
The impact of Grey Heron (Ardea
cinerea L.) colony on soil
biogeochemistry and vegetation:
a natural long-term in situ
experiment in a planted pine
forest

Mikhail I. Bogachev1*, Denis V. Tishin1,2*, Artur M. Gafurov2,
Bulat I. Gareev2, Rasul G. Imaev2, Dmitrii I. Kaplun1,
Maria I. Markelova3, Nikita S. Pyko1, Svetlana A. Pyko1,
Valeria A. Romanova3, Anastasiia N. Safonova1,
Aleksandr M. Sinitca1, Bulat M. Usmanov2 and Airat R. Kayumov3*
1Centre for Digital Telecommunication Technologies, Saint Petersburg Electrotechnical University “LETI”,
Saint Petersburg, Russia, 2Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia,
3Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia

Increased anthropogenic pressure including intensification of agricultural
activities leads to long-term decline of natural biotopes, with planted forests
often considered as promising compensatory response, although reduced
biodiversity and ecosystem stability represent their common drawbacks. Here
we present a complex investigation of the impact of a large Grey Heron (Ardea
cinerea L.) colony on soil biogeochemistry and vegetation in a planted Scots pine
forest representing a natural in situ experiment on an engineered ecosystem. After
settling around 2006, the colony expanded for 15 years, leading to the intensive
deposition of nutrients with feces, food remains and feather thereby considerably
altering the local soil biogeochemistry. Thus, lower pH levels around 4.5, 10- and
2-fold higher concentrations of phosphorous and nitrogen, as well as 1.2-fold
discrepancies in K, Li, Mn, Zn and Co., respectively, compared to the surrounding
control forest area could be observed. Unaltered total organic carbon (Corg)
suggests repressed vegetation, as also reflected in the vegetation indices
obtained by remote sensing. Moreover, reduced soil microbial diversity with
considerable alternations in the relative abundance of Proteobacteria,
Firmicutes, Acidobacteriota, Actinobacteriota, Verrucomicrobiota,
Gemmatimonadota, Chujaibacter, Rhodanobacter, and Bacillus has been
detected. The above alterations to the ecosystem also affected climate stress
resilience of the trees indicated by their limited recovery from the major
2010 drought stress, in marked contrast to the surrounding forest (p = 3·10−5).
The complex interplay between geographical, geochemical, microbiological and
dendrological characteristics, as well as their manifestation in the vegetation
indices is explicitly reflected in the Bayesian network model. Using the
Bayesian inference approach, we have confirmed the predictability of
biodiversity patterns and trees growth dynamics given the concentrations of
keynote soil biogeochemical alternations with correlations R > 0.8 between
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observations and predictions, indicating the capability of risk assessment that could
be further employed for an informed forest management.
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1 Introduction

In recent decades, engineered ecosystems characterized by
considerable physical alterations of the local environments have
attracted significant attention (Jones et al., 1994). Plantation
ecosystems, including planted forests, are often viewed as a
compensatory response to the continuous long-term decline of the
total area covered by natural biotopes, mainly due to human
interventions (Tilman and Lehman, 2001). However, typically
limited plant composition represents their common drawback,
leading to the reduction in the local soil microbiota diversity and
stability (Chen et al., 2019), that in turn appears an essential driver of the
flora diversification and vegetation productivity (VanDerHeijden et al.,
2008). These complex symbiotic interactions largely govern stress
resilience and adaptation capabilities of the entire ecosystem
(Cardinale et al., 2012; Liang et al., 2016), especially under
combined stress factors, imposing major challenges for the
engineered ecosystems management. Therefore, a better
understanding of the complex interplay between soil geochemistry,
microbial biodiversity and flora vegetation dynamics that are inevitable
components of the overall ecosystem stability and its adaptation
capabilities is essential for overcoming the above challenges.

While the main focus of interest has been traditionally shifted
towards anthropogenic effects, multiple studies of zoogenic and
ornithogenic ecosystems largely focused on the unique and
vulnerable habitats in the polar regions and on remote islands
(Zmudczyńska-Skarbek et al., 2015; Zeglin et al., 2016; Rowe
et al., 2017; Zmudczyńska-Skarbek and Balazy, 2017; Abakumov,
2018; Guo et al., 2018; Potapowicz et al., 2020; Abakumov et al.,
2021; Nizamutdinov et al., 2021). Nevertheless, terrestrial
ornithogenic ecosystems are also of considerable interest, since
they often represent long-term natural testbeds of locally altered
environments, and thus provide significant information on the
adaptability of local flora and fauna, that can be studied without
introducing any additional anthropogenic invasion.

Large bird colonies occupying relatively compact areas deposit
excessive amounts of nutrients (Frederick and Powell, 1994;
Ashworth et al., 2020), leading to considerable alterations in the soil
geochemistry andmicrobiota, affecting the surrounding vegetation, and
thus altogether considerably altering the local ecosystems (Sekercioglu,
2006; Whelan et al., 2015; Natusch et al., 2017; Lowney and Thomson,
2021; Grant et al., 2022; Hawke, 2022; Lowney and Thomson, 2022).
For example, the impact of large birds like cormorants (Phalacrocorax
carbo), Adélie penguins (Pygoscelis adeliae), Eurasian Crane (Grus grus)
andGreyHeron (Ardea cinerea) has been intensively studied (Goc et al.,
2005; Hobara et al., 2005; Kameda et al., 2006; Adamonytė et al., 2013;
Klimaszyk et al., 2015; Klimaszyk and Rzymski, 2016; Guo et al., 2018;
Matulevičiūtė et al., 2018; Veum et al., 2019; Al Shehhi and Muzaffar,
2021; Machač et al., 2022; Valkó et al., 2022). These birds form large
colonies on coasts and forests leading to an intensive deposition of
allochthonous substances in the local environment and consequent

eutrophication, in turn altering the soil biogeochemistry, degrading the
biodiversity and suppressing plants vegetation (Ishida, 1996; Anderson
and Polis, 1999; Hobara et al., 2005; Kolb et al., 2012; Adamonytė et al.,
2013). In turn, these colonies could be viewed as long-term natural
testbeds often contributing to the local environment over decades,
where the endpoint of this multi-year natural experiment could be
observed and analyzed here and now.

