезнуть из поля Вашего зрения вследствие перекрытия другими окнами; для его повторной активизации достаточно открыть вкладку главного меню «Flowsheet/Modify» в списке нажать мышью кнопку «Models and Streams» (рисунок 11).

File Home Economics	Untitled - Aspen HYSYS V9 - aspenONE Dynamics View Customize Resources Attach Connection All Ji Size Auto Attach & Break Connection All Joint Size Auto Attach & Break Connection All Pan Find Foreigner State Connection Capital Cost Utility Cost	Flowsheet/Modify Format Flowsheet/Modify Format Regot Pressure Tools Stream Label 7 Energy Available Foremy Savings	All Move to Parent Image: Constraint of the state of	Search a Norkbook Tables Default Colour S lide Object * Display Leger Conditional For sk	spenONE Exchange 2 & @ theme * vd matting 6
C Workbook C UnitOps Stream Analysis C Equipment Design C Data Tables C Data Tables C Data Strip Charts C C Studies C Data Fits	USD USD/Year or Flowsheet Case (Main) - Solver Active × +	MW % of Actual off	0 0 0		Pelette □ □ Vpstream Refining Custom Dynamics Common Columns □ □
Properties	<u> </u>				
Safety Analysis	Messages				
Solver (Main) - Ready	L			112	2% 🖂 🕛 🕀 🔛 .::

Рис. 11. Фрагмент главного меню: активизация «Palette»

Чтобы при моделировании расчет происходил автоматическинеобходимо, чтобы был включен режим **Active**. При необходимости приостановить расчеты выбирается режим **On Hold** (рисунок 12).

File	Home	Economics	Dynamics	View	Customiz	e	Resources	Flows	heet/Modify	Format
🔏 Cut	SI	- 9	Process Utility N	Manager	The Active Active The Active The Active The Active			🔚 🌌 Model Summary		
G_Copy ▼	🖶 Unit	Sets 🛓	🗧 Adjust Manage	r				112	E Flowsheet Summary	
🖺 Paste *		I	Fluid Package A			Workbook	Reports	🗋 Input		
Clipboard	Ur	nits	Simulation	5	Solver	15		Sum	imaries	

Рис. 12. Фрагмент главного меню: режим автоматического расчета

2.2.1 Добавление материальных потоков в схему установки

В HYSYS имеется два типа потоков: материальный и энергетический. Материальный поток имеет состав и такие параметры как температуру, давление и расход. Энергетический поток имеет только один параметр – теплосодержание.

Имеется несколько способов задания материальных потоков в HYSYS:

Вы можете включать и выключать режим отображения на экране Кассы объектов, нажимая на клавишу <F4> или выбирая пункт Открыть/ Закрыть кассу объектов в меню схема.

Меню	Схема, добавить потокили
	горячая клавиша F11
Рабочая	Задайте имя потока в поле **New** на закладке
тетрадь	Материальные потоки
Касса	Дважды щелкните курсором мыши по значку
объектов	материального потока

2.3 Задание состава потока

Выбирайте поток из Model Palette – Streams, и задавайте параметры и состав (рисунок 13, 14).

Databank: HYSYS				Select:	Pure Components	•	Filter:	All Families		
Component	Туре	Group		Search for:			Search by:	Full Name/Synonym	Full Name/Synonym	
Hydrogen	Pure Component									
Methane	Pure Component			Simu	lation Name	Full Name	e / Synonym	Formula		
Ethane	Pure Component		< Add		n-Heptane			C7 C7	7H1	
Propane	Pure Component				n-Octane			C8 C1	8H1	
i-Butane	Pure Component				n-Nonane			C9 C!	9H2	
n-Butane	Pure Component		Replace		n-Decane		c	.10 C10	0H2	
i-Pentane	Pure Component				n-C11		c	.11 C1:	1H2	
n-Pentane	Pure Component				n-C12		c	.12 C1	2H2	
Cyclopentane	Pure Component		Kemove		n-C13		c	.13 C13	3H2	
22-Mbutane	Pure Component				n-C14		c	.14 C14	4H3	
23-Mbutane	Pure Component				n-C15		c	:15 C1	5H3	
2-Mpentane	Pure Component				n-C16		c	.16 C16	6H3	
3-Mpentane	Pure Component				n-C17		c	.17 C1	7H3	
n-Hexane	Pure Component				n-C18		c	.18 C10	8H3	
Mcyclopentan	Pure Component				n-C19		c	.19 C19	9H4	
Cyclohexane	Pure Component				n-C20		c	.20 C2	0H4	
22-Mpentane	Pure Component				n-C21		c	.21 C2:	1H4	
24-Mpentane	Pure Component				n-C22		c	.22 C2	2H4	
Benzene	Pure Component				n-C23		c	.23 C2	3H4	
					n-C24		c	:24 C24	4H5	
					n-C25		c	25 C2	5H5	
					n-C26		c	.26 C2	6H5	
					n-C27		c	:27 C2	7H5	
					n-C28		c	.28 C21	8H5	
					n-C29		c	.29 C2	9H6	
					n-C30		c	:30 C3	0H6	
					22-Mpropane		22-M	C3 C1	5H1	
					2-Mhexane		2-M	C6 C1	7H1	
					3-Mhexane		3-M	C6 C7	7H1	
					3-Epentane		3-E	.C5 C1	7H1	
					23-Mpentane		23-M	C5 C5	7H1	
					33-Mpentane		33-M	C5 C7	7H1	
					223-Mbutane		223-M	C4 C1	7H1	
					2-Mheptane		2-M	C7 C1	8H1	
					3-Mheptane		3-M	C7 Ci	8H1	

