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Abstract—The task of sensory-based autonomous navigation
of mobile robots requires data fusion from multiple sources in
order to properly detect and recognize environmental obstacles.
One of important issues mobile robots deal in a typical multi-
level indoor environment is a stair well detection and negotiation.
This paper presents ROS-based stairs detection implementation
using onboard cameras of the Russian mobile crawler robot Ser-
vosila Engineer. Virtual experiments were performed in Gazebo
environment with a single camera and a stereo camera.

Index Terms—Computer vision; Object recognition; ROS;
Gazebo; Mobile crawler robot

I. INTRODUCTION

Mobile robots are gradually getting more integrated in
various aspects of human life and activities, from participation
in one-time dangerous operations to social interaction with
people on a daily basis. The dangerous operations include fire-
fighting services [1], hazardous industries and production [2],
urban search and rescue operations (USAR [3]), and special
military operations [4]. Human-robot social interaction pro-
vides new concepts and improves existing processes in modern
education [5]–[7], manufacturing [8], medical industry [9] and
pandemic negotiation [10], human support and assistance with
daily tasks [11], [12], restaurant services [13], and enter-
tainment [14]). All these tasks require advanced technologies
of sensory-based autonomous navigation within a compound
environment.

Autonomous navigation is a robot ability to independently
make decisions about its motion and actions, based on its on-
board sensors performance and data quality that they provide,
including internal states, external environmental information
and location. The need for robot autonomy arises when it

is assumed to operate in conditions of variable or poor
communication with a teleoperation mode control system. The
teleoperation mode implies that a robot is controlled by a
human operator who remotely sets the robot’s motions via
control devices (e.g., a control panel or a computer), which
could be further improved using intelligent assistance advises
and services [15]. While controlled in the teleoperation mode,
the robot does not require special algorithms and software for
object recognition since a human operator uses information
sensory data (e.g., cameras, LIDARs, sonars, etc.) for decision
making and manual robot control. Yet, in this mode a human
factor might result into inaccurate robot motion or even lead
to a complete loss of the robot due to the operator mistakes,
distractions or poor attention to details.

In turn, in the case of autonomous or semi-autonomous
navigation, the dependency on the human factor drastically
decreases. While onboard sensors and processing algorithms
might fall behind a human brain in terms of cognition and
recognition, they have significantly better perception range
and quality than a human vision and audition capabilities.
Moreover, data fusion from multiple onboard sensors allow
to increase perception capabilities far beyond human senses.
This emphasizes an importance of properly designed and
tested systems for gathering and processing of incoming data
from robot’s onboard sensors. Cameras of different types are
probably the most common and widely used range sensors in
robotics. A broad variety of computer vision algorithms, which
allow environment perception [16], object recognition [17],
cognitive analysis of a scene [18] and many other functions,
are implemented with cameras.

In search and rescue operations, especially in an urban
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environment, there is a high probability that a robot might
encounter complicated yet traversable obstacles on its way.
These could be piles and debris, which appeared as a result of
of destructive forces, as well as ordinary fully functional con-
structions that are often found in everyday life. In both cases
the robot should be capable to autonomously and successfully
overcome these obstacles. One of such typical for a human-
populated environment constructions that turn into obstacles
for robots during operation is a stair well or a staircase.

This paper presents robot operating system (ROS [19])
based stairs detection implementation using onboard cameras
of the Russian mobile crawler robot Servosila Engineer [20].
An existing OpenCV library for recognizing stairs in the real
world [21] was ported into ROS via our intermediate link
and integrated with corresponding to the real robot types
of cameras. Virtual experiments were performed in Gazebo
environment with a single camera and a stereo camera.

II. MOBILE ROBOT SERVOSILA ENGINEER

Servosila Engineer (Fig. 1) is a mobile crawler-type robot
that is manufactured by the Russian company Servosila [20].
The robot is designed to perform tasks in difficult and danger-
ous conditions, including hazardous production, engineering
services, fire fighting services, search and rescue operations
and others.

Fig. 1: Crawler Robot Servosila Engineer

The robot could be employed in indoor environments as
well as outdoors, in snow and dust. The robot has a relatively
small weight that allows to carry it in a backpack by a single
person. This eases the robot use in hardly reachable for a
human locations and natural disasters’ sites, where the robot
transportation by a truck is difficult or completely impossible.
Thanks to its design, the robot is capable to climb stairs in
the teleoperation mode as well as inspect car interiors. The
robot mobility was studied empirically by the authors during
stairs climbing experiment (Fig. 2) while its usage for a car
inspection was studied in Gazebo simulation (Fig. 3) with a

model of the robot that had been created in our laboratory [22],
[23].

