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Abstract

Let 'H be a Hilbert space, dim H = +o00. Let X = U|X| be the polar decomposition
of an operator X € B(H). Then, X is a non-commutator if and only if both U and
| X| are non-commutators. A Hermitian operator X € B(H) is a commutator if and
only if the Cayley transform K(X) is a commutator. Let H be a Hilbert space and
dimH < 400, A, B, P € B(H) and P = P>. If AB = ABA for some » € C\{1}
then the operator A B is a commutator. The operator A P is a commutator if and only
if PA is a commutator.
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1 Introduction

Dimension functions and traces on C*-algebras are fundamental tools in the opera-
tor theory and its applications. Therefore, they have been actively studied in recent
decades, see [12, 14, 23, 29, 32, 34]. For a C*-subalgebra A C B(H), put

Ap=1XeA: X=> [Xy. X;] for (X)uz1 CAY.

n>1

the series || - ||-converges. It is proved in [20, Theorem2.6] that .4 coincides with the
zero-space of all finite traces on .4, For a wide class of C*-algebras that contains all
von Neumann algebras, we can consider only finite sums of the indicated form, see
[24]. Elements of unital C*-algebras without tracial states can be represented as finite
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sums of commutators. Moreover, the number of commutators involved in these sums
is bounded and depends only on the given C*-algebra [31]. The characterization of
traces on C*-algebras is an urgent problem and attracts the attention of a large group of
researchers. Commutation relations allowed to obtain characterizations of the traces
in a broad class of weights on von Neumann algebras and C*-algebras [6-9]. An
interesting problem is representation of elements of C*-algebras via commutators of
special form [4, 13, 27].

The following results were obtained. Let H be a Hilbert space, dim’H = +o0.
(1) Let a Hermitian operator X € B(H) be a non-commutator and o (X) be the
spectrum of X. Then, f(X) is a non-commutator for every continuous function
f 1 o(X) - Rwith f(x) # 0 (Lemma 3.13). (2) Let X = U|X]| be the polar
decomposition of an operator X € B(H). Then, the following conditions are equiva-
lent: (i) X is a non-commutator; (ii) U and | X| are non-commutators (Theorem 3.15).
(3) For a Hermitian operator X € B(H), the following conditions are equivalent: (i) X
is a commutator; (ii) the Cayley transform KC(X) is a commutator (Theorem 3.17). (4)
Let H be a Hilbert space and dim ’H < 400, A, B € B(H)and P € B(H), P = P2.If
AB = ABA for some A € C\({1} then the operator AB is a commutator. The operator
AP is a commutator if and only if P A is a commutator (Theorem 3.19).

2 Preliminaries

Let A be an algebra, A = {A € A: A? = A} be the set of all idempotents in A. An
element X € A is a commutator, if X = [A, B] = AB — BA for some A, B € A.
For X,Y € A define their Jordan product by the equality X o ¥ = w For
A, B € A we write A ~ B if there exist X, Y € Asothat XY = A, YX = B (hence
A — B =[X,Y]).If Ais unital and A, B € A are similar then A ~ B.

A C*-algebra is a complex Banach x-algebra A such that ||[A*A| = IA]|? for
all A € A. For a C*-algebra A by AP", A%, and A" we denote its projections
(A = A* = A?), Hermitian elements, and positive elements, respectively. If A € A,
then |A| = v/A*A € A*.Ina C*-algebra A, two projections P and Q are *-equivalent
if there exists an element X in A (necessarily a partial isometry) such that P = X*X
and Q = XX*.If R € A9 then R ~ T forsome T € AP;if P, Q € A" and P ~ Q
then P and Q are x-equivalent [21, Proposition IV.1.1]. As is well known, in a unital
C*-algebra A, the Cayley transform

K(X) = }; fz =X —iDT' X +iD) = X +i(X —iD)~!

of an element X € A% is a unitary element of A.

A mapping ¢ : AT — [0, +o0] is called a trace on a C*-algebra A, if (X +Y) =
e(X)+eY), @AX)=rp(X)forallX,Y € AT, A > 0(moreover, 0-(4+o00) = 0);
©(Z*Z) = ¢(ZZ*) for all Z € A. For a trace ¢, define

M ={X € AT: 9(X) < +oo}, M, = lingM}.
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The restriction ‘P|zm$ can always be extended by linearity to a functional on 9i,,
which we denote by the same letter ¢.