Рис. 13. Окно выбранных компонентов

7 B		1 n / <mark>-</mark> n	28 -							измеризаций	ä.hsc - Aspen HV	VS V9 - aspenONE				_ 0	22
Ĩ	File	Home Erono	micr Demomicr Minus	Curtomite	Parourrar										Search aspenONE Exchange		
	0.4	From Cl.	Process Little Manager	Costonia e	COR	-	Madal Summan	De la la la cara	Churdlan 🦛	Annes American M	til married	allaf					
	Came	- Init Sate	P Adjurt Manager	Co Hold			Elourbest Summary	All Data		Equipment Design	- Second	Ward Dependencies					
	Dute	- one sets	- Eluid Package Accoritions	10000	Workbook	Report	ts Dineut	Compressor bo Ontin	iner Ma	Louphern Design	Contra Surt	m and Depressuring					
	phone	d Unite	Simulation Fr	Solver Fr	*	с,	immariar	Surge 💽 Optil	Anaberie	violoei whaijsis -	W riard Syste	atu Amalurir					
	provine		/ Francostor	301111 -	6		Energy Community		EDB Evel		illa.	ty south in					
	ID A	daterial Stream: NG	Economics				chergy		know	n OK	At Risk						
1										0	0						
	W	orksheet Attachme	nts Dynamics						al 👗		Ŭ						
▶		Worksheet	Stream Name Vannur / Dhara Eraction			NG	Liquid Phase										-
		Properties	Temperature (C)		,	40.00	40.00										
		Composition	Pressure [bar]			35.34	35.34										
		Oil & Gas Feed	Molar Flow [kgmole/h]			486,1	486,1										
		Petroleum Assay	Mass Flow [kg/h]		3,840	+004	3,840e+004										
		User Variables	Std Ideal Liq Vol Flow [m3/h]			50,00	50,00										
		Notes	Molar Enthalpy [kcal/kgmole]		-1,164	e+004	-1,164e+004										
		Cost Parameters	Molar Entropy [kl/kgmole-C]			-66,15	-66,15										
		Normalized fields	Heat Flow [kcal/h]		-5,657	2+006	-5,657e+006										
			Liq Vol Flow @Std Cond [m3/h]			49,44	49,44										
			Litility Turne			000-1											
			a company a particular a part														
															10		
															1		
														//	- V-100		
										•	4		aow 6	[∦] , , ⊘? _			
									3		í.	-101	CL	UT-101 E-102			
										ISOM100			Bowlet				
															11		
									-								
					OK												
		Delete	Define from Stream.		leenv			6 8									
Ш.	_	Delet	e material stream														
	Prop	perties															
	Sim	ulation														,	
1) Safe	ety Analysis	Messages													-	4 ×
										Completed							~
6	Ener	rgy Analysis								saving ca	se Ci\users\a	SGALE-1\ AnnData)	local/TemplautoRecovery save	of usuenusauus (ovocaba) abc			
4										Completed		John - a (oppourd	(cocar(resp)ratemeters) sare	or nameproduce (oxposity) and (11			*
Sol	ver (M	ain) - Ready													100% Θ		<u>بار (</u>
				W		-									EN . De Om	15:47	1
						J.									- 12 -		21

Рис. 14. Исходные данные для моделирования (Temperature, pressure, mass flow).

Теперь также выбирайте поток для ВСГ и задавайте параметры и состав (рисунок 15, 16).

Рис. 15. Исходные данные для ВСГ (Temperature, pressure, mass flow).

