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    Gerhard Dobler and Sergey Tkachev 

Key Points 

• Tick-borne encephalitis virus (TBEV) exists in natural foci, which are areas where TBEV is circulating among its vectors 
(ticks of different species and genera) and reservoir hosts (usually rodents and small mammals). 

• Based on phylogenetic studies, four TBEV subtypes (Far-Eastern, Siberian, European, Baikalian) and two putative 
subtypes (Himalayan and “178-79” group) are known. Within each subtype, some genetic lineages are described. 

• The European subtype (TBEV-EU) (formerly known also as the “Western subtype”) of TBEV is prevalent in Europe, but it 
was also isolated in Western and Eastern Siberia in Russia and South Korea. 

• The Far-Eastern subtype (TBEV-FE) was preferably found in the territory of the far-eastern part of Eurasia, but some strains 
were isolated in other regions of Eurasia.  

• The Siberian (TBEV-SIB) subtype is the most common and has been found in almost all TBEV habitat areas. 

• The Baikalian subtype is prevalent around Lake Baikal and was isolated several times from ticks and rodents. 

• In addition to the four TBEV subtypes, one single isolate of TBEV (178-79) and two genetic sequences (Himalayan) supposed to 
be new TBEV subtypes were described in Eastern Siberia and China. 

• The data on TBEV seroprevalence in humans and animals can serve as an indication for the presence or absence of TBEV in 
studied area. 

The natural focus 

In the early 1920s, reports surfaced concerning a severe 
form of brain disease in woodcutters, topographers, road 
construction workers, and residents of newly founded 
villages in the Taiga forest in the far eastern region of the 
former Soviet Union. The severity of the disease was such 
that in 1937 an expedition was organized to detect the 
origin of this unusual disease. During this first Taiga 
expedition to identify the etiology of a newly occurring form 
of encephalitis, Zil’ber et al.1 showed that the etiologic 
agent of this disease seemed to be a filterable pathogen 
that was transmitted by ticks of the genera Ixodes and 
Dermacentor. In at least 2 more expeditions to study the 
transmission of this disease (later named Russian Spring 
Summer Encephalitis, and currently known as tick-borne 
encephalitis [TBE]) Pavlovsky recognized that it was 
associated with specific types of landscape, and from this 
observation he developed his theory on the nature of 
human diseases.2 

In his theory, Pavlovsky describes a natural focus (“Nidus”) 
of a disease as an area where specific climate, vegetation, 
soil, and favorable microclimatic conditions exist, so that 
vectors, donors, and recipients of infection find favorable 
conditions to exist. In this respect a natural focus of disease 
is related to a specific geographical landscape. According to 

this theory, humans acquire a zoonosis with natural foci 
only if they are in the territory of the natural focus in a 
definite season of the year and if they are attacked as prey 
by hungry vectors or come into contact with the animal 
reservoir (via hunting), which have already acquired the 
infection as carriers or donors of the respective agent. 

During the last century a number of scientists, especially 
from Russia and the Czech Republic, studied in detail the 
landscapes that are associated with the occurrence of TBE. 
Rosicky3 and Blaskovic4 defined landscape types of TBE 
natural foci (Fig. 1).  

Chapter 11 

General epidemiology of TBE 

Figure 1: Different landscape types of TBE natural 
foci (according to Rosicky3 and Blaskovic et al.4) 
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According to this classification, a theriodic focus is a focus in 
a forest with game animals as the main vertebrate hosts for 
adult ticks. A boskematic focus is a focus where meadows 
dominate and where farm animals are the main vertebrate 
hosts for adult tick stages. The theriodic-boskematic form is 
a mix of the two, having both types of landscape. 

Another classification was made by Blaskovic et al.,4 who 
categorized the natural foci according to their main 
geographic location into Hercynian foci (located mainly in 
the Central German Uplands), Carpathian foci (located in 
the far southeastern part of Europe), and Pannonian foci 
(located at the western part of the Hungarian Danube 
lowlands). Similarly, Korenberg et al.5 made a classification 
according to the main geographic type (and not so much 
landscape type) for the TBE foci in Eurasia (Fig. 2). 