Fig. 2: Servosila Engineer robot climbs stairs in the teleopera-
tion mode during our experiment in Kazan Federal University,
Kremlevskaya street 35

Fig. 3: Servosila Engineer inspects the interior of a car model
in Gazebo simulation

The head of the robot Servosila Engineer (Fig. 4) contains
an on-board computer that is responsible for all calculations.
The on-board computer has Intel Core i7 3517UE 1.70 GHz
CPU, 4 GB DDR3 1333 MHz RAM, 32 GB InnoDisk SSD
storage and supports Intel HD Graphics 4000. Currently it
uses Linux Ubuntu 20.04 LTS operating system. In particular
configurations, the head could be equipped with a LIDAR,
accelerometer, gyroscope and radio transmitter.

Fig. 4: Servosila Engineer’s head. Left image: a monocular
rear view camera. Right image (from left to right): a left
monocular camera of a stereo vision pair, a flashlight, a camera
with variable optical magnification, a right monocular camera
of the stereo pair, on top is LIDAR.
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Fig. 5: Block scheme of stairs recognition algorithm in Gazebo

III. STAIRS RECOGNITION ALGORITHM

The recognition of stairs and their overcoming is an im-
portant topic for research in the field of robotics. In [24]
authors proposed a staircase recognition and localization for
a cleaning robot application using a deep learning model.
The article [25] suggested a new algorithm for identifying
stairs based on a depth camera. The paper [26] described a
staircase recognition system for a UAV that was implemented
with a CNN-based imaging process for stair recognition and
distance measurements with LIDAR. In [27] Hirasawa pro-
posed to improve stair climbing capabilities by employing
passive crawlers. Fukuda et.al. presented involute curve shaped
mechanism that concentrates on stair climbing [28].

The stairs recognition system in Gazebo is written using
an open source computer vision and machine learning library
OpenCV C++. Figure 5 presents a block scheme of the imple-
mented in Gazebo stairs recognition system, which employs
Delmerico et.al. package [21].

At initialization step, the simulation of robot with a central
camera and a stereo camera in Gazebo world which contains
models of stairs is launched. Next, the robot’s cameras start
publishing the captured images of the surrounding environ-
ment to ROS topics. It is important to check if both images
of the stereo camera are being published to ROS topics;
otherwise, the program throws an exception. Then special ROS
node depth converter receives stereo camera’s images, forms
a depth map and publishes it to the ROS topic; at the same
time the depth map is demonstrated on the screen within the
Gazebo simulation. The heart of the system is stairs detector
ROS node which is responsible for the stairs detection. After

the depth map is formed, stairs detector node receives this
map and an image from the robot’s central camera from ROS
topics. Then stairs detector node employs getStairs, which
passes depth map and vector of cv :: Point that will contain a
resulting bounding box. But before getting stairs it is necessary
to check if a format of the received depth map is 8UC1 (which
means 8-bit single-channel array); otherwise, the program
throws an exception. After this verification, stairs detector
runs cannyEdgeDetection function, which passes the re-
sults to houghLine function. The later passes its output to
getBoundingBox function that forms a bounding box around
potential staircases, which serces as a final output of getStairs
function. Finally, the program overlays this bounding box on
an image that is obtained by the central camera of the robot.

As a result, if stairs are recognized based in images from the
stereo camera and the generated depth map, then a resulting
bounding box is placed on an incoming image from the
central camera, which shows where a structure similar to stairs
is detected. After overlaying a bounding box, an image is
demonstrated in a separate window of the Gazebo simulation.

The robot cameras operate at 60 frames per second rate
and a result of a stairs recognition may change from one
frame to another. This is caused by a formation of a depth
map and is also affected by a number of separate objects that
have similar to staircases structures. For example, Figures 5, 6
contain the same environment with three staircases structures
and there was a slight shift of a bounding box location even
though in both frames the staircase model in the left side of
the environment was recognized.

Figure 7 demonstrates an example of the right side staircase
model recognition with a small offset. When there is a single
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staircase instance in an environment, the recognition algorithm
places a bounding box in a such way that the box’s frame is
settled in the location of the staircase model’s frame (Fig. 8).