Worksheet onditions roperties omposition hil & Gas Feed etroleum Assay Value ser Variables lotes ost Parameters	Hydrogen Methane Ethane Propane i-Butane n-Butane	Mass Flows 482,9933 31,0591 14,5538 0,0000	Vapour Phase 482,9933 31,0591 14,5538
ditions serties sposition & Gas Feed oleum Assay fue Variables Es Parameters mained Valde	Hydrogen Methane Ethane Propane i-Butane n-Butane	Mass Flows 482,9933 31,0591 14,5538 0,0000	Vapour Phase 482,9933 31,0591 14,5538
es ition as Feed im Assay riables ameters red Vialdr	Hydrogen Methane Ethane Propane i-Butane n-Butane	482,9933 31,0591 14,5538 0,0000	482,9933 31,0591 14,5538
istion as Feed um Assay riables rameters	Methane Ethane Propane i-Butane n-Butane	31,0591 14,5538 0,0000	31.0591 14.5538
Sas Feed um Assay ariables arameters	Ethane Propane i-Butane n-Butane	14,5538 0,0000	14.5538
leum Assay ue Variables s Parameters	Propane i-Butane n-Butane	0.0000	
lue Variables s Parameters	i-Butane n-Butane	0.0000	0.0000
Variables s Parameters	n-Butane	0,0000	0.0000
s Parameters		0,0000	0.0000
arameters	i-Pentane	0,0000	0.0000
alized Vialde	n-Pentane	0,0000	0.0000
inzeu meius	Cyclopentane	0,0000	0.0000
	22-Mbutane	0.0000	0.0000
	23-Mbutane	0,0000	0.0000
	2-Mpentane	0.0000	0.0000
	3-Mpentane	0,0000	0.0000
	n-Hexane	0,0000	0.0000
	Mcyclopentan	0,0000	0.0000
	Cyclohexane	0.0000	0.0000
	22-Mpentane	0,0000	0.0000
	24-Mpentane	0,0000	0.0000
	berizene	0,0000	0.0000
	Total	528,60617 kg/h	
	Edit Vie	w Properties	

После этого поставьте на линию поток газ и ВСГ нагреватель (рисунок 17), и задайте температуру во вкладке параметр нагреватель 34,37 °C.

ि 🖪 । 🖬 🤊 🔇	D 80	¥ .				измеризаций.hsg	- Aspen HYSYS V9 - aspenONE			- 0 - 11
File Home	Economics	Dunamics View Customize	Resources					Sec	irch aspenONE Exchange	
X Out	- 9	Process Little Manager	· · · · · · · · · · · · · · · · · · ·	Andel Summary	Case Studies Retu	and Appaheris T	C Drassura Ballat			
Camer -Un	it Cate	Adjust Managar			Data Eltr Il Em	view ant Design T	Sept Old DOMN and Department			
Copy - on	1. JAU	Eluid Parkage Arroriationr	Workbook Reports	Compressor No	Ontimizer White	upment besign	Elara Surtam			
Cliphoard	Unitr	Simulation & Solver &	* Cummaria	Surge 💽	Anaberie Anaberie	paler Analysis -	Cofatu Anaburir			
Claudation	onics	Samueland - Source -			EDB Evelo		and south			0
Simulation		Capital Cort Utility Cort	C Energy		Lioknown		Diek			
All Items		Capital Cost Othiny Cost	Av	ailable Energy Savings	Onknown	0 11	0			
Workbook		USD USD/Year		/W % of Actual	0	0	0			
> Streams		6								
Co Stream And	Heater: E-100				- 0 -X-					
Co Equipment										~
🕞 Model Ana	Design Ratin	g Worksheet Performance Dynamics								
🗔 Data Table	Worksheet	Name	1	2 Q-1						
Stop Charte	Conditions	Vapour	0,3277	0,4565 <empty></empty>						
Data Etc	Properties	Temperature [C]	37,93	150.0 <empty></empty>						
Lo Duco Filo	PF Specs	Pressure [bar]	35,34	34,36 <empty></empty>						
		Molar Flow (kgmole/n)	2 902++004	728,1 <empty></empty>						
		Std Ideal Lig Vol Flow [m3/h]	57.06	57.06 <empty></empty>						
		Molar Enthalpy [kcal/kgmole]	-7797	-3835 <empty></empty>						
		Molar Entropy [kl/kgmole-C]	-12,11	32,79 <empty></empty>						
		Heat Flow [kcal/h]	-5,677e+006	-2,792e+006 2,884e+006						
									10	
									• V-100	
							E-101	CUT-101 E-102	U	
						ISOM100			<u>⊢</u>	
	Delete		OK		Ignored					
	L									
I Properties										
		e.								
Simulation										
Safety Analys	is .	Messages								+ # ×
						Completed.				^
6 Energy Analy	515					Saving case	:\Users\ASGALF~1\AppOata\L	local\Temp\AutoRecovery save of измеризаций (0х904b4).ahc		
4						completed.				*
Solver (Main) - Real	ły					<u></u>			100% 🖂 📃	•
	Alter and									15.55
									en - 📴 🐑 👀	17.12.2021

Рис.17. Параметр нагреватель газа

Далее устанавливаете переход (Stream Cutter) поток и реактор изомеризации (рис. 18).