Soil microbiomes have been proposed as sensitive indicators of
global change and an integral part of biogeochemistry (Oyugi et al.,
2006; Varin et al., 2012; Santamans et al., 2017). The structure of
microbiome significantly depends on carbon and nitrogen (Ligeza and
Smal, 2003; Harrow et al., 2006; Schaefer et al., 2014; Tytgat et al., 2016;
Otero et al., 2018), moisture (Lavian et al., 2001), and phosphorus
(Chong et al., 2009; Roesch et al., 2012; Kim et al., 2014). In turn, the
forest floor quality and biogeochemistry deposition are among common
consequences of the ornithogenic ecosystem alterations (Hobara et al.,
2001; Ellis, 2005). Thus, the birds feaces, which are extremely rich in
phosphorus (Osono, 2012; Zhu et al., 2014; Wurster et al., 2015;
Domínguez et al., 2017; Telesford-Checkley et al., 2017; Otero et al.,
2018), nitrogen (Legrand et al., 1998; Tomassen et al., 2005; Barrett
et al., 2006; Aislabie et al., 2008) and ammonia (Mizutani and Wada,
1988; Zhu et al., 2011; Riddick et al., 2014; Crittenden et al., 2015; Croft
et al., 2016), as well as organic matter (Huang et al., 2014; Chen et al.,
2020), affect the soil and sediment microbiomes (Zhu et al., 2015; Shen
et al., 2023). Moreover, they introduce significant concentrations of Mg,
Ca, K and Zn (Ellis et al., 2006; Breuning-Madsen et al., 2010; García
et al., 2011) into the affected soil, having significant impact on both
microbial communities (Wang et al., 2015; Santamans et al., 2017;
Minkina et al., 2022) and fungal diversity (Adamonytė et al., 2013;
Kutorga et al., 2013) of the latter. These alterations initiate consequent
considerable shifts in the soil macrofauna (Korobushkin and
Saifutdinov, 2019) and formation of unique ornithophilic and
ornithochorous vegetation (Bradbury et al., 2005; Azpiroz and Blake,
2016).

Conifer trees including Scots pines (Pinus sylvestris L.) are
among the common nesting sites and thus are considerably
affected by bird colonies (Kutorga et al., 2013; Żółkoś et al.,
2013). While some investigations reported much better growth of
pines at the sites with bird droppings (Tomassen et al., 2005), the
long-term impact of bird feaces leads to the suppression of the trees
and forest-specific plants growth, followed by their eventual
replacement with ruderal and light-preferring plants due to both
drastic changes in the soil biogeochemistry, as well as toxic
properties of the bird feaces (Ishida, 1996; García et al., 2011).
Finally, intensive vegetation of nitrophylic plants leads to the
accumulation of dead biomass and diversity degradation (Jones
et al., 1994; Mun, 1997; Moore, 2006).

Despite a large number of studies on the impact of bird colonies
on soils and surrounding vegetation, many of them have limited
focus either on soil geochemistry or on its microbiota or vegetation
dynamics. In this work, we aimed at a better understanding of the
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complex interplay of various geographical, geochemical,
microbiological, and dendrological characteristics, as well as their
manifestation in the vegetation indices obtained by remote sensing
observations in a Bayesian network statistical model representing
the overall impact on the local environment.

We consider a regularly planted pine forest area as a prominent
testbed, where the emergence and the following 15-year long
expansion of a Grey Heron colony could be viewed as a nearly
perfect in situ natural experiment, with surrounding unaffected

forest of initially the same age, composition and diversity
representing a relevant control. We analyze how long-term
deposition of nutrients from the bird colony altered the local soil
biogeochemistry both under the current nesting sites and in the
surrounding area, leading to major alterations in the local
microbiota. In turn, these conditions affected the trees and other
surrounding flora growth, that has been particularly reflected in
their increased vulnerability to combined biogeochemical and
climate stresses, as well as reduced adaptational capabilities

FIGURE 1
An aerial overviewof the study area. The nests (around 280) are located on the tops of the trees (A), and two to four birds can be observed per nest (B)
resulting in the colony size well above 500. (C) The colony overall view of the colony indicates a ring shape with no trees in the inner circle. (D, E) show the
sampling points in the study area, arrow shows the direction of view shown in (A), coordinates correspond to the central sampling point within the inner
circle. Full circles denote soil sampling points, including (i) four red bullets in the circular area nested by the Grey Heron colony, (ii) five orange bullets
in the inner circle, and (iii) eleven green bullets in the outer area, the latter acting as relevant controls. Asterisks denote Scots Pine trees where tree-ring
data have been collected, including yellow in the presumably affected area and green outside, the latter acting as relevant controls.
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indicated by their limited recovery from the major 2010 drought.
Finally, we also propose a statistical model reflecting the complex
interplay between various factors from initial biogeochemical
contributions by the bird colony to their effect on the vegetation
dynamics and its reflection in the multispectral vegetation indices,
and show how this model could be potentially employed in a couple
of prediction scenarios.

2 Materials and methods

2.1 Study area, Grey Heron colony and
sampling locations

The studied site is located near the southern edge of the Republic of
Tatarstan, on the peninsula formedby the confluence ofVolga, the largest

and the longest river in Europe, and its largest tributary Kama, ashore of a
smaller river Myosha (a tributary of Kama) at 55.46885°N, 49.34276°E.
The site is represented by a regular forest area planted in 1983 consisting
solely of Scots pines. As of summer 2022, the average height of the trees
was 13m, and the average trunk diameter reached 22 cm.

Being surrounded by two major streams near the point of their
confluence altogether forming the largest artificial water reservoir in
Europe, with vast areas covered by shallow waters, the location
forms an extremely attractive habitat for birds due to large amounts
of available food sources. The particular study site was occupied by a
large grey heron colony since approximately 2006, consisting of
280 bird nests (as of summer 2022) located on the top of the Scots
pine trees (Figure 1B). Following the decline and death of the trees
supporting the initial nesting sites, the colony has expanded forming
a consecutively widening circular area (Figure 1C), with the images
taken at the time of analysis (15th June 2022) shown in Figure 1.