Lemma 2.1 Let ¢ be a trace on a C*-algebra A. Then, 9p(AB) = @(BA) for all
AeM,and B € A

Proof See, for example, [22, §6, item (iii) of Proposition 6.1.2]. O

A positive linear functional ¢ on A with |¢| = 1 is called a state. A trace ¢ is called
faithful, if o(X) =0 (X e AT) = X =0.

Let H be a Hilbert space over the field C, 5(H) be the x-algebra of all linear bounded
operators on H. An operator X € B(H) possesses a left (resp., right) essential inverse
X; ! (resp., X, D)if X, ' X = [+K (resp., XX;~! = I+K) for some compact operator
K € B(H). We have M = G1(H), the set of all trace class operators on H. By
Gelfand-Naimark Theorem every C*-algebra is isometrically isomorphic to a concrete
C*-algebra of operators on a Hilbert space H [16, 11.6.4.10]. For dimH = n < 400,
the algebra 5(H) can be identified with the full matrix algebra M, (C).

Let H be an infinite-dimensional Hilbert space. The algebra B(H) is known to
contain a proper uniformly closed ideal J that contains all other proper uniformly
closed ideals of B(H), see [17, Section 6]. In case H is separable, J is the ideal
of compact operators. Combining Theorems 3 and 4 in [17], we get the following
assertion.

Theorem 2.2 (Brown—Pearcy Theorem) An operator X € B(H) is a non-commutator
if and only if X = xI + J for some x € C\{0}and J € J.

If T € B(H) and T = U|T] is its polar decomposition, the Aluthge transform
of T is the operator A(T) defined as A(T) = |T|%U|T|% [1]. More generally, for
any real number A € [0, 1], the A-Aluthge transformation is defined as A, (T) =
IT*UIT|'™* e B(H) [18]. We have T ~ A;(T) for any A € [0, 1] (hint: put
X=|T and Y = U|T|'H).

3 Idempotents and commutators in C*-algebras

Lemma 3.1 Let A be a unital algebra, let A, B € A be such that ABA = \A for
some A € C\{0}.

() If A € A then the idempotents A, x~'AB and ™' BA are pairwise similar.
(i) If B € A then the idempotents »~"'AB, A\"'BA and \"'BAB are pairwise
similar.
(iii) If A, B € A then A ~ »~'BAB. If. moreover, BAB = AB then A ~ B.

Proof (i) The elements P = A"'!AB and Q = A~'BA lie in A'Y. We have PA = A
and AP = P (resp., QA = Q and AQ = A) and apply [13, Lemma 2]. Therefore, the
idempotents A and P (resp., A and Q) are similar. Since similarity is an equivalence
relation, the idempotents P and Q are also similar. If .4 acts on a vector space &, then
by [19, Lemma 2], we have Im P = Im A and Ker Q = Ker A.
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(ii) The elements P = A~'AB, Q0 = A"'BA and R = A" 'BAB lie in A4. We
have PR = P and RP = R (resp., OR = R and RQ = Q) and apply [13, Lemma
2]. Therefore, the idempotents P and R (resp., Q and R) are similar. Since similarity
is an equivalence relation, the idempotents P and Q are also similar. If A acts on a
vector space £ then by [19, Lemma 2] we have Im Q = Im R and Ker P = Ker R.

(iii) Put X = A"'AB and Y = BA. o

Projections P, Q € B(H) are called isoclinic with angle 6 € (0, 7/2), if POP =
cos2 0 P and OPQ = cos2 0 0 [33, Definition 10.4]. Thus, in this case, the idempo-
tents P, Q, cos™20 P 0, cos™20 Q P are pairwise similar.

Example Consider the following complex 2 x 2 matrices:

_(1z (10 (A
r=(05)- e=(): x=(5%),
Then, P, Q € Mp(C)4 and PXP = AP, POP = (1+ )P, QPO = (1 + ) Q.

For an arbitrary A € M, (C), there exists a pseudo-inverse B € M, (C) such that
ABA = A (see [30, Theorem 1.4.15]).

Lemma 3.2 Let A be an algebra, A, B € A be such that ABA = LA and BAB =
AB for some A € C\{0, 1}. Then, the idempotents A, A LAB, B and »"'BA are
pairwise similar and P = ﬁ(A — B)2 e A We have [A, B]1* = 2k(n — kP
and [A, B = k(0w — DK[A, Bl forall k € N.