Рисунок 18. переход (Stream Cutter) поток и реактор изомеризации Далее задайте механический параметр как на рисунке 19.

Home Ecc P Unit Sets r Units tion Ys Workbook Stream Ana B M	nomics Dynamic P Clifty Mana S Adjust Mana R Fluid Packa Simulation Capital: Powsh Capital: Capita	s Plant Data or Vature aper Solver USD UblitiesUSD/vc USD UblitiesUSD/vc eeet Case (Main) - Solver Active	Oriented View Model Flowshee E Reports input Summaries Energy H +	Cuthonize Resources Consorter Care Studies Stores Consorter Care Studies Resources Consorter Care Studies Resources Consorter Care Studies Resources Analysis y Savinges MW (S)	Analysis * Piere System Safety Exchangers - Unknown: © Ol	Depressuring -		Search aspenDNE Dahange	0 22 0
Notes and an of the second sec	Enter Una Cyr. If Simulation Cathe Simulation Connectors Machanical Basic Luning Advanced Tumpi Summary Notes	JOM100 Artion [Workhest] Solver] Reactor Lingsh [m] Cashyt Density [kg/m3] Void Fractor Specify Reactor Type Cashyt Density [kg/m3] Lasg Reactor Lag Reactor	2.300 7,700 0.6500 0.78			- 0 X			× • • •

Рис. 19. Механический параметр реактора изомеризации

Далее переходите во вкладку Calibration (рисунок 20) и нажимаете на вклад Pull Data from Simulation (для переноса данных реактора).

Рисунок 20. Вкладка Calibration

Далее переходите на вкладку Objective Function (рисунок 21) и копируете данные Sigma и переносите их в вкладку Plant (рисунок 21).

								_	_			
Model Palette —	o ×											
Vie 🚯 Isom Unit Op: ISI	001MC						- 0	×				
Simulation Calibr	ation Worksheet Solver											
Calibration												
Feed		Included	Sigma	Plant	Model	Delta	Contribution					
All Objective Function	IP4 Wt%	9	1.000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
Parameters Rue Calibration	NP4 Wt%	P	1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
Con Kinetic Factors	ameters Wt%	P	1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
Euto	NP5 Wt%	M	1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
Mo	5N5 Wt%	E E	1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
	22DMC4 Wt%		1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
Hee	23DMU4 Wt%	R	1,000	1,000	Cempty >	cempty.	cempty -		-			
	SMC5 WHS	P	1 000	1 000	cempty	cempty	(empty)			ISOM	4	
Mar	NP6 Wt%	9	1.000	1,000	<empty></empty>	<empty></empty>	<empty></empty>	00	0			
Pin	5N6 Wt%	R	1.000	1,000	<empty></empty>	<empty></empty>	<empty></empty>	00	4	and the second se		
Hyd	A6 Wt%	R	1.000	1,000	<empty></empty>	<empty></empty>	<empty></empty>			ISOM100		
Pret	6N6 Wt%	R	1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>		3			
Cha	NP7 Wt%	R	1.000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
-	6N7 Wt%	R	1,000	1,000	<empty></empty>	<empty></empty>	<empty></empty>					
Sep												

Рис. 21. Вкладка Objective Function

Далее переходите на вкладку параметры и добавляете нижние и верхние границы (рисунок 22).

D	* Flowsheet	Case (Main) - Solver Active 1 +							
Ň	Isom Unit Op: ISOM	100				- 0	×		
	Simulation Calibratio	Worksheet Solver					_		
	Calibration	Reaction Activities							
All	Objective Function		Included	Initial Value	Lower Bound	Upper Bound			
-	Parameters	Global Activity Instruction Activity	P	1,000	0,0000	100,0			
Con	Kinetic Factors	Hydrocracking Activity	R	1,000	0.0000	100,0			
Exte		Hydrogenation Activity	R	1,000	0,0000	100,0			
Mo		Ring-opening Activity	R	1,000	0,0000	100,0			
Hea		Heavy Activity	N N	1,000	0.0000	100.0			
Same		23DMC4 Isomerization KEQ Intercept	4	1,000	0,0000	100.0		ISOM 4	
Mar		3MC5 Isomerization KEQ Intercept	5	1,000	0,0000	100,0	-		
Rin		22DMC4 Isomerization KEQ Intercept	먹	1.000	0,0000	100,0	00		
Hyd		IP5 Isomerization KEQ Intercept	P	1,000	0.0000	100.0			
Pre		5N6 Isomerization KEQ Intercept	2	1,000	0,0000	100,0		3	
Cha		IPA Isomerization KEO Intercent	R	1,000	0.0000	100			
Sep									

Рис. 22. Вкладка параметры

Далее переходите на вкладку Run Calibration и нажимаете Initialize Calibration и после этого нажимаете на вкладку запустить калибровку, далее нажимаете на вкладку Transfer factors Simulation (рисунок 23).