FIGURE 2
Boxplots represent relevant soil geochemical properties (Ph and chemical elements) in the samples collected in the central circle (inner), in the
nested area (nests), and in the surrounding unaffected forest (outer). Significance of the differences according to one-way non-parametric ANOVA
(Kruskal-Wallis test) is annotated by p-values, with p < 0.05 highlighted by red color.
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Soil samples were taken from a depth of 5–10 cm which is the
most active zone for the plant roots. In total, 20 sampling sites
arranged in a cross-shaped pattern with the crossover position
coinciding with the center of the bird colony have been selected
(Figures 1D, E). Five sampling sites were located within the inner
circle (one at the center and four at the half distance between the
center and the current nesting sites), four within the current nesting
area, ten in the surrounding forest presumably unaffected by the bird
colony, with one single site outside the forest area at the edge of an
agricultural cropland (barley field).

The selected soil samples were transported at +4C and stored
at −80C until being subjected to a complex biogeochemical
analysis.

2.2 Chemical analysis

In the soil samples, the following geochemical properties
have been investigated: pH, Corg, biogenic elements N, P, K, as
well as 50 other chemical elements. Samples were dried in an
oven at 105°C to constant mass. Soil pH was measured by adding
50 mL of distilled water to 10 g of dry soil, mixing over 3 min
and keeping for another 5 min before recording pH with a
pH meter (Hanna Instruments, Germany). The content of
Corg was determined on Delta V Plus isotope mass
spectrometer (ThermoFisher Scientific, Germany) with Flash
HT attachment in constant flow mode. The other chemical
elements were determined using inductively coupled plasma
mass spectrometry (ICP-MS) on iCAP Qc (Thermo Fisher
Scientific, Germany) and by CHNS/O elemental analysis on
vario EL cube (Elementar, Germany) following standard
protocols.

2.3 16S rRNA gene-based metagenomic
analysis

Extraction and purification of soil DNA for metagenomic
analysis was carried out using the Fast DNA®SPIN Kit for Soil
(MP Biomedicals, Irvine, United States) and a Fast
Prep®24 homogenizer (MP Biomedicals, United States) according
to the manufacturer’s instructions.

A 16S rRNA sequencing library was constructed according to
the 16S metagenomics sequencing library preparation protocol
(Illumina, San Diego, CA, United States) targeting the V3 and
V4 hypervariable regions of the 16S rRNA gene. The initial PCR
was performed with template DNA using region-specific primers
shown to have compatibility with Illumina index and sequencing
adapters (forward primer: 5′). After purification of PCR products
with AMPure XT magnetic beads, the second PCR was performed
using primers from a Nextera XT Index Kit (Illumina).
Subsequently, purified PCR products were visualized using gel
electrophoresis and quantified with a Qubit dsDNA HS Assay Kit
(Thermo Scientific, Germany) on a Qubit 2.0 fluorometer. The
sample pool (4 nM) was denatured with 0.2 N NaOH, diluted
further to 4 pM, and combined with 20% (v/v) denatured 4 pM
PhiX, prepared following Illumina guidelines. Sequencing of 16S
rRNA gene V3-V4 variable regions was performed on the Illumina
MiSeq platform in 2 × 300bp mode. Reads were analyzed using the
QIIME2 software, version 2022.8 (http://qiime2.org/) (Bolyen et al.,
2019). Before filtering, there were 39515 read pairs per sample on
average. Raw reads were processed using DADA2 algorithm
implemented in QIIME (Callahan et al., 2016). After quality
filtering, chimera and phiX sequences removal, we analyzed
11429 joined read pairs per sample on average. The taxonomy
was assigned to the sequences using pre-trained on the latest

FIGURE 3
Comparison of microbiota structure from the soil samples in the central circle (inner), in the nested area (nests) and in the unaffected forest (outer).
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SILVA 138 database 99% OTUs Naive Bayes classifier (Quast et al.,
2012). To characterize the richness and evenness of the bacterial
community, alpha diversity indices were calculated using Chao1,
Shannon, Simpson, and Faith PD metrics.

Raw reads are deposited in the SRA under Project ID
PRJNA933899 in the fastq format (https://www.ncbi.nlm.nih.gov/
sra/PRJNA933899).

2.4 Multispectral remote sensing

Multispectral remote sensing has been performed using the
Geoscan 401 Geodesy drone equipped with the five-band
RedEdge-MicaSense Mx camera (pixel size 3.75 μm, resolution
1,280 × 960 (1.2 MP x 5 imagers), sensor size 4.8 mm × 3.6 mm,
focal length 5.4 mm, output bit depth 12-bit) from 120 m height.
Based on the multispectral images, ten different vegetation indices
have been calculated, altogether providing 15 channels for further
analysis, summarized in Supplementary Table S2 (Buschmann and
Nagel, 1993; Gitelson et al., 1996; Rouse et al., 1974; Noe et al., 2001;
Chuvieco et al., 2002; Haboudane et al., 2002; Huete et al., 2002;
Haboudane et al., 2004; Ueno et al., 2006; Dogan, 2009; Yilmaz et al.,
2014).

2.5 Tree-ring measurements

Scots pine trees, altogether n= 43, among them n= 22 located in the
area surrounding the inner circle directly affected by the bird colony,
and n = 21 located in the outer area, acting as a relevant control. Trees
sampling was carried out according to the methodology adopted in
earlier dendrochronological studies (Cook and Kairiukstis, 2013). The

cores were extracted from the trees with a Pressler borer. Tree ring
width (TRW) was measured on a Lintab-6 with the TSAPWin software
package (Rinn, 2003). The quality of the cross-chronologies was
assessed using the Cofecha software (Grissino-Mayer, 2001). The
exact location of each studied tree was determined using a Garmin
GPSMAR 62S GPS receiver as indicated in Figure 1.