By these classifications, the European TBE foci are located in 
the Central European–Mediterranean TBE focus region 
according to Korenberg et al.5 The classification developed 
by Rosicky3 indicates the European TBE foci are mainly of 
the theriodic type, while Eastern European countries have 
the mixed type or rarely also the boskematic type. Overall, 
these classifications may be helpful in getting an impression 
of the focus type in the landscape, but they are not very 
helpful for describing a TBE natural focus in detail. Also, so 
far, no clear associations have been identified between 
genetic profiles or phenotypic characteristics of TBEV 
strains and their respective focus types. 

 

The natural cycle 

As described above, a natural focus is an area where the 
ecological conditions allow the presence and transmission 
of a pathogen. In the case of TBEV, a natural focus is an area 
where TBEV is circulating among its vectors (ticks of 
different species and genera) and vertebrates (usually 
rodents and small mammals, which support the 
transmission of the TBEV). Details of these transmission 
cycles and the animal species involved are described in 
Chapter 3. However, at the moment it is not clear which 
ecological structures and requirements are needed to 
establish and maintain a TBE natural focus. A sufficient 
number of ticks that are infected or might be susceptible to 
infection must be present. Also, a sufficient number of 
susceptible small mammals to support virus transmission is 
required. There must also be an adequate number of larger 
animals to support the developmental cycle of the nymphs 
and adult stages of the tick vectors, as these are rarely 
found on rodents. The virus itself is transmitted via viremic 
vertebrates or via co-feeding of TBEV-infected ticks 
together with non-infected ticks, with the latter 
transmission mechanism being more effective. However, so 
far, no proof exists as to the actual importance of any of 
these mechanisms in the field. 

A number of models on natural foci of TBEV are now
available, but fieldwork is missing. In the early 1960s
Austrian researchers were studying TBE foci in Austria.6 
According to the authors’ data and estimates, focus size 
was 60,000 m2 with an estimated 2 million larvae and about 
500,000 nymphs in the focus. They estimated that between 
500 and 1500 nymphs (0.1% to 0.3%) are infected at any 
time in the year and may infect 15 to 30 rodents out of an 
estimated total number of 700 rodents in the focus. They 
found a total of 4 small mammal species with a clear 
dominance of Apodemus spp. (Apodemus flavicollis > 
Apodemus sylvaticus > Myodes glareolus > Microtus
agrestis). The focus was highly fragmented into old forests,
young forests, and meadows that existed within the forests. 

Nosek et al.7 described the structure of TBE natural foci in 
the Czech Republic. Their work showed that a focus is 
maintained by a number of so-called microfoci. The size of 
the natural focus is not given. The authors estimate that per 
10,000 m2 (1 ha) the number of ticks ranges from 15,000 to 
50,000 nymphs. A microfocus is defined as a structure in 
the focus area where virus transmission is continuously 
active and therefore the virus can be generally detected. 
The rate of positive ticks in the microfocus is approximately 
0.5% to 1% in nymphs and up to 5% in adult ticks. 

In a recent study over 4 years in a TBE focus in Hungary, the 
authors reported that an area of 36 ha (3,600,000 m2) was 
screened and that only in an area of 0.49 ha (4900 m2) sero-
positive rodents were detected.8 They found TBEV in a total 
of 3 tick pools (2 pools of Ixodes ricinus and 1 pool of 
Haemaphysalis concinna) out of 7247 sampled ticks 
(0.05%). Of note, in an area around 170 m away from the 
focus but in the same natural focus area, no TBEV was 
detected among 2369 sampled ticks. This description 
supports our own observation on TBE natural foci in 
southeastern Germany9 that a TBE natural focus has a size 
of about 5000 to 10,000 m2. The main ecological structure, 
which can be identified as important in the focus, is the 
ecotone between forest and meadow. More data must be 
collected in the field to get a clear picture of the ecological 
structure that is required for the development and 
maintenance of a TBE natural focus. 

 

The phylogeny and phylo-geography of 
TBEV 

According to phylogenetic studies at least 3 and possibly 6 
subtypes of the TBEV can be genetically distinguished by 
molecular technologies. At present, 3 subtypes of TBEV—
the European (western) subtype (TBEV- EU), the Siberian 
subtype (TBEV-SIB), and the Far-Eastern subtype (TBEV-
FE)—are recognized. Russian virologists have claimed 2 new 
subtypes, strain 178-19 and strain 886-84, both isolated in 
the Lake Baikal region in Siberia.10 Also, a new putative 
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TBEV Himalayan subtype was claimed in China.84 The 
European subtype differs by 4% to 6% from the other 2 
subtypes (amino acid sequence). The Siberian and Far-
Eastern subtypes also differ by 4% to 6% in amino acid 
sequence from each other.  