Copy* 2 Unit Sets Paste* pboard Units mulation Inems UnitOps Streams Stream Ana Stream Ana Stream Ana	Adjust Manage Fluid Package Simulation Capital: Flowsheet Flo	Consider Workbook Reports Solver - Summaries USD UtilitiesUSD/rear Consider Maining-Solver Active = +	Plowsheet Compress Input Compress Energy Savings	Obla Fits Sor Optimizer Analysis MW (%)	Exchang	GRECOWDOWN and D Flare System Satety ers - Unknown: 0 OK:	pressuring*	×1	0 13
Data Tables	Bom Unit op. 1901							× _	
Strip Charts	Simulation Calibrat	son Worksheet Solver							
Data Fits	Calibration	Initialize Calibration	Run Calibration	Transfer Fr	actors to Simulation				
Plant Data All	Objective Function	European		Orthogra					
-	Parameters	Summary	150.0	CS- RON		77.01			
Cor	Run Calibration	Inlet remperature (C)	163.6	C5+ MOI		7636			
Exte	Kinesi, raciona	Temperature Rise (C)	13.58	C6+ RON		77.44			
Mo	1	Hydrogen Consumption (STD m3/h)	580.2	C6+ MOR	2	76.14			
2/1	1	Inlet H2 to HC Ratio [mol/mol]	0,5762						
Hea	1	Pressure Drop [kPa]	7,364e-004						
Mar		Isomer Ratios		Yields				00	
Hyd	1	PIN	0,8373		Weight %	Volume %			
Pres	(iC4/C4P*100	88,71	H2 Consumers	11,42	8,83		3	
Cha	4	iC5/C5P*100	49,12	C5+	93,68	83,51			
Rea	1	22DMB/C6P*100	22,37	C7+	1,60	1,23			
	1	23DMB/C6P*100	12,23	Benzene	0,00	0,00			
Sep	1	(2MP+3MP)/C6P 100	33,17						
		Parameters							
	1	Global Activity		100,0 *					
	1	Isomerization Activity		1,939					
	1	Hydrocracking Activity		100,0 📰					
		Hydrogenation Activity		10,05					
	(I	Ring-opening Activity		0,0000					
	<i>(</i>	Heavy Activity		81,41					
	1	2MC5 Isomerization KEQ Intercept		0,0000					
Properties	1 1	23DMC4 Isomerization KEQ Intercept		3,866 +					۷
Carrier Contractor		IMCS lesmastration continuariant							>

Рис. 23. Вкладка Run Calibration

Далее устанавливайте холодильник и задаете необходимое давление и температуру (рисунок 24)

Cut Na Copy* 🛱 Paste* board nulation Rems	ewUserlife • 🖓 • Unit Sets 🕺 Units s • •	Utility Manager Adjust Manager Truid Packages Insulation Solver Capital: USD Utilities: USD/Ve Rowsheet Case (Main) - Solver Active	Reports Input Commaries	Case Stu compressor Surge Optimize Anu- Anu- MW (%	dies Stream Analysis* Pro Plequipment Design* AddLC r McModel Analysis* Plan alysis alysis D Exchangers - Unit	uur Rafel MDOWI and Deressung * System Safety OKI & Ruk & Su	0 2
Unit	Material Stream: 5				- 0 >		^
Stree	Worksheet Attachme	ents Dynamics					
Egui	Worksheet	Stream Name	5	Vapour Phase	Liquid Phase		
Moc Moc	Conditions	Vapour / Phase Fraction	0,5223	0,5223	0,4777		
Data	Properties	Temperature [C]	140,0	140,0	140,0		
Strip	Oil & Gas Feed	Pressure [kg/cm2_g]	\$3,00	33,00	33,00		
Case	Petroleum Assay	Maar Flow (kgmole/n)	3 365++004	0051	3 2 70+ -004		
Data	K Value	Std Ideal Lin Vol Elnis (m3/b)	5,50,54,004	20.67	26.00		
Pian	User Variables	Molar Enthaloy Iki/komolel	-1.015e+005	-5061e+004	-1 572++005		
	Cost Parameters	Molar Entropy [k]/kgmple-C1	-338.6	-180.7	-511.3		
	Normalized Yields	Heat Flow [kl/h]	-6,437e+007	-1,676e+007	-4.761e+007		
		Lig Vol Flow @Std Cond [m3/h]	65,58	30,56	35,53		
		Fluid Package	REFSRK				
		Utility Type				0.100 //	
						2 CUT-100 ISOM100	

Рис. 24. Параметры холодильника

Далее добавляете второй реактор и повторите те самые шаги, как было с первым реактором. Далее добавляете приход (Stream Cutter) поток (рисунок 25).

