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The algebra of thin measurable operators is directly finite

AIRAT M. BIKCHENTAEV*

ABSTRACT. Let M be a semifinite von Neumann algebra on a Hilbert space H equipped with a faithful normal
semifinite trace τ , S(M, τ) be the ∗-algebra of all τ -measurable operators. Let S0(M, τ) be the ∗-algebra of all τ -
compact operators and T (M, τ) = S0(M, τ) + CI be the ∗-algebra of all operators X = A+ λI with A ∈ S0(M, τ)
and λ ∈ C. It is proved that every operator of T (M, τ) that is left-invertible in T (M, τ) is in fact invertible in T (M, τ).
It is a generalization of Sterling Berberian theorem (1982) on the subalgebra of thin operators in B(H). For the singular
value function µ(t;Q) of Q = Q2 ∈ S(M, τ), the inclusion µ(t;Q) ∈ {0}

⋃
[1,+∞) holds for all t > 0. It gives the

positive answer to the question posed by Daniyar Mushtari in 2010.

Keywords: Hilbert space, von Neumann algebra, semifinite trace, τ -measurable operator, τ -compact operator, singular
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1. INTRODUCTION

In this paper, we extend the Sterling Berberian’s result [2] (see also [12]) on direct finiteness
of the algebra of thin operators on an infinite-dimensional Hilbert space to the Irving Segal’s
non-commutative integration setting [16]. Let M be a semifinite von Neumann algebra on a
Hilbert space H equipped with a faithful normal semifinite trace τ , S(M, τ) be the ∗-algebra
of all τ -measurable operators. Let S0(M, τ) be the ∗-algebra of all τ -compact operators and
T (M, τ) = S0(M, τ) + CI be the ∗-algebra of all operators X = A + λI with A ∈ S0(M, τ)
and a complex number λ. We prove that every operator of T (M, τ) left-invertible in T (M, τ)
is actually invertible in T (M, τ) (Theorem 3.1). Assume that A ∈ S(M, τ) and B ∈ T (M, τ).
We have AB ∈ T (M, τ) if and only if BA ∈ T (M, τ) (Theorem 3.2). For the singular value
function µ(t;Q) of Q = Q2 ∈ S(M, τ), we have µ(t;Q) ∈ {0}

⋃
[1,+∞) for all t > 0 (Theorem

3.3). It is the positive answer to the question by Daniyar Mushtari of year 2010.
The author sincerely thank Vladimir Chilin for useful discussions of the results presented in

this paper.

2. PRELIMINARIES

LetM be a von Neumann algebra of operators on a Hilbert spaceH, let P(M) be the lattice
of projections inM, I be the unit ofM. AlsoM+ denotes the cone of positive elements inM.
A mapping ϕ :M+ → [0,+∞] is called a trace, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X)
for all X,Y ∈ M+, λ ≥ 0 (moreover, 0 · (+∞) ≡ 0); ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace
ϕ is called faithful, if ϕ(X) > 0 for all X ∈ M+, X 6= 0; normal, if Xi ↑ X (Xi, X ∈ M+) ⇒
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ϕ(X) = supϕ(Xi); semifinite, if ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for every
X ∈M+.

An operator on H (not necessarily bounded or densely defined) is said to be affiliated to the
von Neumann algebraM if it commutes with any unitary operator from the commutantM′ of
the algebraM. Let τ be a faithful normal semifinite trace onM. A closed operatorX , affiliated
to M and possesing a domain D(X) everywhere dense in H is said to be τ -measurable if, for
any ε > 0, there exists a P ∈ P(M) such that PH ⊂ D(X) and τ(I−P ) < ε. The set S(M, τ) of
all τ -measurable operators is a ∗-algebra under passage to the adjoint operator, multiplication
by a scalar, and operations of strong addition and multiplication resulting from the closure of
the ordinary operations [16], [14]. Let L+ and Lh denote the positive and Hermitian parts of a
family L ⊂ S(M, τ), respectively. We denote by ≤ the partial order in S(M, τ)h generated by
its proper cone S(M, τ)+. If X ∈ S(M, τ), then |X| =

√
X∗X ∈ S(M, τ)+. The generalized

singular value function µ(X) : t→ µ(t;X) of the operator X is defined by setting

µ(s;X) = inf{‖XP‖ : P ∈ P(M) and τ(I − P ) ≤ s}.