2.6 Trend evaluation in tree-ring data

To evaluate trends in the tree ring width (TRW) data series,
especially in the local time windows of length L, we followed the
methodology described in (Bogachev et al., 2017) and
performed linear regression analysis, and from the regression
fits ri � bi + d obtained the magnitude of the local trend
Δ � b(L − 1), as well as the fluctuations around the trend,
characterized by the standard deviation
σ � (1/L)[∑L

i�1(yi − ri)2]1/2. The relevant quantity we are
interested in is the relative trend

x � Δy/σ (1)
Since the observed relative trend may be due to the natural

variability of the data series, we compared the observational trends x
with the probability distribution P(x; L)dx that a relative trend
between x and x + dx occurs in simulated data series with the same
persistence properties as the considered data series. From P we
derive the trend significance

S x; L( ) � ∫x

−x
P x′; L( )dx′ (2)

where S is the probability that the relative trend in the natural record
remains between −x and x.

FIGURE 4
Boxplots representing spectral channels, as well as vegetation and geological indexes obtained by multispectral remote sensing in the central circle
(inner), in the nested area (nests) and in the unaffected forest (outer). Significance of the differences according to one-way non-parametric ANOVA
(Kruskal-Wallis test) is annotated by p-values, with p < 0.05 highlighted by red color.
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Since the observational records obtained in this study were too
short to evaluate their persistence properties, we have followed a
recently reported consensus model for TRW data that is a long-term
correlated series with Hurst exponent H � 1.0 (Ludescher et al.,
2020; Büntgen et al., 2021), also in agreement with our recent
analysis of 100 Scots pine TRW data in the same region
(Bogachev et al., 2023).

We simulated 16 surrogate records of size 216, split them into
windows of size L, and calculated relative trends x in each local
window, and further evaluated S(x95; L) � 0.95 that defines the
upper and lower limits ± x95 of the 95% confidence interval that
the observational trend is within the natural variability typical for
long-term tree ring data series.

2.7 Statistical analysis

The considered geographical, biogeochemical, dendrological,
and remote sensing based vegetation metrics have been first

tested for the normality of observations at each of the three
local areas (in the circular area surrounded by the nests directly
affected by the bird colony, within the inner circle, and in the
outer area) using Shapiro-Wilk statistical test with significance
threshold at p = 0.05. Since in each considered category of the
data, at least some of the essential metrics indicated significant
deviations from the Gaussian distribution (see section 3.1 for
more details), in the following we applied non-parametric
methods. To reveal statistically significant discrepancies
between these areas, we employed the one-way non-
parametric ANOVA (Kruskal–Wallis) statistical test (or the
Mann-Whitney U-test for pairwise comparisons) with
significance threshold at p = 0.05.

2.8 Bayesian network

In order to combine the soil biogeochemistry, metagenomic
and tree-ring data, taking into account that the number (n = 43)
and location of the trees did not coincide with the soil sampling
points (n = 20), weighted averages of the tree-ring data metrics
for each sampling point has been calculated. Based on the
assumption that the concentrations of locally introduced
chemical substances and biological sediments decay
approximately exponentially with increasing distance from the
nests, that is a common assumption in the sediment distribution
models (Van Dijk et al., 2002; Zhang and Wirtz, 2017), weights
were taken inversely proportional to the logarithms of the
distances between the locations of the sampling points and of
the analyzed trees and renormalized for each sampling point,
respectively.

For the analysis of interrelations between multiple factors
affecting the ecosystem, we employed Spearman’s rank
correlation analysis and reconstructed a non-parametric

FIGURE 6
Spearman’s pairwise rank correlation coefficients between
multiple factors: geographical (distance to either the center of the
colony or the nesting sites from the sampling points), geochemical,
microbiological, dendrological and observational characteristics
exhibiting significant differences between at least two out of the three
areas—the central circle (inner), the nested area (nests) and the
unaffected surrounding forest (outer).

FIGURE 5
Tree ring width (TRW) data for the Scots Pine trees over 36-year
time span (1986–2021) in the presumably impacted area (red curve)
and outside (green curve), as denoted with in Figure 1 with asterisks, as
well as their overall average (black dashed curve). (A) The
averaged TRW data, (B) the TRW deviations from the overall average,
(C) Standardized summer (July-September) trends for temperatures
(red) and precipitation (blue).
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Bayesian network interaction model (Hanea et al., 2015),
following a methodology similar to (Paprotny and Morales-
Nápoles, 2017; Koot et al., 2023).

The practical algorithm of the Bayesian network
reconstruction based on rank correlations included the
following steps.

In the first step, only those factors that exhibited statistically
significant discrepancies according to the one-way non-parametric
ANOVA (Kruskal–Wallis) test at p < 0.05 were included in further
analysis.

In the second step, we calculated pairwise non-parametric
Spearman’s cross-correlation coefficients for all possible pairs of
the remaining factors and represented them in the form of the cross-
correlation matrix

R �
R1,1 R1,2 . . . R1,m

R2,1 R2,2 . . . R2,m

. . . . . . . . . . . .
Rm,1 Rm,2 . . . Rm,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

In the third step, potentially plausible links have been
selected by expert assessment. More specifically, either
impossible or highly improbable causal affects, such as, for
example, impacts of the current vegetation indices (observed
at the time of the field investigations) on the trends in the tree
growth dynamics (accumulated over many years prior to the
time of the field investigations), have been excluded from the
model by expert assessment due to the violation of the causality
principle, while all potentially relevant links have been marked
as feasible.

In the fourth step, to create a graph representing a Bayesian
networks structure that is, by definition, implies a directed
acyclic graph, the remaining loops were eliminated from the
model. For that, a simple procedure which implied finding any
existing loop and eliminating the “weakest” link within that

loop, as indicated by the pairwise rank cross-correlation
coefficient, was repeated until the resulting graph appeared
fully acyclic.