Рис. 25. Приход (Stream Cutter) поток

Далее устанавливайте холодильник и задайте параметры (рисунок 26).

CptdUSU_USU: DSU/W Texty Survey _ MV (_S) Textury Survey _ MV (_S) Textury Survey _ MV (_S) How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How How	Seach apenONE Echange 😰 ۵ 📢	essure Relief DWDOWN and are System Safet	ysis * 🕼 Design * 🕅	ies Stream Analy LEquipment D Model Analy lysis	Resources Case Studier Data Fits essor Coptimizer Analys	View Customize	Equation Oriented	amics Plant Data Ec Anager TO Active Manager TO On Hold ackages Without Solver To Without Solver	Economics Dyna Se V Wility M S Adjust N Fluid Pa Simulatio	Home NewUser Tunit S
Device Case (Made) - Solver Active: + marker × marker × Marker Dependent Consider Dependent Dependent 0.0000 Consider Dependent Note (Depine) 3112 Consiter Dependent <t< th=""><th>s 0 🛞.</th><th>known: 0 C</th><th>changers -</th><th>D br</th><th>MW (%)</th><th>Energy Savings: _</th><th>:USD/Year</th><th>ital:USD Utilities:</th><th>< Capit</th><th></th></t<>	s 0 🛞.	known: 0 C	changers -	D br	MW (%)	Energy Savings: _	:USD/Year	ital:USD Utilities:	< Capit	
Rec n n n n n n n n n n n n n							Solver Active × +	wsheet Case (Main) - Solve	· Flow	
No. Matrixii Share - - × Matrixii Share Team Name Upport Matrixii Share Upport Matrixii Share Team Name 0 Upport Matrixii Share Upport Old Marein Share 0.0000 0.0000 0.0000 0.0000 Outport Mapeen/Lege 0.0000	^									ps .
Normality Workshert Term Name 0 Vapur Phase Liquid Phase Aller Workshert Sterm Name 0 0.0000 0.0000 0.0000 Old Gas Feel Wood Phase Sterm Name 0 0.0000 0.0000 0.0000 Old Gas Feel Wood Phase Sterm Name 0 0.0000 0.0000 0.0000 Old Gas Feel Wood Phase Sterm Name 0 0.0000 0.0000 0.0000 Old Gas Feel Wood Phase 0 0.0000<		×	-						Material Stream: 8	15 Ana
Name Worker Likkensteller Upper Versite Marker Name 0.0000 0.0000 Properies Breaster Big Orn J, gl 32.00 32.00 32.00 Operies Breaster Big Orn J, gl 32.00 32.00 32.00 Operies Breaster Big Orn J, gl 32.00 32.00 32.00 Operies Breaster Big Orn J, gl 32.00 32.00 32.00 Value Mark Free Big Nell 33.172=004 618.8 42.22 416.4 Mark Free Big Nell Stream Start Nel								0	Madada and and a	ment
Name Variable Digeneration Digeneration <thdigeneration< th=""> <thdigeneration< th=""></thdigeneration<></thdigeneration<>			Dhara	a David	Margare Dhana			ents Dynamics	Attachme	Anat
Lode Dia Gas Faret Note Note Star Description (Note Free Upmole N) 0.0000 (Note Free Upmole N) 0.0000(N)			0.6624	6 (0.3376	0.3376	tion	Vapour / Phase Fraction	Conditions	harts
h b b b b b b b b b b			0,0000	0 0	0,0000	0,0000		Temperature [C]	Properties	tudie