Phylogenetic analysis shows that the TBEV group separated 
from the other flaviviruses about 30,000 years ago in 
Central Africa. From there, the tick-borne flavivirus 
ancestors migrated east and arrived in central Siberia about 
7,500 years ago. The virus ancestor then divided into a 
western branch and an eastern branch. The eastern branch 
developed into the Siberian and Far-Eastern subtypes plus 
also into potentially 2 newly identified subtypes. This 
evolutionary development took about 3,000 years. The 
western branch spread to Central Europe and further 
evolved on the British Isles into Louping ill virus and on the 
Iberian Peninsula into the Spanish sheep encephalitis 
virus.11 

In Western Europe, TBEV-EU is prevalent. However, in the 
Baltic countries and in parts of Finland, the Siberian and Far-
Eastern subtype virus strains have been isolated and 
identified. So far, it is not clear whether the Siberian 
subtype in particular moves in a western direction. 
However, identification of virus strains in Siberia shows that 
a few of the strains circulating in Siberia belong to the 
European and Far-Eastern subtypes. According to results 
from Russian investigators, the Siberian subtype invaded 
the Baltic countries only recently, coincidentally with the 
construction of the Trans-Siberian Highway and the Trans-
Siberian Railway.12 Also, the European subtype has been 
detected in South Korea and also in Siberia.13,14 Improved 
understanding of the phylogeography of these strains will 
require additional studies. 

European subtype 

The European subtype (formerly known as the “Western 
subtype”) of TBEV is prevalent in Europe. However, the 
distribution ranges from France and The Netherlands at its 
western limit of distribution to South Korea, the 
easternmost region where TBEV-EU has been detected so 
far.9,13,15 While only TBEV-EU is found in Central Europe, 
more than 80% of identified strains in the Baltics belong to 
the European subtype. In Western and Eastern Siberia, only 
a low percentage (<10%) of the identified TBEV strains is 
characterized as European subtype. As noted, some other 
TBEV-EU strains have been identified and isolated in South 
Korea.13,16,17 

According to phylogenetic data, TBEV-EU is the youngest of 
all TBEV subtypes.11 These data indicate that about 3,000 
years ago the European strain diverged from the ancestor 
virus and migrated westwards. Some evidence suggests that 
the TBEV strains in Central Europe originated in the Czech 
Republic. From there the virus migrated about 350 years 

ago to Germany.18 Several waves of spreading and 
migration seem to have occurred. In Germany intensive 
studies on particular TBE foci show that in each TBE focus, a 
particular and clearly identifiable virus strain is prevalent. 
The TBEV strains seem to be stable in their E gene 
sequences for decades as shown in Finland (Kumlinge 
strain) and in Austria (Zillertal strain).9 However, no clear 
pattern of viral spread exists that can be correlated to 
landscapes or to human activities to explain the 
introduction of the Siberian and Far-Eastern subtypes in the 
Baltic region. Analysis of the E genes of TBEVs from 
different strains shows a kind of geographic clustering e.g. 
in Scandinavia, Germany, the Czech Republic or the Slovak 
Republic (Slovakia). But there are also some strains that are 
genetically related to strains from greater distances, e.g. 
German strains that are similar to Russian or Scandinavian 
strains. It is unclear at the moment whether these genetic 
relationships are due to missing link strains. A clear 
classification of European strains into genetic clusters or 
branches is still missing and awaits the analysis of more 
strains from different parts of Europe. 

The phylogenetic analysis of TBEV-EU is unclear and 
confusing. For about 3,000 years, when the European strain 
branched off from the ancestor virus and migrated 
westward, TBEV-EU appears to have remained mono-
phylogenetic. All currently known strains from Central 
Europe separated only about 300 to 400 years ago.11 In 
contrast to the Siberian subtype, the European subtype 
shows a parallel evolution. All currently known strains seem 
to originate from a single genetic clade. In contrast, the 
Siberian subtype shows a more consecutive genetic 
evolution. Only recently, a TBEV strain from The 
Netherlands was shown to have a distant genomic 
relationship to all other TBEV-EU strains. While TBEV-EU has 
also been identified and isolated outside Europe, the 
phylogenetic connection between European strains and the 
Siberian and Korean strains is as yet unclear. 