Lemma 2.1. (see [10]) We have µ(s+ t;XY ) ≤ µ(s;X)µ(t;Y ) for all X,Y ∈ S(M, τ) and s, t > 0.

The sets U(ε, δ) = {X ∈ S(M, τ) : (‖XP‖ ≤ ε and τ(I − P ) ≤ δ for some P ∈ P(M))},
where ε > 0, δ > 0, form a base at 0 for a metrizable vector topology tτ on S(M, τ), called the
measure topology [14]. Equipped with this topology, S(M, τ) is a complete metrizable topolog-
ical ∗-algebra in whichM is dense. We will write Xn

τ−→ X if a sequence {Xn}∞n=1 converges
to X ∈ S(M, τ) in the measure topology on S(M, τ).

The set of τ -compact operators S0(M, τ) = {X ∈ S(M, τ) : lim
t→∞

µ(t;X) = 0} is an ideal

in S(M, τ). For any closed and densely defined linear operator X : D (X) → H, the null
projection n(X) = n(|X|) is the projection onto its kernel Ker(X), the range projection r(X) is
the projection onto the closure of its range Ran(X) and the support projection supp(X) of X is
defined by supp(X) = I − n(X).

The two-sided ideal F(M, τ) inM consisting of all elements of τ -finite range is defined by

F(M, τ) = {X ∈M : τ(r(X)) <∞} = {X ∈M : τ(supp(X)) <∞}.
Equivalently, F(M, τ) = {X ∈ M : µ(t;X) = 0 for some t > 0}. Clearly, S0(M, τ) is the
closure of F(M, τ) with respect to the measure topology [9].

3. MAIN RESULTS

Throughout the sequel, letM be an arbitrary semifinite von Neumann algebra, with some
distinguished faithful normal semifinite trace τ .

Lemma 3.2. We have |X| ∈ T (M, τ) for every X ∈ T (M, τ).

Proof. The ideal F(M, τ) is a C∗-subalgebra inM. Hence F (M, τ) = F(M, τ)+CI is an unital
C∗-subalgebra inM and if X ∈ F (M, τ), then |X| ∈ F (M, τ). Assume that X ∈ T (M, τ), i.e.,
X = A+λI withA ∈ S0(M, τ) and λ ∈ C. Since F(M, τ) is tτ -dense in S0(M, τ), there exists a
sequence {An}∞n=1 ⊂ F(M, τ) such thatAn

τ−→ A as n→∞. Then the sequenceXn = An+λI ,
n ∈ N, lies in F (M, τ) and tτ -converges to the operator X as n → ∞. According to the results
given above, |Xn| = Bn + |λ|I with some Bn ∈ F (M, τ)h, n ∈ N. Since Xn

τ−→ X as n → ∞,
we have X∗n

τ−→ X∗ as n→∞ by tτ -continuity of the involution in S(M, τ). Then via joint tτ -
continuity of the multiplication in S(M, τ), we have X∗nXn

τ−→ X∗X as n→∞. Therefore, we
obtain |Xn|

τ−→ |X| as n → ∞ by tτ -continuity of the real function f(t) =
√
t, t ≥ 0 [18]. Thus

the sequence {Bn}∞n=1 tτ -converges to a some operator B ∈ S0(M, τ)h and |X| = B + |λ|I . �
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Lemma 3.3. (see [4, Corollary 2.4]) If X ∈ T (M, τ) and XX∗ ≤ X∗X , then XX∗ = X∗X .

Lemma 3.4. The idempotents of T (M, τ) are the operators P , I−P , where P runs over the idempotent
operators of S0(M, τ).

Proof. Assume that X = A+ λI ∈ T (M, τ) and X2 = X . Then A2 + 2λA+ λ2I = A+ λI , i.e.,
λ ∈ {0, 1}. If λ = 0, then A2 = A and A ∈ S0(M, τ) is an idempotent operator. Then I − A ∈
T (M, τ) and is also an idempotent. If λ = 1, then A2 = −A = (−A)2 and −A ∈ S0(M, τ) is an
idempotent operator. Then I − (−A) ∈ T (M, τ) and is also an idempotent. �

Consider F0(M, τ) = {A ∈ S0(M, τ) : τ(r(A)) < +∞} and A(M, τ) = F0(M, τ) + CI .
Then A(M, τ) is a ∗-subalgebra of T (M, τ).