Inter Out Gui Pere Out Gui Pere Out Gui Pere With Weatherst Water Veraulterst Nates Cost Presenterst Notes during (Magnetic) 3.312 - 0.04 61.80 40.73 Nates free (Magnetic) Mater free (Magnetic) 3.312 - 0.04 61.80 40.73 Nates Cost Presenterst Notes Mater free (Magnetic) 1.312 - 0.01 40.80 40.73 Nates Notes Mater free (Magnetic) 1.312 - 0.01 91.83 40.70 1.11 41.52-0.01 Mater free (Magnetic) Mater free (Magnetic) 1.312 - 0.01 91.83 40.70 1.01 91.83 40.70 Nate free (Magnetic) Mater free (Magnetic) 1.01 91.83 40.70 1.01 91.84 40.70 Nate free (Magnetic) 1.01 40.49 1.01 91.84 40.87 1.01 91.94 1.01 1.			32,00	0	32,00	32,00		Pressure [kg/cm2_g]	Composition	ts
Ki Xuan Mar foro fig/h 3.312e-004 61.6 3.230e-004 User Vacab Mar foro fig/h 1.312e-005 -0.114 -1.052e-005 Kots Pamatad Web Mar foro fig/h -1.237e-005 -0.114 -1.052e-005 Kots Pamatad Web Mar foro fig/h -1.237e-005 -0.114 -1.052e-005 Kots Pamatad Web Mar foro fig/h -1.237e-005 -0.114 -1.052e-005 Kots Pamatad Web Mar foro fig/h -1.237e-005 -1.14 -1.052e-005 Kots Pamatad Web Mar foro fig/h -1.277re-007 -4.608e-005 -7.771e-007 Kots Pamatad Web Rom 1 -7.77re-007 -6.027 -6.027 -6.027 Kots Pamatad Web Rom 1 -7.77re-007 -6.027 -6.027 -6.027 -6.027 Kots Pamatad Web			416,4	2	212,2	628,6	/h]	Molar Flow [kgmole/h]	Oil & Gas Feed	ata
User Variables Mail and feeling (Magnoid) -1.33 = 0.13 40.73 Notes Mail feeling (Magnoid) -1.31 = 0.03 -3.81 = 0.05 State feeling (Magnoid) -1.31 = 0.03 -3.81 = 0.05 -3.81 = 0.05 State feeling (Magnoid) -1.31 = 0.05 -3.81 = 0.05 -3.81 = 0.05 State feeling (Magnoid) -1.31 = 0.05 -3.81 = 0.05 -3.81 = 0.05 Nate feeling (Magnoid) -0.07 = 0.05 -3.81 = 0.05 -3.81 = 0.05 Nate feeling (Magnoid) -0.07 = 0.05 -0.07 = 0.05 -0.07 = 0.07 = 0.07 Nate feeling (Magnoid) -0.07 = 0.05 -0.07 = 0.07			e+004	9 3,250e	618,9	3,312e+004		Mass Flow [kg/h]	K Value	
Lots Mair Instrug (Mignole) -1,271 e-003 -1,182 e-005 Coff Parameters Mair Instrug (Mignole) -1,271 e-003 -6,608 e-005 -1,711 e-007 Monitori Unit Head From (Mignole) -1,271 e-007 -6,608 e-005 -1,711 e-007 Liq Vol Row (Sci Com (Init)) -1,271 e-007 -6,608 e-005 -1,711 e-007 -6,608 e-005 -1,711 e-007 Unity Type			49,73	3	6,383	56,12	w [m3/h]	Std Ideal Liq Vol Flow [m3	User Variables	
Normalized Vieta Normalized Vieta			e+005	4 -1,852e	-3114	-1,237e+005	igmole]	Molar Enthalpy [kJ/kgmol	Notes Cost Parameters	
Ling Vol Flow (2) Sol Cool (m3/h) (5.1) Rod Ryan (2) Sol Cool (m3/h) (5.1) Usity Type Usity Type (Usity Type) (Usity Type)			007	5 .7711	-6.608e+005	-7.777e+007	gmole-Cj	Heat Flow [k]/kgmole	Normalized Yields	
			49.49	9	5019	65.18	ond [m3/h]	Lig Vol Flow @Std Cond In		
						Basis-1		Fluid Package		
								Utility Type		
•	*									es