A number of phenotypic characterizations have 
demonstrated TBEV strains of differing pathogenicity, which 
are circulating in nature. The TBEV strain MucAr HB171/11 
shows low neuropathogenicity and neuro-invasiveness in a 
mouse model.9 A Czech strain, ts263, is a temperature-
sensitive strain that does not grow at 40°C and also exhibits 
non-neuro-invasiveness.19 

In addition, TBEV-EU is mainly associated with the biphasic 
form of TBE. So far, no chronic forms of disease caused by 
TBEV-EU have been reported. The clinical picture of 
infection ranges from subclinical to febrile disease to CNS 
symptoms with severe and persisting neurological sequelae 
in up to 10% of human cases. The fatality rate of infections 
with TBEV-EU ranges from 1% to 2%. Acute fatal cases have 
been rare since a fast-acting treatment of brain edema was 
introduced. Disease sequelae and fatal cases are mainly 
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seen in elderly patients. The fatalities often result from 
super-infections (e.g. pneumonia) relating to the 
neurological sequelae (e.g. paralysis of breathing muscles); 
therefore these conditions must be named as indirect 
causes of fatalities due to TBE. 

Far-Eastern subtype 

The TBEV-FE viral subtype can be primarily found in the 
territory of the far-eastern part of Eurasia.20–27 However, 
this subtype was detected in other regions of Eurasia, 
including the Baltic countries, the Crimean Peninsula, the 
Republic of Moldova, the Republic of Belarus, and the 
territories of Komi Republic, Republic of Bashkortostan, Ural 
Mountains, Siberia, and the European part of Russia.10,28–32 
In some territories, TBEV-FE has been more prevalent in 
urban and suburban areas.33,34 Also, TBEV-FE can cause 
different forms of disease, from subclinical to acute.35,36 

Within this subtype at least 4 separate groups (lineages) of 
TBEV have been described (Fig. 3). The first group consists 
of TBEV strains similar to the Sofjin strain, which was 
isolated in the Khabarovsk region of Russia in 1937 from a 
patient’s brain (Zil’ber, 1939)1 and includes strains from far 
eastern Russia, Japan, China, Latvia, and the European part 
of Russia.26,27 The group of strains similar to the Oshima 
strains isolated in Japan on Hokkaido Island forms a 
separate cluster on phylogenetic dendrograms that is 
significantly different from the Sofjin strains group20–22 and 
includes TBEV strains from Japan, China, and the Crimean 
peninsula.26,27 The third group consists of the Chinese 
Senzhang strain, which was isolated from a patient’s brain 
in 1953;24 the MGJ-01 strain, which was obtained from a 
patient’s blood serum and used in China for the production 
of vaccines and immunobiologic drugs;37 and other strains 
from far eastern Russia. In addition, the fourth group 
formed by TBEV-FE strains from Japan 
(Kam586/97(AB237185), Kam588/97(AB237186)) has been 
described.27 The time of divergence among different TBEV- 
FE clusters within the Far-Eastern subtype was estimated at 
approximately 470 to 650 years ago (Fig. 3). 

Also, within TBEV-EU some unique virus variants have been 
described. In 1999, in the southeast of the Novosibirsk 
region of Western Siberia, Russia, cases of hemorrhagic 
forms of TBE with fatal outcomes were reported.38 
Previously, infections resulting in a hemorrhagic disease had 
not been described for TBEV, although other tick-borne 
flaviviruses such as Omsk hemorrhagic fever virus and 
Kyasanur forest disease virus may cause blood-clotting (see 
section 6 below). The sequencing of the E gene fragment of 
6 samples (Figure 3) shows that these TBEV variants 
corresponded to TBEV-FE, and a number of observed 
nucleotide substitutions (and amino acid substitutions in 
the corresponding E protein fragment) were not previously 
described. Thus, the appearance of new variants of highly 

pathogenic, atypical TBEV can be evidence of the continuing 
evolution of this virus group. 