Lemma 3.5. A(M, τ) contains every idempotent of T (M, τ).

Proof. Let Q be an idempotent operator of S(M, τ). Then

(Q+Q∗ − I)2 = I + (Q−Q∗)(Q−Q∗)∗

and by [6, Theorem 2.21] there exists a unique “range” projection Q] ∈ P(M), defined by
the formula Q] = Q(Q + Q∗ − I)−1 with (Q + Q∗ − I)−1 ∈ M and subject to the condition
Q]·S(M, τ) = Q·S(M, τ). By [6, Theorem 2.23], there exists a unique decompositionQ = P+Z,
where P = Q] ∈ P(M) and Z ∈ S(M, τ) is a nilpotent so that Z2 = 0 and ZP = 0, PZ = Z.
ThusQP = P and PQ = Q. Assume thatQ ∈ S0(M, τ). SinceQP = P , we have P ∈ S0(M, τ).
Since the singular function µ(t;P ) = χ(0,τ(P )](t) for all t > 0, we conclude that P ∈ F(M, τ).
Then by equality PQ = Q, we have Q ∈ F0(M, τ) and apply Lemma 3.4. �

Lemma 3.6. F0(M, τ) is a regular ring.

Proof. We show that for every operator A ∈ F0(M, τ) the equation AXA = A possesses a so-
lution in F0(M, τ). For A ∈ F0(M, τ), the range projection r(A) and the support projection
supp(A) lie in F(M, τ). Consider the projection P = r(A)

∨
supp(A) in F(M, τ) and the re-

duced von Neumann algebra MP = PMP , the reduced faithful normal finite trace τP with
τP (X) = τ(PXP ), X ∈ M+

P . The algebraMP is finite, therefore S(MP , τP ) is a regular ring
by [15, Theorem 4.3]. Since A ∈ S(MP , τP ), the equation AXA = A admits a solution in
S(MP , τP ) ⊂ F0(M, τ). �

Idempotents P,Q of a ring R are said to be equivalent (in R), written P ∼ Q, if there exist
elements X,Y ∈ R such that XY = P and Y X = Q (replacing X,Y by PXQ, QY P , one
can suppose that X ∈ PRQ, Y ∈ QRP [13, p. 22]). Projections (=self-adjoint idempotents)
P,Q of a ring with involutions are said to be ∗-equivalent if there exists an element X such that
XX∗ = P and X∗X = Q.

Theorem 3.1. If X,Y ∈ T (M, τ) such that XY = I , then Y X = I .

Proof. In the terms of ring theory, we assert that the ring T (M, τ) is “directly finite” [11, p. 49].
Since F0(M, τ) (by Lemma 3.6) and A(M, τ)/F0(M, τ) ∼= C are both regular rings, A(M, τ)
is a regular ring [11, p. 2, Lemma 1.3]; since, moreover, the involution of A(M, τ) is proper
(AA∗ = 0 implies A = 0), the algebra A(M, τ) is ∗-regular in the sense of von Neumann [1, p.
229].

If X,Y are elements of T (M, τ) such that XY = I , then P = Y X is an idempotent of
T (M, τ) such that P ∼ I in T (M, τ). By Lemma 3.5, we have P ∈ A(M, τ); since A(M, τ)
is ∗-regular, there exists a projection Q ∈ A(M, τ) such that Q · A(M, τ) = P · A(M, τ) [1,
p. 229, Proposition 3]. Then P ∼ Q in A(M, τ) [13, p. 21, Theorem 14], a fortiori P ∼ Q
in T (M, τ); already P ∼ I in T (M, τ), so Q ∼ I in T (M, τ) by transitivity. Since T (M, τ)
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satisfies the “square root” axiom (SR) and contains square roots of its positive elements (see
Lemma 3.2 and [13, p. 90]), it follows that the projections P, I are ∗-equivalent in T (M, τ) [13,
p. 35, Theorem 27], say X ∈ T (M, τ) with XX∗ = P , X∗X = I . By Lemma 3.3, P = I ; then
Q · A(M, τ) = P · A(M, τ) = A(M, τ) shows that P = I , that is, Y X = I . �

Theorem 3.1 can obviously be reformulated as follows: ifA,B ∈ S0(M, τ) andA+B+AB =
0, then AB = BA. On invertibility in S(M, τ), see [17], [7] and [8].