If Jis an ideal in A then [A, B]" € J < A, B € J foralln € N.

Proof By Lemma 3.1, the idempotents A, 2! AB, B and 2~ 1BA are pairwise similar.
We have

[A, B]2 =ABA-B+ BAB-A— ABA — BAB = —\(A — B)Z. 3.1
On the other hand, for all A, B € A4, we have
[A. B =(A—B)*— (A- B)”.

Thus, by (3.1), we obtain (A — B)* = (1 —A)(A — B)?. Multiply both sides of the last
equality by the number (1—2)~2 and obtain P = (A — B)? € Al Since (A - B)?
commutes with A and B for all A, B € A, we have PA = AP = A and PB =
BP = B. Since [A, B]> = A(A — 1) P, we conclude that [A, B]* = AkK(x — DfP
forall k € N. Since [A, B]1***! = [A, B]* - [A, B] = A¥(» — X[ A, B], the element
[A, B1**! is a commutator for all k € N.

Let J be anideal in A, A # 0,n € Nand [A, B]" € J.

Step 1. 1f n is even then by the equality [A, B1** = Ak(A—1)* P, wehave (A—B)? €
Jand (1 —2)A=A — ABA = A(A — B)>?A € J. Thus, A € J.

Step 2. If n is odd then for the even number n + 1, we have [A, BI"t! =[A, B]" -
[A, B] € J and apply Step 1. O
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Example Consider the following complex 2 x 2 matrices:

r=(00) 0= (65)

Then, P, Q € M»(C)d and POQP = P, QPQ = Q.

Theorem 3.3 Let ¢ be a faithful trace on a C*-algebra A; let A, B € A9\{0} be such
that ABA = LA and BAB = \B for some A € C\{0, 1}. Then, [A, B]" # 0 for all
neN

Proof Tt suffices to show that [A, B]" # O for all even n € N.

Case 1: [A, B1* ¢ 9. Then, [A, B]** # 0.

Case 2: [A, B]2k € M,. Then, by Lemma 3.2 we obtain A, B € 9M,. We have
@(A), 9(B) € RT by [10, Theorem 4.6] and recall that the trace ¢ is faithful. Now,
apply Lemma 3.2 and by Lemma 2.1 obtain

o([A, BI*) =250 — D*o(P)
= 20 = D (9(A) — (AB) + ¢(B) — ¢(BA))
= —2F00 = D*(p(A) — p(ABA) + ¢(B) — ¢(BAB))
=20 = DX(p(A) + 9(B)) #0.

Thus, [A, B]" #0foralln € N. O

Corollary 3.4 Let ¢ be a faithful tracial state on a C*-algebra A, let A, B € A9\ {0}
be such that ABA = LA and BAB = AB for some ). € C\{0, 1}. Then, the element
[A, B1*" is a non-commutator for all n € N.

Proof We have ¢([A, B]*") # 0 for all n € N (see the proof of Theorem 3.3). O
Theorem 2.2 allows us to state

Lemma 3.5 Let H be a Hilbert space, dim ’H = oo. If operators X, Y € B(H) are
non-commutators then XY and X oY are non-commutators. In particular, X" is a
non-commutator for everyn € N.

Theorem 3.6 Let H be a Hilbert space, dim 'H = +o0, and let an operator X € B(H)
be a non-commutator. If Ay, ..., Ay, Bi, ..., B, € B(H) and A|By, ..., A,B, are
non-commutators, then the operator A, --- A1 X By - - - By, is a non-commutator.

Proof We apply Theorem 2.2. Let X = Al 4+ J and Ay By = Arl + Ji for some
A, Ax € C\{0} and operators J, J, € J fork = 1, ..., n. The proof is by induction.
For n = 1, we have
A1XBy =A (MLl +J)By =MA1B1 +A{JBy = (M1 + J1)+ A1JB;
=AM +AJ1 + AJB;.

Note that AA| # 0 and the operator AJ; + A1 J By liesin 7. The case of n > 2 follows
by induction. O
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Corollary3.7 If A, B € B(H) and the operator AB is a non-commutator, then the
operator A" B" is a non-commutator for every n € N.

Lemma 3.8 (on division) Let H be a Hilbert space, dim H = +ooand X, Y € B(H).