3 Results

3.1 Statistical assessment

In each considered category of the data (geographical,
biogeochemical, dendrological, and remote sensing based
vegetation indices) significant deviations from the Gaussian
distribution have been revealed according to Shapiro-Wilk
statistical test with significance threshold at p = 0.05. These
included the (by definition, one-sided) distribution of the
distances from sample points to the colony center,
concentrations of some essential chemicals, including Mn and
Fe in the inner and nests areas, respectively, as well as the
majority of vegetation indices obtained by multispectral
remote sensing, relative trends in TRW data, the abundance
data for the majority of considered bacterial taxons, and the
Simpson’s biodiversity index in the outer area. Accordingly, in
the following we refer to the results of non-parametric statistical
methods, such as Kruskal–Wallis or Mann-Whitney tests,
Spearman’s correlation coefficient, and non-parametric
Bayesian network (NPBN) graphs.

3.2 Soil geochemistry

Our results indicate that the bird colony has dramatically
altered the local soil geochemistry compared to the surrounding
area that we consider presumably unaffected by sediments (feces,
feathers, food remains, etc.), and the effect can be observed also in
the center of the colony. Thus, the soil pH was 4.7 under the nests
and about 5.3 in the center of the circle area representing the early
location of the colony and currently surrounded by the nests
compared to ~6.0 at a reasonable distance of the colony
(Figure 2). While the total organic carbon (Corg) did not differ
significantly, concentrations of nitrogen (N) and potassium (K)
were considerably higher in the current nesting area and
decreased only slightly in inner circle area. Notably, in the
inner area the concentration of phosphorous (P) was nearly 2-
fold higher compared to the area where the birds are currently
nesting, and up to10-fold higher compared to the outer area
(Figure 2). The impact of nests on the concentration of the above
biogenic elements is also reflected in the pronounced negative
correlation between their concentrations and distance of the
sampling points from the nests (Supplementary Figure S1).
Among other chemical elements, in the inner area significant
changes by 20%–25% has been observed for Li, Mn, Co. and Zn,
while no significant differences between the current nesting area
and the surrounding forest could be observed. No significant
changes could be detected in the concentration of several other
elements (Supplementary Figure S2), including Mg, Ca, Fe, Ni, As
and Se, which were reported in previous works to be changed due
to birds activity (Figure 2).

FIGURE 7
Graphical representation of the Bayesian network summarizing a
combined model of complex interrelations between geographical,
geochemical, microbiological and dendrological characteristics as
well as their manifestation in the vegetation indices obtained by
remote sensing observations.
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3.3 Soil microbiota

A total of 750792 raw reads were obtained, which produced
217147 merged non-chimeric sequences after a series of treatments,
averaging 11429 valid sequences per sample. Supplementary Figure
S3 summarizes the bacterial diversity indices in 3 areas (Chao1,
Faith PD, Shannon, Simpson, and number of observed features).
While significant differences between the nesting area and the
surrounding presumably unaffected forest area could be observed
only for the Simpson’s index, all indices demonstrated similar
tendency indicating reduced microbial diversity in the nesting
area. Significant discrepancies between the relative abundance
under the nests and outside the colony area are summarized in
Supplementary Figures S4–S7; Supplementary Table S1. On the
phyla level, significant discrepancies could be observed for
Proteobacteria (33.8% and 21.7%), Actinobacteriota (26.5% and
33.3%), Firmicutes (8.7% and 1.3%), Acidobacteriota (7.3% and
12.9%), Planctomycetota (6.0% and 5.5%), Verrucomicrobiota
(1.7% and 10.7%), Gemmatimonadota (0.5% and 3.8%),
Myxococcota (0.1% and 1.6%), Patescibacteria (2.5% and 0.3%),
Armatimonadota (0.5% and 0.1%), Methylomirabilota,
Elusimicrobiota and Abditibacteriota (Figure 3). Nevertheless, the
observed changes in the relative abundance of phyla were
moderately correlated with the distance to either nests or colony
center, with the highest impact on Acidobacteriota,
Verrucomicrobiota, Gemmatimonadota and unidentified bacteria
(Supplementary Figure S8).

At the class level, the most abundant classes with significant
differences were Gammaproteobacteria (27.0% and 6.1%),
Alphaproteobacteria (10.8% and 15.6%), Thermoleophilia

(27.0% and 15.3%), Bacilli (8.1% and 1.2%), Verrucomicrobiae
(1.2% and 10.5%), Actinobacteria (14.9% and 11.2%)
(Supplementary Figure S5). Notably, in the nests area the
relative abundance of dominant genera Chujaibacter (13.5%),
Rhodanobacter (7.4%), Bacillus (6.4%), and uncultured bacteria
of Gaiellales (5.6%) and Acidobacteriales (3.2%) were 7–10 fold
higher compared to both inner and outer areas, while Gaiella
(2.5%), Chloroflexi KD4-96 (2.5%), Candidatus_Udaeobacter
from Chthoniobacteraceae (5.6%) and uncultured bacteria
from Xanthobacteraceae (6.7%) and Gemmatimonadaceae
(2.5%) were present only in the unaffected area
(Supplementary Table S1).

3.4 Impact on vegetation

Multispectral channels and vegetation indices (summarized in
Supplementary Table S2) were assessed for the entire analysis area
(see Supplementary Figure S9). Circle areas with 8 m radius around
the sampling sites were selected andmedian values were calculated for
each channel and vegetation index, respectively. Figure 4 shows that
among physical channels, only NIR indicated significant differences
between the three studied areas (inner circle, current nesting area and
surrounding forest). Among studied vegetation indices, most of them
indicated U-shaped patterns, reflecting poor vegetation within the
inner circle, suppressed conditions near the nesting sites, in contrast
to the relatively good situation in the surrounding forest. While seven
different indices reflecting qualitatively similar patterns indicated
significant discrepancies between studied areas, for the overall
model, we have chosen the MTVI2 index, since it provided with

FIGURE 8
Graphical representation of the reduced model exemplifying the predictability of the Simpson’s biodiversity index and tree ring width dynamics for
given concentrations of keynote soil chemicals: (A) matrix of Spearman’s correlation coefficients between model parameters; (B) non-parametric
Bayesian network, with input parameters in the upper layer and predicted indicators in the lower layer; (C) linear regression analysis between observed
and predicted Simpson’s index and TRW trend.
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the smallest number of outliers in the statistical analysis (although due
to pronounced correlations between multiple indices, see
Supplementary Figure S10, selection of some alternative index
would not affect the interpretation significantly). However, two
specialized indices reflected a nearly reversed pattern, the Burn
Area Index (BAI) commonly used to characterize marks of burns
in wooden areas, as well as Iron Oxide (IO) index, a geological index
commonly associated with the presence of iron oxide under the
canopy, presumably reflecting considerable alterations in the soil
geochemistry.