In 2004, the TBEV Glubinnoe/2004 strain was isolated from 
the brain of a deceased patient in the Primorsky region of 
far eastern Russia. The sequencing of its genome 
demonstrated that this TBEV variant corresponds to TBEV-
FE, but has 53 or 57 substitutions in polyprotein amino acid 
sequence compared with Far-Eastern strains 205 
(DQ989336)39 or Sofjin-HO (AB062064),40 respectively, and 
14 of these substitutions are unique and have not been 
described previously.41 Researchers also found that 
Glubinnoe/2004 has a high level of production of infectious 
viral particles during the early stages of infection in cell 
cultures as compared with other Far-Eastern 205 strains.41 

Siberian subtype 

The TBEV-SIB subtype is the most common TBEV and has 
been found almost everywhere in TBEV habitat areas. Thus, 
it has been detected in most parts of Russia, including the 
central and northwestern regions, Ural Mountains, Western 
and Eastern Siberia, the Far East, etc.,10,12,28,42–44 as well as in 
Mongolia,45 Kazakhstan and Kyrgyzstan,46–49 Finland and the 
Baltic countries,12,50 Ukraine,28,49 and the Balkan peninsula.49  
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TBEV-SIB is believed to be the most genetically hetero-
geneous, with a nucleotide substitution level about 5.4% 
within the subtype.51 At first, based on the analysis of E 
protein sequences at amino acid positions 234 and 431, two 
genetic lineages were defined: one lineage including 
Zausaev strain (AF527415) was characterized by H234/ 
A431, whereas strains of the second lineage including 
Vasilchenko strain (AF069066) revealed Q234/ T431.52,53 
Later, the “Baltic lineage”50,54–56 and “European 
topovariant”57 of TBEV-Sib were described. Also, the 
heterogenicity of TBEV-Sib was demonstrated by molecular 
hybridization of nucleic acids with 2 subgenotype-specific 
probes (designated as 3a and 3b) differentiating lineages/ 
subgenotypes “Vasilchenko” and “Zausaev” of Siberian 
subtype (Fig. 4).10 The Zausaev and Vasilchenko lineages 
were found in various regions of Eurasia at different ratios, 
and moreover, some TBEV strains of Siberian subtype could 
not be attributed to any of these lineages. 

Baikalian subtype 

In addition to the 3 primary and accepted TBEV subtypes, 2 
groups of TBEV strains supposed to be new TBEV subtypes 
were described. At this time, the members of now accepted 
fourth prototype strain 886-84 (EF469662, KJ633033) 
subtype have been found only in the Republic of Buryatia, in 

the Irkutsk and Chita regions of Eastern Siberia and in 
northern Mongolia (Fig. 5).10,21,51 This subtype is also now 
named “Baikalian subtype” and about 20 TBEV strains have 
been identified and genetically characterized.10,49,51 These 
strains (called the “886-84 group”) form an independent 
cluster on the TBEV dendrogram (see Chapter 2) and have 
no close homology with any strains of the 3 original 
subtypes. Within the group, high homology (more than 
98%) of nucleotide sequences was observed while the 
genetic differences with other subtypes were shown to be 
greater than 12%.51 

TBEV strains of the Baikalian subtype were isolated from 
ticks and small mammals collected in the Irkutsk region, 
Buryat Republic, and Transbaikalia in 1984-1990 indicating 
their ecological connection with all elements of 
transmission chain. Despite the fact that these strains were 
isolated over 20 years ago, their circulation probably 
continues in natural foci. Thus, 2 TBEV strains similar to the 
reference strain of the Baikalian subtype were described 
recently in the territory of Transbaikalia from a taiga tick (in 
1999) and 1 strain from Myodes rutilus (in 2010).58,59 Also, 
in 2010, a report was published on a case of fatal 
meningoencephalitis in Mongolia caused by a TBEV isolate 
having a high degree of homology in the E gene fragment 
(98.5%) with strains of the 886-84 group.60 The case was 
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Figure 4: Correlation and distribution of TBEV genotype 3 subgenotypes throughout the whole sampling 
area and Eastern Siberia. Altogether, 197 strains were typed using oligonucleotide probes10 
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described in Bulganskiy province, bordering to the south 
with foci where TBEV group 886-84 strains had been 
isolated previously. The patient was hospitalized with 
meningoencephalitis on the 11th day after a tick bite and 
then died that same day. The presence of TBEV RNA in 
macromyelon samples, in the core and the meninx 
vasculosa, demonstrated the multilevel localization of 
lesions and was typical of the most severe forms of acute 
TBE that result in death or disability.60 