Theorem 3.2. Assume that A ∈ S(M, τ) and B ∈ T (M, τ). Then AB ∈ T (M, τ) if and only if
BA ∈ T (M, τ).

Proof. "⇒". If B ∈ S0(M, τ), then BA ∈ S0(M, τ) ⊂ T (M, τ). Assume that B /∈ S0(M, τ).
Then B = λI +K for some λ ∈ C \ {0} and K ∈ S0(M, τ). Hence,

(3.1) AB = λA+AK = µI +K1

for some µ ∈ C and K1 ∈ S0(M, τ).
Case 1: µ = 0. Then we have A ∈ S0(M, τ) by (3.1); hence BA ∈ S0(M, τ) ⊂ T (M, τ).
Case 2: µ 6= 0. Then by (3.1), we have λA = µI + K2 with K2 = K1 − AK ∈ S0(M, τ).

Therefore, A = µ
λI +

1
λK2 and

BA = (λI +K)
(µ
λ
I +

1

λ
K2

)
= I +K3

with K3 = K1 −AK + µ
λK + 1

λKK1 − 1
λKAK ∈ S0(M, τ). Thus BA ∈ T (M, τ).

"⇐". We know that X ∈ T (M, τ) if and only if X∗ ∈ T (M, τ), and apply the proof given
above to the pair {A∗, B∗}. �

Corollary 3.1. If A ∈ S(M, τ) and B ∈ T (M, τ) \ S0(M, τ) then the following conditions are
equivalent:

(i) AB ∈ T (M, τ);
(ii) BA ∈ T (M, τ);
(iii) A ∈ T (M, τ).

Proof. "(i)⇒(iii)". Let B = λI + K for some λ ∈ C \ {0} and K ∈ S0(M, τ). Then AB =
λA + AK = µI + K1 for some µ ∈ C and K1 ∈ S0(M, τ). Thus λA = µI + K1 − AK and
A = µ

λI +
1
λK1 − 1

λAK ∈ T (M, τ). �

Theorem 3.3. If Q ∈ S(M, τ) is such that Q2 = Q, then µ(t;Q) ∈ {0}
⋃
[1,+∞) for all t > 0. For

the symmetry U = 2Q− I , we have µ(t;U) ≥ 1 for all t > 0.

Proof. For Q = Q2 /∈ S0(M, τ), we have µ(t;Q) ≥ 1 for all t > 0, see [5, Lemma 3.8]. Let
Q = Q2 ∈ S0(M, τ) and P be “the range” projection of the idempotent Q, see the proof of
Lemma 3.5. Since QP = P and P ∈ P(M)

⋂
F(M, τ), by Lemma 2.1 we have

1 = µ(s+ t;P ) = χ(0,τ(P )](s+ t) = µ(s+ t;QP ) ≤ µ(s;P )µ(t;Q) = µ(t;Q)

for all s, t > 0 with s + t ≤ τ(P ). By tending s to 0+, we obtain µ(t;Q) ≥ 1 for all 0 < t <
τ(P ). By the right continuity of the function µ(t; ·), we have µ(τ(P );Q) ≥ 1. If t > τ(P ) then
µ(t;P ) = 0; by the equality PQ = Q and by Lemma 2.1, we obtain

0 ≤ µ(t;Q) = µ(t;PQ) ≤ µ(t− ε;P )µ(ε;Q) = 0

for all ε > 0 with t− ε > τ(P ).
Let Q ∈ S(M, τ) be such that Q2 = Q. For the symmetry U = 2Q − I , we have U2 = I and

by Lemma 2.1 obtain

1 = µ(2t; I) = µ(2t;U2) ≤ µ(t;U)µ(t;U) = µ(t;U)2
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for all t > 0. �

Note that for Q ∈ M such that Q2 = Q the relation µ(t;Q) ∈ {0}
⋃
[1, ‖Q‖] for all t > 0 was

obtained by another way in [3, item 1) of Lemma 3.8]. Theorem 3.3 gives the positive answer
to the question by Daniyar Mushtari of year 2010.
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