Рис. 26. Параметры холодильника

Далее добавляете сепаратор, чтобы показать состав конечного продукта (рисунок 27)

Рис. 27. Сепаратор

На этом этапе завершено моделирование реактора блока установки изомеризации.

Теперь можно сравнить приход сырья (газ) с расходом полученных продуктов на 10 потока (рисунок 28).

Stream: Ca	рые			- 0 × ,	Untitled - A	spen HYSYS V10 - aspenONE					- ø ×
Attachm	mts Dynamics			1400	Material Stream: 10				- 1	th aspenONE E	schange 🔛 🗠 🕯
heet		Mass Flows	Liquid Phase	pent	Worksheet Attachm	ents Dynamics					
ons	Hydrogen	0.0000	0.0000	Anal	Worksheet		Mass Flows	Vapour Phase	Liquid Phase		
es	Methane	0.0000	0.0000		Conditions	Hydrogen	15,0094	0.0000	15 0094		
ution	Ethane	0,0000	0.0000		Properties	Methane	8 9082	0.0000	8 9082		cr 57
is reed	Propane	712,1376	712,1376		Composition	Ethane	15,8155	0.0000	15,8155		
im Assay	i-Butane	485,8509	485,8509		Oil & Gas Feed	Propane	735.4123	0.0000	735.4123		
in the second	n-Butane	36,6052	36.6052		Petroleum Assay	i-Butane	723 3456	0.0000	723 3456		
napies	i-Pentane	712,1376	712 1376		K Value	n-Butane	02 0050	0.0000	02 0850		^
mater	n-Pentane	5786,9497	5786 9497		User Variables	-Dentane	2264 1522	0.0000	2264 1522		
and Vielde	Cyclopentane	782.0202	782 0202		Notes	n-Pentane	3401 1330	0.0000	3401 1330		
and menors	22-Mbutane	831,9364	831.9364		Cost Parameters	Cuclonentane	770 7164	0.0000	770 7164		
	23-Mbutane	1530,7630	1530 7630		Normalized Tields	22. Minutana	3465 5406	0.0000	AACS CADE		
	2-Mpentane	7520,7052	7520 7052			23. Minutana	2440, 5400	0.0000	2442 6615		_
	3-Moentane	5071 4844	5071 4844			2. Monstere	2442.0015	0.0000	2442.0013		
	n-Hexane	5450 8474	5450 8474			2-mpentane	01/20//4	0,0000	01/3/0//4		_
	Mcvclopentan	2672 1798	2672 1798			- Herene	4043.0440	0.0000	4043.0440		
	Curinheyane	1008 1561	1000 1551			Menterate	2041.5736	0,0000	2041.5736		_
	Benzene	419 2960	419 2960			Culeboonan	1573.3938	0.0000	1573,3938		_
	22.Magetage	10055	10055			Cyclohexane	1728.1963	0.0000	1728.1963		
	24.Mosetane	1,9900	1,9900			senzene	0.0008	0.0000	0,0008		
	everyopheritanie	1,3311	1,3311			22-Mpentane	1.9957	0.0000	1,9957		
				7							
	Total	33114,39713 kg/h v PropertiesBasis	0			Total	32500,50155 kg/h				* *

Рис. 28. Сравнение полученных результатов моделирования

Вывод

Исходя из полученных результатов моделирования видно, что количество п-пентана, которая поступает в приходе 5786,950 кг/ч и в расходе составила 3491,133 кг/ч. Повышается количество і-пентана 3364,152 кг/ч (рисунок 25). Проведенные результаты показывают, моделирование схемы и расчеты выполнены в полном объеме, установка изомеризации рабочая.

ЗАКЛЮЧЕНИЕ

Процесс изомеризации является одним из самых рентабельных способов получения высокооктановых компонентов бензинов с улучшенными экологическими свойствами. Актуальность установок изомеризации также возросла с введением новых сверхжестких ограничений на экологические свойства автомобильных бензинов, включая ограничение по фракционному содержанию ароматических соединений и бензола. составу, Установки изомеризации позволяют получить топливо с характеристиками, отвечающими жестким стандартам Евро-4 и Евро-5. Интенсивное наращивание мощностей процесса изомеризации осуществляется за счет реконструкции существующих и строительства новых установок. Одновременно проводятся модернизация и интенсификация действующих установок изомеризации под процессы с рециркуляцией не превращённых нормальных парафинов. Сырьём изомеризации являются легкие бензиновые фракции с концом кипения от 62 °С до 85 °C. Повышение октанового числа достигается за счёт увеличения доли изопарафинов. Процесс осуществляется, как правило, в одном или двух реакторах при температуре, в зависимости от применяемой технологии, от 110 до 450 °С и давлении до 35 атм.

Литература

1. Краснобородько, Д.А. Моделирование экстрактивной ректификации с помощью информационно-моделирующей программы Aspen Hysys.: учеб. пособие / Д.А. Краснобородько, Р.Ю. Кулишенко, В.А. Холоднов. СПб.: СПбГТИ (ТУ), 2018.-62 с.

2. Будник В.А. Методическое пособие по программе подготовки студентов технологических дисциплин. Работа в среде Hysys. Салават: 2010. - 28 с.

3. Ana Vuković. Reactor temperature optimization of the light naphtha isomerization unit // goriva i maziva. 2013. No 52(3). C.195-206.

4. Потапов И. А. Разработка совместного процесса изомеризациигидроочистки бензиновых фракций. URI: <u>http://hdl.handle.net/123456789/1673</u>

5. Алфаяад А.Г., Валиев Д.З., Кемалов Р.А., Кемалов А.Ф. Анализ процесса изомеризация лёгких бензиновых фракций // Природные энергоносители и углеродные материалы & Natural energy sources and carbon materials. – 2021. – № 4(10); URL: energy-sources.esrae.ru/4-51 (дата обращения: 18.12.2021).