The analysis of complete amino acid sequences of 
polyprotein from some strains confirmed that it is a 
“mixture” of sequences common for the 3 genotypes. 
Twenty-nine unique substitutions were detected that could 
probably be genotype-specific for group 886 members.51 
The studies of biological properties demonstrated that 
group 886 strains have a wide spectrum of antigenic 
properties, hemagglutination and neutralizing activities, 
high virulence, and thermotolerance. 

Other putative subtypes 

Besides the now four accepted subtypes there are two 
genetically distant groups of viruses, which show high 
genetic distance to all known TBE virus strains. One virus 
was isolated only once. The prototype strain which is 
named “strain 178-79” (EF469661) and was isolated in 1979 
from a tick pool of Ixodes persulcatus.10 The single available 
isolate and genome sequence show 10 to 16% difference to 

other TBEV subtypes on nucleotide level and 3 to 6% 
difference on amino acid level.10  

Chinese researchers reported on another new TBEV 
subtype.84 Two TBEV sequences were detected in two 
specimens of Marmota himalayana, collected in the Haixi 
prefecture at an altitude of 2,994m in the Qinghai-Tibet 
Plateau in China. So far, no virus isolates are reported. Only 
the sequence of the complete genome and of the viral 
polyprotein have been available. According to these data, 
the virus differs in 16 to 18% on nucleotide level and in 6 to 
8% on amino acid level from all other TBEV subtypes. 
According to a phylogenetic analysis the putative new 
subtype diverged earlier from the Far-eastern subtype than 
the Siberian subtype. 

 

Seroepidemiology in humans 

From the start of the use of antibody testing in this field, 
the prevalence rates of antibodies against TBEV (and other 
pathogens) were used to estimate the burden of infection 
as well as the burden of disease in human populations. 
Although these rates depend on a number of different 
factors (such as a person’s age, profession, leisure activities, 
place of living, interest in nature/outdoor activities, degree 
of protection measures, knowledge about disease and 
transmission, and vaccination status, as well as presence of 
cross-reacting viruses, assay technology used, etc.), the data 
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Figure 5: Habitat area of TBEV group “886-84” strains 
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at least serve as a rough indication for the presence or 
absence of TBE in an area. 

In determining TBE seroprevalence rates, studies in the 
normal population have to be distinguished from studies 
and their results in highly exposed professionals such as 
woodcutters, farmers, or hunters. In European countries, 
the available seroprevalence rates in different countries in 
the normal population range from 0% to 39%. However, the 
highest of these values are usually found in special 

geographic conditions, for example 39% on Finnish islands 
in the Baltic Sea. Usually the seroprevalence rates in 
European populations range from 0% to 5% (Table 1). 

While other studies on the prevalence rates in high-risk 
populations resulted in similar rates, some also indicated 
more extreme values under special conditions, e.g. >30% to 
40% in some groups of forest workers in Poland (Table 2).  

These data showed that the risk of acquiring TBE infection 
might be high, both in an exposed general population and in 
a high-risk population. However, many of these studies 
were conducted before the introduction of vaccines. 
Therefore, awareness of the disease among the general 
population in rural areas was low and personal protection 
measures usually were not applied. This might be one 
reason why in some areas the seroprevalence rates in the 
normal population might be in a similar range as seen in 
highly exposed groups. 

Seroepidemiology in animals 

Humans are not natural hosts of the TBEV. Therefore, the 
seroprevalence rates in humans usually give an incomplete 
picture of TBEV epidemiology. During the past few decades, 
a number of studies have been undertaken to study the 
seroprevalence rates in different species of wild and 
domestic animals. The seroprevalence rates of particular 
animals can document the presence of a transmission cycle. 