() If XY and X (resp., Y) are non-commutators, then Y (resp., X) is a non-
commutator.

(i) If X o Y and X (resp., Y) are non-commutators then Y (resp., X) is a non-
commutator.

Proof (i) Let operators XY and X be non-commutators. Then, by Theorem 2.2, we
have

XY=AM+J, X=ul+J;
for some A, u € C\{0} and certain operators J, J; € J. Therefore,
MAJ=XY=WIl+ )Y =uY+ 1Y

and ¥ = %I + J» with the operator J, = %(K — J1Y) € J. Thus, Y is a non-
commutator by Theorem 2.2.

Inparticular,if X € B(H) isleft (resp., right) invertible, then X is a non-commutator
if and only if X, ! (resp., X, 1 is a non-commutator.

(i1) Let operators X o Y and X be non-commutators. Then, by Theorem 2.2, we
have

XoY=M+J, X=upl+J
for some A, u € C\{0} and certain operators J, J; € J. Therefore,

(ul +J)Y + Yl + Jy) NY +YJ

AM+T=XoY =
+ ° 2 2

and ¥ = %I + Jo with the operator J, = ;l,L(J —JioY) € J.Thus, Y is a non-
commutator by Theorem 2.2. O

Corollary 3.9 [15, Corollary 14] If H is separable and an operator X € B(H) admits
a left (resp., right) essential inverse Xl_1 (resp., Xr_l) then X[_1 (resp., Xr_l) is a
non-commutator if and only if X is a non-commutator.

Corollary 3.10 Let i € C be a regular point of X € B(H) and Ry, = (X — A1)~ be
the resolvent of X. If X is a non-commutator, then R, is a non-commutator.

Proof By Theorem 2.2. we have X = x/ + J for some x € C\{0} and an operator

J € J. Since every operator from 7 is non-invertible, we infer that x # A and apply
Corollary 3.9. O
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Corollary 3.11 Let 'H be a Hilbert space, dim 'H = oo. Let A, B € B(H) be such that
ABA = AA+J forsome A € C\{0}and an operator J € J. If A is a non-commutator
then B is also a non-commutator.

Proof Note that an operator AA + J is a non-commutator, see Theorem 2.2. Apply
Lemma 3.8 with X = AB, Y = A and conclude that A B is non-commutator. Again
apply Lemma 3.8 with X = A, Y = B and infer that B is non-commutator. O

Lemma 3.12 Let J be a proper uniformly closed ideal in a unital C*-algebra A. Let
a Hermitian element X € A be of the form X = xI + J|, where x € Rand J| € J.
The equality f(X) = f(x)I + J holds for any continuous real-valued function f on
the spectrum o (X), here J € J.

Proof Since the ideal 7 is proper, I ¢ 7, the elements of J are irreversible and x €
o (X).Since X" = x"I+J, with J,, € J,forapolynomial p(r) = ag+ait+- - -+apt*
we have p(X) = aol + a1X + --- + axX* = p(x)I + J', where J' € J. By
the Weierstrass Theorem, there exists a sequence {p,,}>._; of polynomials, which
converges uniformly on o (X) to the function f as m — oo. For each m € N,
Pm(X) = pm ()T + J where J™ e 7. Since p,(X) — f(X) and p,,(x)] —
f(x)I as m — oo, the sequence {J™}°°_ also converges. The limit of {J™}>°_|
lies in J, because J is uniformly closed. It follows that f(X) = f(x)I 4+ J with
JeJ. O

By Lemma 3.12 and Theorem 2.2, we get

Lemma 3.13 Let 'H be an infinite-dimensional Hilbert space. Let an operator X €
B(H)% be a non-commutator;, X = xI + J for some x € R\{0} and J € J (see
Theorem 2.2). Then, f(X) is a non-commutator for every continuous function f :

o(X) - Rwith f(x) #0.

Remark 3.14 In particular, an operator X € B(H)" is a non-commutator if and only
if an operator X7 is a non-commutator for some (consequently, for all) g > 0 (recall
that dim ’H = o0). This fact also follows by [5, Remark 4] (hint: consider the odd
continuation of the function f(¢) = ¢7 from [0, +00) to R). If H is a separable space
and an operator X € B(H)* is a non-commutator, then the projection X° on the
closure of the range of X is a non-commutator. Indeed, if 0 < X < [, then {X i }20: I
is a monotone increasing sequence of operators whose strong-operator limit is the
projection X on the closure of the range of X [28, Lemma 5.1.5]. If X € B(H)T isa
non-commutator, then dim X+ < oo and X° = I — X is a non-commutator by
Theorem 2.2.