3.5 Impact on pine trees growth dynamics

Figure 5A shows the TRW data series from 1986 until 2021
(total duration 36y) obtained from Scots pines located within the
circle area directly affected by the bird colony (n = 22) and outside
of this area (n = 21) as a relevant control (total n = 43). The figure
shows that the TRW dynamics exhibits three different phases. In
the first phase, the rapid growth rate of young trees is gradually
declining approximately until 1995, when it is substituted by
relatively flat rate growth in the second phase, approximately
until 2005–2007, that coincides with the emergence and early
expansion of the bird colony.

Accordingly, the third phase represents a combined stress
response pattern to the bird colony and to the hydroclimate
anomaly associated with a major summer heatwave accompanied
by a flash drought event in 2010, as indicated by the summer
temperature and the Palmer Drought Severity Index (PDSI)
extremes, see Figure 5C. We next focus on this particular stress
response pattern and analyze the relative dynamics of the TRW
series within the 15y window starting from 2007, that was the last
year when the growth was nearly identical in both considered areas,
until 2021. To highlight the discrepancies, we estimate the overall
average trend and show deviations of the trends in the presumably
affected and control areas from the average trend, see Figure 5B.

Starting from 2010, the temperature trend exhibits a temporary
reversal, and PDSI stabilizes within the range corresponding to
rather neutral conditions, until another drought emergies in 2019
(indicated by low PDSI, see Figure 5C). While the above changes in
the hydroclimate conditions induced a recovery in the tree growth
dynamics, this recovery appeared much more pronounced in the
area unaffected by biogeochemical stress governed by the bird
colony. To quantify the above effect, we calculated the relative
trends x � Δy/σ for each tree within the 15y period from
2007 until 2019. Although the trends were calculated for the
original TRW data series shown in Figure 5A, for a better visual
discretion, we also provide fits to the trends in the deviations from
the average in Figure 5B.

While statistically significant discrepancies between the relative
TRW trends x in the area affected by the bird colony and in the
surrounding areas have been observed (p = 3·10−5, Mann-Whitney
U-test), when compared to the null hypothesis that the observed
trend remains within the natural variability of the long-term TRW
fluctuations characterized by long-term correlations withH = 1, only
two records in the affected area indicated a significant negative trend
(and no positive trends could be observed), while three records in
the surrounding area indicated positive trends (and no negative

trends could be observed), respectively, see Supplementary
Figure S11A.

4 Discussion

Increasing anthropogenic influence on the environment
drastically changes the ecological profile of areas with high
population density and/or intensive agricultural activity, that in
turn requires real-time evaluation and prediction of the ecosystem
status for a timely risk assessment and informed environmental
management. While the engineered ecosystems partially
compensate the decline of the natural biotopes, on the other
hand, they are characterized by considerable alterations in the
local environments and soil biogeochemistry (Jones et al., 1994;
Tilman and Lehman, 2001).

In this research, we analyzed complex interrelations between the
soil geochemistry, microbial biodiversity and flora vegetation
dynamics in a planted Scots pine forest hosting a large colony of
Grey Heron, see Figure 1 for location details. Being nested from
approximately 2006, the colony consists of approximately 280 bird
nests (as of summer 2022) located on the tops of mature Scots pines
trees being surrounded by a relatively unaffected forest area. Given
the initially uniform characteristics of the regularly planted forest
area, the surrounding forest of the same age, composition and
diversity, but barely affected by the bird colony, represents a
relevant control. Thus, the investigated Grey Heron colony
appears a prominent natural in situ experiment unfolding the
changes in an engineered ecosystem in response to the excessive
deposition of both biogenic elements (N, P) and toxic organics
in the soil, as well as considerably reduced pH values compared to
the presumably unaffected surrounding forest area. The above
conditions are representative for both natural areas occupied
with birds (Goc et al., 2005; Hobara et al., 2005; Kameda et al.,
2006; Adamonytė et al., 2013; Klimaszyk et al., 2015; Klimaszyk and
Rzymski, 2016; Guo et al., 2018; Matulevičiūtė et al., 2018; Veum
et al., 2019; Al Shehhi andMuzaffar, 2021; Machač et al., 2022; Valkó
et al., 2022) as well as agricultural environments (Bradbury et al.,
2005; Minkina et al., 2022). Accordingly, considering the emergence
of the bird colony around 2006 and its further expansion as an
experimental input, one can currently observe an engineered
ecosystem with accumulated alterations in soil biogeochemistry
and consequent impact on the trees and other surrounding
vegetation as an endpoint of a 15-year long natural experiment.

In order to select the keynote factors that govern the
ecosystem changes, and thus could be used as indicators for
predicting significant alterations in the environment, a cross-
correlation matrix between them was obtained (Figure 6), that in
turn allowed to design a non-parametric Bayesian network model
(Figure 7) revealing the complex interplay between various
ecosystem components, where the nodes are associated with
particular geochemical, microbiological, dendrological and
vegetation indicators, while the edges are characterized by
their interrelations quantified by respective rank correlations
R. In order to simplify the model by eliminating weak and
often secondary effects, in its graphical representation we
show only those correlations R exceeding an empirically
chosen threshold 0.6.
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Degradation of biodiversity and suppression of plants vegetation
in areas occupied with large bird colonies has been reported bymany
authors (Hobara et al., 2001; 2005; Adamonytė et al., 2013). In the
investigated Grey Heron colony, apparently because of high toxicity
of the bird feces (Ishida, 1996; García et al., 2011) and extreme
pH decrease to 4.5 (Figure 2), the death of trees under the nests was
observed in the initial location of the colony with the maximum
exposition time to excessive nutrients accumulation, followed by the
formation of a consecutively widening circular area with the
expansion of the bird colony on the surrounding trees
(Figure 1C). This fact is also reflected in the positive correlations
between the trees growth dynamics (TRW index) and pH (R = 0.65,
Figure 6), indicating negative impact of the soil acidity on the pine
trees growth. Notably, there are also positive correlations between
the trees growth dynamics and microbial diversity represented by
the Simpson’s index (R = 0.29), suggesting that the repression of
trees growth is associated with the reduction of the soil microbiota,
in agreement with recent literature data. As well, the overall
vegetation characterized by the MTVI2 index is positively
correlated with pH, while demonstrating a weaker association
than for the pine trees growth (R = 0.31 vs. 0.57), since other
types of vegetation appear to be less sensitive to soil acidity.