These data may also help with understanding the intensity 
of transmission in the natural cycle. In addition, they may 
document the role of particular animals in virus 
transmission and in the maintenance of the TBE 
transmission cycle. Recently, data on the prevalence of 
antibodies and virus were tested in wild and domestic 
animals to identify species that might be used as surrogates 
for detection of endemic areas. 

The role of particular mice and voles, Apodemus flavicollis 
and Myodes glareolus, respectively, as primary vertebrate 
hosts for the virus in the transmission cycle was 
demonstrated in a number of isolations of virus strains in 
TBE natural foci and through experimental infections.61–63 

Also, Apodemus sylvaticus seems to support the 
transmission cycle as evidenced by high seroprevalence 
rates in Switzerland.64 In a recent study, Achazi et al.65 
detected TBEV using molecular techniques in 6 rodent 
species in Germany: Apodemus agrarius, Apodemus 
flavicollis, Apodemus sylvaticus, Microtus arvalis, Microtus 
agrestis, and Myodes glareolus. The seroprevalence rates in 
rodents of different areas ranged from 0% to 72% (Table 3). 

While the role of mice (Muridae) and voles (Cricetidae) for 
TBEV transmission seems clear, the importance of 
Insectivora is still not finally clarified. Different studies show 
that hedgehogs (Erinaceidae) are highly infested with ticks. 
Kozuch et al.62 detected up to 50% seroprevalence rates in 
hedgehogs in a study in Slovakia, and they could isolate a 
strain of TBEV from the hedgehog. Even less clear is the role 
of shrews (Soricidae). However, TBEV was isolated from a 
brain of a common shrew, Sorex araneus.66 According to 
early studies, the common mole (Talpa europaea) produces 
high viremia and therefore may act as a maintenance host in 
the natural transmission cycle. Systematic seroprevalence 
data on TBE antibodies in insectivores are not available. 

In addition, seroprevalence studies in foxes and correlations 
with human TBE are limited. One study on TBEV 
seroprevalence in foxes from different areas in Germany 
found prevalence rates from 0% in Brandenburg to 10% in 
the Odenwald and Taunus region (a known endemic area of 
low activity) to 35% in the Black Forest area, a highly 

Table 1: Seroprevalence of anti-TBE antibodies in normal 
populations of different European countries 

Table 2: Seroprevalence of anti-TBE antibodies in high-
risk populations of different European countries 

Country Prevalence (%) Literature 

Bornholm (Denmark) 1.4 Kristiansen17 

Estonia 0-5 Vasilenko et al.72 

Archipel (Finland) 5 Han et al.73 

Lithuania 3 Juceviciene et al.74 

Norway 2.4 Skapaas et al.75 

Poland (North) 4.8-6.5 Anonymous 1983 

Czech Republic 15-28 Gresikova 198876 

Switzerland 0.5-5.0 Matile et al. 197977 

Hunchun (China) 10.9 Satz 200678 

Country Risk group Prevalence (%) Literature 

Bornholm 
(Denmark) 

Forest worker 16 Kristiansen71 

Germany Forest worker 5.6-7.2 Satz78 

Alsace (France) Forest worker 8 Collard et al.79 

Poland (North) Forest worker 20-40 Satz78 

Switzerland Forest worker 4.7 Matile et al.77 

Hungary Forest worker 3.3 Molnar80 
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endemic region for TBE.67 Also a number of game animals 
have been tested as indicator animals for TBEV circulation.  

These studies, in Germany but also in other European 
countries (e.g. Denmark), showed high seroprevalence rates 
against TBEV. Studies in Germany showed the 
seroprevalence rate in red deer and reindeer in the former 
German Democratic Republic was up to 72% positive.68 A 
similar rate of 83% was reported in a study from the Danish 
island of Bornholm, also in the red deer population.69 A 
study in red deer from Slovakia showed lower antibody 
rates of 35%.70 

In natural transmission cycles of the boskematic type, the 
testing of antibody rates in farm animals may give good 
evidence of TBEV transmission and also of the risk of 
alimentary TBEV transmission. Therefore, a number a 
seroprevalence studies in cows, sheep, and goats from 
different countries are also available. In most available 
studies, these data show that the seroprevalence rate is 
around 5%. There are some exceptions in Germany. In the 
former German Democratic Republic, an antibody 
prevalence rate of 60% in cows was reported.68 A recent 
study in several federal states of Germany revealed 
seroprevalence rates of 0% to 43% in goats and sheep.85 
The patchy distribution of high antibody rates in these 
animals correlated only in part with the presence of human 
TBE disease. 