Theorem 3.15 Let 'H be an infinite-dimensional Hilbert space, and let X = U|X| be
the polar decomposition of an operator X € B(H). Then, the following conditions
are equivalent:

(i) X is a non-commutator;
(i) U and | X| are non-commutators.

) Birkhauser
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Proof (i)=(ii). By Theorem 2.2, we have X = xI + J for some x € C\{0} and
an operator J € J. Since an operator J* is lies in J, X* = xI + J* is a non-
commutator. Now, by Lemma 3.5, the operator X* X is a non-commutator. Therefore,
|X| = v/X*X is a non-commutator by Lemma 3.13 with f(t) = /7, t > 0. Since
X = U|X|, an operator U is a non-commutator by Lemma 3.8.

(i))=(1). Since X = U|X], the assertion follows by Lemma 3.5. O

Corollary 3.16 Let H be an infinite-dimensional Hilbert space, and let T = U|T| be
the polar decomposition of an operator T € B(H).

(1) If T is a non-commutator, then for any real number A € [0, 1], the A-Aluthge
transformation Ay (T) = |T|)‘U|T|17A is a non-commutator.

(1) If|T| and Ay (T) for some number A € [0, 1] are non-commutators, then T is a
non-commutator.

Proof (i) By Theorem 3.15, the operators U and |T'| are non-commutators. Then, we
apply Theorem 3.6 with A = |T'|*, By = |T|'™* and X = U.

(i1) For A € [0, 1], the operators |T|A, |T|1_)‘ are non-commutators, see Remark
3.14. For X = |T|*, Y = U|T|'™* Lemma 3.8 implies that U|T|'~* is non-
commutator. Thus, 7 = U|T|'™* - |T|* is non-commutator as a product of two
non-commutators by Lemma 3.5. O

For T € B(H), dim 'H < oo, we have tr(T) = tr(A, (7)) for any number A € [0, 1].
Thus, T is acommutator if and only if A, (7') is a commutator for some (consequently,
for all) A € [0, 1] by [26, Ch. 24, Problem 230].

Example Let X = U|X]| be the polar decomposition of a matrix X € M (C). If X
is an invertible commutator, then U is a commutator. Indeed, we have X = (2 g)
in some basis in C? by [25, Ch. II, Problem 209] and ab # 0. Let a = ei“|a|,
b = eBlp| for 0 < o, B < 2m. Then, |X| = vX*X = diag(|b|, |a|). For the

uii|b| uizla
1110] uizlal _we have
u211b| uxlal

unitary matrix U = [u,-j]l.z’j:1 from equality X = U|X| = (
Uil =up =0,u;p = e, Uz = ¢ and U is a commutator by [25, Ch. II, Problem

209].

Theorem 3.17 Let H be an infinite-dimensional Hilbert space. Then, for X € B(H)%,
the following conditions are equivalent:

(i) X is a commutator;
(ii) the Cayley transform K(X) is a commutator.

Proof (ii)=(i). Let X be a non-commutator. By Theorem 2.2, we have X = xI+J for
some x € R\{0} and a Hermitian operator J € 7. The operators X i/ = (xxi)I+J
are non-commutators by Theorem 2.2. Therefore, the operator (X — i/)~! is a non-
commutator by Corollary 3.9 and we apply Lemma 3.5. Thus, the Cayley transform
K(X) is a non-commutator.

W Birkhauser
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()= (ii). Let K£(X) be a non-commutator. By Theorem 2.2 for the unitary operator
K(X), we have K(X) = xI + J for some x € C\{0} with |x| = 1 and an operator
J € J. We have

X+il=KX)X—-i)=xI+)X—-il)=xX—-ixI+JX—-iJ. (3.2)

Therefore, if x = 1,then I € J;if x = —1 then X € 7. In both cases, we arrive to a
contradiction. Thus, x # £1. By (3.2), wehave (1 —x)X = —i(1 +x)I +JX —iJ
and apply Theorem 2.2. Thus, X is a non-commutator. O

Let A be an algebra, let A, B € A be such that AB = —BA, i.e., A and B

anticommute. Then, AB and BA are commutators: AB = [%, B], BA =B, %].