As well, because of the influence of the bird feces, feathers,
food remains, etc., dramatic changes in the soil biogeochemistry
have been observed. In particular, significant increase of biogenic
elements like nitrogen (~10 fold) and phosphorous (~4 fold) in
the soil could be observed, while the organic carbon (Corg) was
even reduced compared to the inner and the outer areas
presumably reflecting the repression of the vegetation (see
Figure 2). Interestingly, while maximum concentrations of
nitrogen have been observed in the area under the trees
currently nested by the birds, phosphorous exhibited its
maximum concentrations in the inner circle corresponding to
the initial location of the colony, that could be attributed to its
presumable sequestration in non-soluble organic matters, an
effect that has been observed in earlier studies (Brenner et al.,
2006; Turner et al., 2006).

Suppression of the vegetation, directly reflected in the measured
vegetation indices MTVI2 and BAI obtained from multispectral
remote sensing data, see Supplementary Figure S9 and Figure 4, is
also in agreement with the tree-ring data indicating that the trees
growth rates were considerably reduced in the inner circle and in the
nesting areas. As one can see from Figure 5, there are pronounced
discrepancies between the TRW dynamics in the affected and
unaffected areas. Remarkably, in the year 2008 trees in the area
affected by the bird colony exhibited higher growth rates than in the
control areas, presumably due to the fertilizing effects of the bird
manure containing excessive concentrations of nitrogen (N) and
phosphorus (P). However, despite of the obvious discrepancy, the
growth rate altogether reduced in both areas continuously from
2008 until 2010 that coincides with the gradual enhancement of
summer temperatures reaching its apogee in a major heatwave in
2010 accompanied by a flash drought indicated by a gradual PDSI
decline.

To further quantify the combined biogeochemical and climate
stress resilience of the trees, we next consider the 10-year time span
between 2010 and 2019 corresponding to the recovery from the
prolonged drought prior and during the extreme 2010 heatwave. We

find that about one-half of all TRW records in the control area
indicated significantly positive trend, while only three records in the
impacted area followed a significant recovery pattern, see
Supplementary Figure S11B. Remarkably, five TRW records in
the affected area demonstrated negative x estimates, including
one statistically significant negative trend, indicating severely
reduced ability to recover from the drought stress under
concomitant impact from the biogeochemical alterations induced
by the bird colony.

In addition, statistically significant differences between the inner
circle (inner), the nesting area (nests), and the surrounding
unaffected forest (outer) could be observed not only in the
relative trend x, but also in the average TRW data over the same
15-year period, as well as over shorter time spans, in particular, since
the point of divergence (2007–2019), as well as over a more recent 5-
year time span (2015–2019), see Supplementary Figure S12.
However, high correlations between all above metrics reveal their
strong interconnection, and thus only the relative trend that
exhibited the most pronounced and significant discrepancies
between studied sites has been considered for further analysis
(see Supplementary Figure S12).

Furthermore, despite of the excessive deposition of nitrogen and
available phosphorous with bird feces (Osono, 2012; Wurster et al.,
2015; Crittenden et al., 2015; Domínguez et al., 2017; Telesford-
Checkley et al., 2017; Otero et al., 2018), reduced microbial diversity
could be observed in the soils of the colony area (Supplementary
Figure S3) (R = 0.45–0.46, see Figure 6). These experimental
observations are reflected in the Bayesian network model
reconstruction (Figure 7). The model reveals explicitly that the
colony has a great impact on pH, nitrogen and phosphorous of
the soil, which in turn affects all other indicators like trees growth
rate (TRW), microbial diversity (Simpson’s index) and some given
bacteria.

Besides of the extreme deposition of nitrogen and phosphorous,
the bird colony areas are characterized with increased
concentrations of K, Na, Mg, Ca, Fe and Zn (Ellis et al., 2006;
Breuning-Madsen et al., 2010; García et al., 2011) in soils, that in
turn also affects soil microbiota (Wang et al., 2015; Santamans et al.,
2017; Minkina et al., 2022). In our investigation, the ~1.2 fold
increase in the concentration was observed only for K in the
nested area (R = −0.44, although statistically insignificant) and
Zn (R = −0.61) in the central area of the colony (Supplementary
Figure S2). Therefore, these elements are not linked with the nests
position in the network (Supplementary Figure S10), although they
affect the microbiota structure. Of note, the concentration of Zn is
linked with trees growth and vegetation indices BAI and MTVI2.
Additionally, while the quantities of Li, Co. and Mn were
significantly reduced in the inner area compared to the nests and
outer areas, only Mn was found to significantly correlate with
microbial diversity. Remarkably, the concentrations of Li, Co., Fe
and Ca are positively correlated with the microbial diversity (R =
0.32. . .0.48), while concentations of Li and Co. decrease in the inner
area of the colony (R = 0.33 and 0.52, respectively). Finally,
geochemical anomalies are reflected in the BAI index that is
positively associated with the concentrations of N, P, Zn and Fe
(R = 0.27. . .0.62), while negatively correlated with pH (R = −0.43,
although some associations appear relatively weak and thus are not
shown in the network).
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The relevance of Arsenic (As) and Samarium (Sm) in the nests
area is questionable and their increase could be a secondary
indicator of the accumulation of an unlocalized contamination.
Arsenic has been reported earlier to accumulate in bird tissues
and feces from the environment (Sánchez-Virosta et al., 2018; Eeva
et al., 2020). Although Samarium is widely investigated for the
development of both antimicrobial and antitumor agents (Morais
et al., 2014; Kratochwil et al., 2021; Zahmatkesh et al., 2022), no data
regarding its accumulation in bird tissues are available.