Fig. 5: The left stairs model was recognised

Fig. 6: The left stairs model was recognised

Fig. 7: The right stairs model was recognised

Fig. 8: The model of the stairs located at an angle was
recognised

IV. MODELING IN GAZEBO

A. Getting images from cameras in Gazebo

Various Gazebo plugins are used to create cameras in the
Gazebo simulator. To create a regular monocular camera we

used libgazebo ros camera.so plugin; for a stereo camera
libgazebo ros multicamera.so plugin was used [29].

Callback functions for the right and left images were
integrated into depth map construction code. In the con-
structor these functions were tied to the corresponding
ROS topics of the stereo camera. The program starts us-
ing these functions when new data are transmitted into
ROS topics. It is critical that the images from the right
and left cameras are transmitted at the same moment of
time. To boolean variables left camera msg updated and
right camera msg updated serve as a lock, and only when
both become true (this means an image from the corre-
sponding camera was received) the algorithm proceeds to
getDepthMap function.

B. Creating a depth map

After depth converter ROS node receives images from the
stereo camera, it is verified that they are available and have a
value in getDepthMap function, the algorithm starts forming
a depth map. A depth map is an image where each pixel
contains depth information (not RGB data) and it is usually
represented as a grayscale image [30]. It is for this purpose
that the getStairs function checks that the resulting depth
map has 8UC1 format. The depth map contains information
about a distance between surfaces of objects from a given point
of view and has a broad usage.

To form an appropriate depth map, a thorough selection
of parameters configuration is critical. For our algorithm the
following settings were used in Gazebo:

NUM_DISPARITIES = 0
BLOCK_SIZE = 21
SPECKLE_RANGE = 8
SPECKLE_WINDOW_SIZE = 9
UNIQUENESS_RATIO = 5
TEXTURE_THRESHOLD = 507
MIN_DISPARITY = -39
PRE_FILTER_CAP = 61
PRE_FILTER_SIZE = 5

where
• NUM DISPARITIES is a number of disparities, i.e., a

number of pixels to slide a window over as this value
increases the range of visible depths, but more calculation
is required.

• BLOCK SIZE larger blocks create smoother images,
smaller blocks create noisy images.

• SPECKLE RANGE controls proximity in value dispari-
ties must be to be considered a part of a same blob.

• SPECKLE WINDOW SIZE is a number of pixels below
which a disparity blob is dismissed as ”speckle.”

• UNIQUENESS RATIO if a best matching disparity is not
sufficiently better than every other disparity in a search
range, a pixel is filtered out.

• TEXTURE THRESHOLD: filters areas that do not have
texture for a reliable matching.

• MIN DISPARITY: an offset from x-coordinate of a left
pixel at which to begin searching.
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• PRE FILTER CAP and PRE FILTER SIZE: normalize
an image brightness, enhance texture in a preparation for
a block matching.

Fig. 10: Example of a good depth map used in stairs recogni-
tion system

Fig. 11: Example of a poor depth map for stairs recognition
system

Fig. 12: Example of a poor depth map for stairs recognition
system

The values of these parameters were set as a result of an
empirical research.

Depending on certain values, a depth map may change.
For example, the depth map (Fig. 10) was created with the
best parameter’s, described in a table above. This depth map
has a smooth appearance and a small noise value, making
it a good selection for the stairs recognition system usage.
Another example is a poor depth map (Fig. 11), which is
not recommended for usage as it has more noises and is
not smooth enough in edges of stairs. This depth map was
created with just a single parameter that differed from the
recommended setup (the number of disparities was set to 16).
Another example of a poor depth map is demonstrated in
Fig. 12; it has more noises, which make it less informative
for stairs recognition (number of disparities = 16, block size
= 15, minimal disparity = -50).

V. CONCLUSIONS

An important task of a mobile robot within a typical
multi-level indoor environment is a stair well detection and
negotiation. This paper presents ROS-based stairs detection
implementation using onboard cameras of the Russian mobile
crawler robot Servosila Engineer. Virtual experiments were
performed in Gazebo environment with a single camera and a
stereo camera. We presented an empirically defined selection
of configuration parameters that optimize a constructed depth
map. As a part of our ongoing work, the algorithm will be
transferred onto a real robot and verified in a real world envi-
ronment. Next, a function of autonomous staircase detection
and climbing will be integrated into a control software of
Servosila Engineer robot.
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