Lemma 3.18 Let A be a unital algebra, let A, B € A be such that AB = LBA for
some ). € C\{0}. Then, we have the spectral relation c (AB) = o (BA) = Ao (BA).
Moreover, if B is invertible, then o (A) = Ao (A).

Proof We have Ao (BA) = o (ABA) = o (AB). Since
o(XY)U{0} =0o(YX)U ({0} forall X,Y € A, 3.3)

see [26, Ch. 9, Problem 76], we obtain Ac(BA) U {0} = o(BA) U {0}. Then, we
consider two cases: 1) 0 € o0(BA), and 2) 0 ¢ o(BA). In both cases, we have
Ao (BA) = o (BA). Thus,

0(AB) = »o(BA) = 6 (BA) = Ao (AB).

For an invertible B, wehave A = AB-B~' = ABA-B 'ando (A) = A6 (BAB™!) =
Ao (A) since similarity preserves spectra [26, Ch. 9, Problem 75]. O

In particular, if A = M, (C) and det(AB) # 0, then A" = 1 by the theorem on the
determinant of a matrix product.

Example In M (C) for matrices A = diag(1, —1) and B = <8 )(;) we have AB =
—BA. Consider the primitive cubic roots of 1: w; = 1, wy = —% — i“/Tg, w3 =

—% + i@. In M3 (C) for the matrices

and B = diag(w, w, w3), we have AB = w3BA.

Theorem 3:19 Let 'H be a Hilbert space and dim’H < +oo, A, B € B(H) and
P € B(H)!.

(1) If AB = ABA for some . € C\{1}, then the operator AB is a commutator.

) Birkhauser
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(1) IfdimH < +oo, then AB is a commutator if and only if BA is a commutator.
(iii) The operator AP is a commutator if and only if P A is a commutator.

Proof (i) For 1 = 0, the assertion is trivial. Assume that 1 % 0 and consider two cases.
Case I:let dim H < +o00. Then,

tr(BA) = tr(AB) = tr(ABA) = AMr(BA)

and tr(BA) = tr(AB) = 0. Thus, AB and BA are commutators by [26, Ch. 24,
Problem 230].

Case 2: let dim’H = +o00. Assume that the operator AB is a non-commutator.
Then,

AB =pul +1J (3.4)

for some u € C\{0} and an operator J € J by Theorem 2.2. Multiply both sides of
equality (3.4) by the operator A from the right and obtain

ABA = uA + JA. (3.5)

Since ABA = I + J, multiply both sides of the last equality by the operator A from
the left and obtain

AMBA = uA+ AlJ. (3.6)

By (3.5), we have ALABA = puAA + AJ A; subtract this relation term by term from
equality (3.6) and conclude that u(A — 1)A = AJ — AJ A. Therefore, A € J. Thus
AB € J and we have a contradiction with representation (3.4).

(ii) If dim 'H < +o0, then tr(BA) = tr(AB) and the assertion follows by [26, Ch.
24, Problem 230].

(iii) Let dim ‘H = +4-o00. Assume that the operator A P is a non-commutator. Then,
by Theorem 2.2, we have AP = xI + J for some x € C\{0} and an operator J € J.
Then, for the idempotent PL =1 — P, we conclude that

0=AP.PL=xpPt 1Pt

Hence, P+ € J and P = I — Pt is a non-commutator by Theorem 2.2. Since A P and
P are non-commutators, the operator A is a non-commutator via Lemma 3.8. Since A
and P are non-commutators, the operator P A is a non-commutator via Lemma 3.5.
For the proof of the inverse implication, note that if PA is a non-commutator,
then (PA)* = A*P* is also a non-commutator by Theorem 2.2. Recall that P* €
B(H)!4 and by the preceding part of the proof P*A* is a non-commutator. Therefore,
(P*A*)* = AP is a non-commutator by Theorem 2.2. O

The condition P € B(H)'Y is essential in Theorem 3.19. If H{ is separable and
dim H = 400, then there exists a partial isometry A € B(H) such that A*A = I and
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the operators AA*, I — AA™ are non compact (hence by Theorem 2.2 we conclude
that A*A is a non-commutator, but AA™ is a commutator).