The above alterations in soil geochemistry, especially the
dramatic contrast of pH (Green et al., 2012) accompanied by a
major excess in nitrogen and phosphorous (Teixeira et al., 2013; Gao
et al., 2021), apparently represented the main factors leading to the
changes in soil microbiota structure, compared to presumably
unaffected areas (Figure 7). The increased abundance of
Proteobacteria and Firmicutes, as well as decrease in
Acidobacteriota and Actinobacteriota fit with similar changes in
soils occupied by bird colonies and increased nitrogen reported
earlier (Teixeira et al., 2013; Gao et al., 2021), represented by
terminal nodes in the reconstructed network (Figure 7). While
the linkage of Verrucomicrobiota, Gemmatimonadota and
Myxococcota with birds has not been described yet, the decrease
of this normal soil flora in the colony area (Supplementary Figure
S2) is significant (R = 0.34. . .0.59, Figure 6), and thus could reflect
negative changes in geochemistry and structure of the soil, and could
act as relevant biomarkers of the changes in the soil ecosystem
(Supplementary Figure S8). Nevertheless, only Gemmatimonadota
is included in the final network based on the desired correlation
threshold.

Finally, four genera Chujaibacter, Rhodanobacter, Bacillus and
uncultured bacteria of Gaiellales were the most abundant ones in
soils under the nests (Figure 3). Among them, only Chujaibacter,
Rhodanobacter, and Bacillus could serve as biomarkers, since they
are linked with many other nodes in the network (Figure 7).
Relatively high abundance of Bacillus in the soil could be a
consequence of their introduction with bird feather (Sotnychuk
et al., 2020), that is reflected in correlation with nests location
(R = −0.56). By contrast, significant increase in the abundance of
Chujaibacter, the bacterium reported to be efficient in sulfur
transformation and carbohydrates degradation (Zhang et al.,
2022), and Rhodanobacter, reported earlier as a resident of highly
contaminated areas with low pH (Green et al., 2012) is observed in
the inner area of colony (R = −0.63. . .–0.68, Figure 6). In turn,
Gaiellales were shown to be dependent of organic and fatty acids
content (Sun et al., 2022).

While detailed investigation of the interconnections among
various factors governing the local environment is essential for the
understanding of their complex interplay represented by the graph
in Figure 7, it appears timely and costly. A more practical
application scenario would be to employ the revealed
association patterns for the risk assessment and prediction
making in local environments based on selected measurements
only. From the environmental management point of view, the
typical question would be, how a given natural (such as an
emergence of a bird colony) and/or anthropogenic (such as
introduction of a bird farm or another agricultural activity)
invasions could impact similar ecosystems? Answering these
questions would require simulation of different scenarios

leading to the projected concentrations of nutrients and other
chemicals introduced by the invasion and estimating potential
impacts on the soil microbial diversity and vegetation dynamics for
these scenarios.

Figure 8 shows one test example containing a reduced cross-
correlation matrix (panel A) and a corresponding NPBN graph
(panel B) indicating the interrelation between the concentrations
of the keynote chemicals in the soil, the diversity of the soil
microbial community and the local tree growth dynamics. To
test the potential predictability, we employed Bayesian inference
with a bootstrap-based validation scheme according to (Koot et al.,
2023) with the upper layer of the graph (pH and keynote
chemicals) in Figure 8B representing the input variables, while
predicting the variables in the lower layer of the same graph.
Figure 8C shows the results of the regression analysis between the
observational and the predicted soil microbial diversity and tree
ring width trend metrics, both characterized by correlation
coefficients R > 0.8. We believe that the above result indicates
the capability of the putative evaluation and prediction of future
trends in ecosystem adaptation and environmental alterations
based on the proposed approach.

5 Conclusion

To summarize, this study investigated the complex impact of a
major Grey Heron colony on a planted Scots pine forest viewing it as a
natural in situ experiment on an engineered ecosystem with limited
plant and microbial diversity, leading to its increased vulnerability to
combined biogeochemical and climate stress.We have shown explicitly
that the long-term deposition of nutrients from the bird colony starting
from its initial location at the time of emergence around 2006 and
further expansion over the surrounding area in the next 15 years
considerably altered the local soil biogeochemistry. Among the most
pronounced effects, pH reduced to 4.5, as well as nearly 10-fold higher
concentrations of phosphorous and 2-fold higher concentrations of
nitrogen in their maximum accumulation areas compared to the
presumably unaffected surrounding forest area could be observed,
while Corg did not change significantly. Moreover, contrasts in the soil
microbial diversity with considerable discrepancies in the relative
abundance of several bacterial genera (Chujaibacter, Rhodanobacter,
Bacillus, uncultured bacteria of Gaiellales and Acidobacteriales) has
been observed both in the inner area of the colony and under the
nested trees, in turn altogether affecting the trees growth and other
surrounding flora vegetation. The latter is reflected inMTVI2 and BAI
vegetation indices obtained by remote sensing, and apparently unravels
the increased vulnerability of the forest ecosystem to combined
biogeochemical and climate stress, as indicated by the limited
recovery of the affected trees from the major 2010 drought stress,
in marked contrast to the surrounding forest in terms of the annual
growth rate (p = 3·10−5, Mann-Whitney U-test). Based on the results
obtained, we proposed a combined non-parametric Bayesian network
model reflecting the complex interplay between geographical,
geochemical, microbiological and dendrological characteristics, as
well as their manifestation in the vegetation indices obtained by
remote sensing observations. Finally, based on the revealed
interrelations, using the Bayesian inference approach with a
bootstrap based validation scheme, we have shown that the NPBN
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is capable of predicting both Simpson’s diversity index and tree ring
width trend from just a few input variables representing the
concentrations of the keynote chemicals in the soil with correlation
coefficient R between observations and model based predictions
exceeding 0.8. The above result indicates the capability of the
putative evaluation and prediction of environmental trends in the
ecosystem status and could further facilitate an informed adjustment of
the planted forest management by an early planning of possible
intervention scenarios.
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