 

 

 

Other tick-borne mammalian flaviviruses 

The International Committee on the Taxonomy of Viruses 
(ICTV) lists in the genus Flavivirus a total of eight tick-borne 
mammalian flavivirus (TBMF) species. They distinguish 
single virus species according to several characteristics:  

• Nucleotide and deduced amino acid sequence data. 

• Antigenic characteristics. 

• Geographic association. 

• Vector association. 

• Host association. 

• Disease association. 

• Ecological characteristics. 

 

However, this actual species description no longer includes 
many of the known and ecologically different TBMF, as no 
virus subtypes or strains below species level are listed. 
However, there is a number of flaviviruses with specific 
names often found in literature, which cause severe human 
and animal disease. The known subtypes of TBMF are listed 
in Table 4 including some features regarding their 
geographical distribution and epidemiology. All viruses 
listed are genetically closely related to the viruses of the 
TBEV complex. Therefore besides their medical and 
veterinary importance they also play a role regarding the 
diagnosis of flavivirus diseases due to cross-reactivity of 
antibodies with TBEV antibodies in areas of overlapping 
geographical distribution. For some of the viruses (Omsk 
hemorrhagic fever, Louping ill virus Kyasanur Forest disease 
virus) in laboratory tests the neutralizing cross-reaction of 
TBEV vaccine-induced antibodies was shown. However, no 
data are available on the field effectiveness of TBEV 
vaccines against these viruses.  

Table 3: Seroprevalence of anti-TBE antibodies in wild animals in different European countries  

Country Vertebrate Prevalence (%) Literature 

Bornholm Archipel( Denmark) Deer 83 Freundt69 

Aland Archipel (Finland) Rodents 0.5 Han et al.81 

Austria Yellow-necked mouse 47.9 Labuda et al.82 

Austria Bank voles 29.4 Labuda et al.70 

Slovakia Deer 35.3 Labuda et al.70 

Slovakia Boar 36.8 Labuda et al.70 

Slovakia Rodents 14 Labuda et al.70 

Czech Republic Rodents 14.6 Gresikova et. al.83 
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Table 4: Viruses and virus subtypes of the tick-borne mammalian flavivirus complex of the tick-borne 
flavivirus group  

Virus Virus type/-subtype 
Clinical symptoms in 
humans/in animals 

Geographical 
distribution 

Vector 

Louping ill virus 

Louping ill  virus 
Meningoencephalitis 

Louping ill in sheep 

British Islands; 
possibly Norway 

Ixodes ricinus 

Turkish sheep 
encephalitis virus 

No human disease known; 
encephalitis in sheep 

Turkey Unknown 

Greek goat encephalitis 
virus 

No human disease known; 
encephalitis is goats 

Northern Greece Ixodes ricinus 

Spanish sheep 
encephalitis virus 

No human disease known; 
encephalitis in sheep 

Spain Unknown 

Spanish goat 
encephalitis virus 

No human disease known Northern Spain Unknown 

Negishi virus Meningoencephalitis Japan 
Ixodes ricinus;  
Ixodes persulcatus 

Omsk 
hemorrhagic fever 
virus 

Omsk hemorrhagic fever 
virus 

Hemorrhagic fever Western Siberia 
Ixodes apronophorus, 
Dermacentor spp. 

Kyasanur Forest 
virus 

Kyasanur Forest virus Hemorrhagic fever 

Southwestern 
India; possibly 
China 

Haemaphysalis spp. 

Alkhumra virus Hemorrhagic fever 
Arabian 
Peninsula; Egypt 

Ornithodoros spp. 

Powassan virus 

Powassan virus Meningoencephalitis 

Northern 
America; Far east 
of Russia 

Ixodes spp.; 
Dermacentor spp. (?) 

Deer tick virus Meningoencephalitis 

East coast of 
Northern 
America 

Ixodes scapularis; 
Dermacentor andersoni 

Langat virus Langat virus 

Meningoencephalitis in 
severely immuno-
compromised patients 

Malaysia to 
Central Siberia 

Haemaphysalis spp. 
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