Corollary3.20 Let dimH = n < 400 and matrices A, B € B(H) be such that
AB = ABA for some A € C\{1}.

(i) AB and BA are unitarily equivalent to matrices with zero diagonal.
(i) We have tr(|I + zAB|) > nand tr(|I + zBA|) > n forall z € C.

Proof (i) Follows by [25, Ch. II, Problem 209].
(ii) Follows by [11, Theorem 4.8]. O

Theorem 3.21 Let H be a Hilbert space, U € B(H) be an isometry.

(1) If A € B(H) is a non-commutator, then the operator U* AU is a non-commutator.
(ii) If H is separable and U is a non-commutator, then U is unitary.

Proof If dim H < +o00, then every isometry U € B(H) is unitary. If A € B(H) is a
non-commutator, then

0 # tr(A) = tr(U*AU)

and U*AU is a non-commutator by [26, Ch. 24, Problem 230].

Assume that dim H = 4-00. Then, (i) follows by Theorem 2.2. For the proof of
(i), note that U = xI 4 K for some x € C\{0} and a compact operator K € B(H),
i.e., U is a thin operator. By Proposition of [2] viaU*U = I, wehave UU* = [. O

Theorem 3.22 Let A be an algebra and A, B € A be such that A ~ B. Letn € N
and py(t) = 22:1 aktk be a polynomial without a constant term, q,41(t) = tp,(t).
Then,

(1) pn(A) ~ pn(B) and p,(A) — pn(B) is a commutator;
(i) if Jis an ideal in A and p,(A) € J, then g,+1(B) € J;
(iii) if A™ = p,(A) for some m € N, then B"*! = ¢, 1(B).

Proof Let X,Y € Abesuchthat XY = Aand YX = B.

() For Z = a,(XY)" ' X + a,_ 1 (XY)" 2X +--- 4+ a1 X, we have p,(A) = ZY
and p,(B) = YZ. Thus, p,(A) ~ pn(B) and p,(A) — pa(B) = [Z, Y].

(ii) Let J be an ideal in A and p, (A) € J. Then,

n+1 n+1 n
1 (B) =) ar-1B* =) a1 (YX)' =¥ (Z ak<YX)"> X
k=2 k=2 k=1
=Yp,(A)X €.

(iii) We have (see the proof of item (ii))
Gni1(B) = Ypu(A)X = YA"X = Y(XY)"X = (Y X)"T! = p"+1,
O
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Let A be a C*-algebra and A, B € A be such that A ~ B. By relation (3.3), we have
o(A) U {0} =o(B) U{0}.

Theorem 3.23 Let A be a *-algebra. Then, for A € A and B € A% the following
conditions are equivalent:

(i) A~ B;
(i) A* ~ B.

Under these conditions, we have o (A) C R.

Proof (i) =(ii).Let X, Y € Abesuchthat XY = Aand Y X = B.Then, A* = Y*X*
and B=YX = (YX)* = X*Y*.
(i1) =(). Since (A*)* = A, we can repeat the proof of the implication (i)=>(ii) for
the pair {A*, B}.
Via (3.3) and the relation o (B) = o (Y X) C R we infer that 0 (A) = o (XY) C R.
O

Theorem 3.24 Let 'H be an infinite-dimensional Hilbert space. If A, B € B(H) are
non-commutators and A ~ B, then A — B € J.

Proof Let A = al + J, B = bl + J; for some a, b € C\{0} and certain operators
J,Ji € J,see Theorem22.Let X,Y € B(H)besuchthat A = XY, B=YX. We
have

X-YX-Y=XObI+J)Y=bXY+XJ1Y=abl +b]+XJ1Y
= (XY)? = (al + J)> =a’I +2aJ + J>.

Note that the operators bJ + X J1Y and 2aJ + J 2 lie in J. Therefore, a = b and
A—BeJ. O

Example 1If A, B € M,(C) and A ~ B, then det(A) = det(B) and tr(A) = tr(B).
Let A = B(H), where H is a separable Hilbert space, dim H = co. Then, there exist
operators A € AT and B € Asuchthat A~ B, A € G(H), but B ¢ & (H). Hint:
for some projections P, Q € B(H), wehave POQP € G1(H),but QP ¢ S1(H), see
[3,Remark 1]. Put X = Pand Y = QP.
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