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Abstract—We study the properties of the inner radius of multiply connected domains. This
conformally invariant quantity coincides with the conformal radius in the simply connected case.
Using the vector field method, we prove that the number of critical points of the inner radius is not
less than the connectivity order of the domain. The classification of critical points according to their
indices is given. We also prove that these points can only be maxima, saddles or semi-saddles.
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1. INTRODUCTION

Let D be a bounded n-connected domain in C with the boundary ∂D consisting of n Jordan curves
L1, L2, . . . , Ln. We recall the definition of the inner radius of a multiply connected domain (see, for
example, [1, 2], [3, p. 123]). Let G(w,w0) be Green’s function of the domain D. The function
g(w,w0) = G(w,w0) + ln |w − w0| is harmonic at w = w0, so there exists a limit

g(w0, w0) = lim
w→w0

[
G(w,w0) + ln |w − w0 |

]
.

The quantity g(w0, w0) is also called the Robin constant of the domain D relative to the point w0 ([4],
p. 96; see also [5], pp. 26–27).

Definition 1. The function R(w) = eg(w,w) is called the inner radius of the region D at a point w.
If D is a simply connected domain whose boundary contains at least two points, then the inner radius

of the domain D at the point w0 ∈ D coincides with the conformal radius of the domain. The properties
of the function R(w) for a simply connected domain D were studied in the paper of Haegi [6], see also [7].
In particular, it is shown in [6] that for convex domain the function R(w) has exactly one critical point,
which is the maximum of R(w), except for the strip.This result gave rise to an important direction in the
study of the inner radii R(w) —to obtain the conditions for the set MR = {w ∈ D : Rw̄(w) = 0} to be
a singleton; see, for example, [8]. Elements of the set MR are called critical, or stationary points of the
function R(w) (surface R = R(w)).

The inner radius does not decrease as the domain expands. For an arbitrary domain D its inner
radius at the point w0 ∈ D is defined as the exact upper bound of the set of inner radii at the point w0 of
all domains contained in D and having the Green function.

The inner radius plays an essential role in the inverse boundary value problems. In 1952 F. D. Gakhov
[9] obtained the condition for the solvability of the exterior inverse problem in the form of an equation for
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determining a stationary point of some real surface. As noted by L.A. Aksent’ev [7], this surface, in fact,
coincides with the surface of the inner radius. The equation for finding the critical points of the function
R(w) is called the Gakhov equation. In the works of M.I. Kinder [10, 11] a classification of isolated
critical points of the inner radius of a domain of finite connectivity was introduced, and, in particular, it
was proved that the surface R = R(w) in a neighborhood of such a point has a convex, saddle-shaped,
or semi-saddle structure.

In this article we study the question about the number of stationary points of the inner radius surface
for the case of an arbitrary finitely connected region. The research method is to study the rotation of a
vector field associated with a surface. The use of such a method (see, for example, [12]) allows us not
only to prove the existence of critical points of the function R(w), but also to estimate their number from
below.

The main result of the article is
Theorem 1. The surface of the inner radius R = R(w) in the case of an n-connected bounded

domain D has at least n stationary points.

2. KEY FACTS

We devote this section to the proof of Theorem 1.
First of all, let us establish an assertion on the boundary behavior of the function R(w), which is

needed to prove the existence of stationary points of the surface R = R(w).
Lemma 1. The function R(w) is infinitely differentiable in the domain D and continuous in the

closed domain D, moreover limw→tR(w) = 0, t ∈ ∂D.

Proof. We use the inequality

g(w0, w0) ≤ 2g(w,w0)− g(w,w), w,w0 ∈ D, (1)

established by M. Schiffer [13, § 3] for plane multiply connected domains bounded by smooth, in
particular, analytic curves. Any multiply connected domain bounded by closed Jordan curves can always
be approximated by domains with analytic boundaries. Taking into account the continuity of the Green’s
function (and hence the function g(w,w0)) as a function depending on the approximating domain, we
conclude that the inequality (1) is valid for any multiply connected domain with Jordan boundary (see
also [4, p. 96]). Further, inequality (1) yields the relation limw→t g(w,w) = −∞, meaning that the
function g(w,w) tends to −∞, when the point w approaches to the boundary point t ∈ ∂D along any
path Γt. Indeed, assuming the opposite

lim
w→t

g(w,w) ≥ −K, (2)

and passing to the limit on the right-hand side (1) as w → t (w ∈ Γt), we obtain the inequality
g(w0, w0) ≤ K + 2g(t, w0), t ∈ ∂D, that is

g(w0, w0) ≤ K + 2 ln | t− w0 |, (3)

valid for w0 ∈ D. Remaining ourselves in the region D, we will approach the point w0 to t along the path
with “finishing” part lying on Γt. Then the value of g(w0, w0), as we see from the right-hand side of (3),
can be made less than any preassigned negative number. The latter contradicts (2), and the statement
that limw→t g(w,w) = −∞ is proved.

It follows that R(w) vanishes on the boundary of the domain D, which implies the continuity of the
function R(w) in D. Lemma 1 is proved. �

By the Weierstrass theorem R(w) will attain its maximum inside the domain D. Geometrically, this
means that the surface with the equation R = R(w), located over the region D and attached to the
boundary of this region, has at least one maximum point (vertex).

As noted above, the stationary points of the surface R = R(u, v), w = u+ iv, are found from the
equations

∂R

∂w
= 0 ⇐⇒ ∂R

∂u
=

∂R

∂v
= 0. (4)
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In the domain D we introduce a plane vector field of gradients

gradR(w) =

(
∂R

∂u
,
∂R

∂v

)
, (5)

the singular points of which are the roots of the equation (4).

Suppose now that the equation (4) has finitely many solutions. This requirement means that all
singular points of the vector field (5) are isolated (if this is not the case, then the function R = R(w) has
an infinite number of stationary points and the main statement of the article is true).

The following statement describes the structure of the level lines of the function R(w).

Lemma 2. The level lines R(w) = ε for sufficiently small ε > 0 define the domain Dε with the
boundary of n closed smooth Jordan curves approximating the boundary of the domain D.

Proof. Let’s choose the number δ > 0 less than the distance of all zeros of the function ∂R/∂w to
the boundary ∂D, and also less than half the distance between different boundary curves included in
∂D. On the set Dδ, consisting of all points in D whose distance from the boundary ∂D is at least δ,
the function R(w) has the minimum ε0 > 0. Let Γε be the set of points in D defined by the equation
R(u, v) = ε, 0 < ε < ε0. It consists of a finite number of non-intersecting smooth curves that cannot
end on the boundary contours D \Dδ (where R(w) = 0 or R(w) ≥ ε0). Every such curve is closed and
does not have self-intersections. All these statements follow from the theorem on the existence of an
implicit function applied to the equation R(u, v)− ε = 0, and from the condition that on the set D \Dδ

at least one of the derivatives ∂R/∂u or ∂R/∂v is nonzero.

Further, the set Γkε ⊂ Γε of points that lie at a distance at most δ from the boundary curve Lk consists
of only one closed smooth Jordan curve. Indeed, if Γkε would consist of several curves, then in the
part D \Dδ adjacent to Lk there would be a region Δ such that R(u, v) is a continuously differentiable
function on Δ and R(u, v) = ε on ∂Δ. But from this, by the Weierstrass theorem, it would follow that
the function R(u, v) reaches its maximum (or minimum) inside the region Δ, and hence, at some point
of the region D \Dδ holds (4), which contradicts the choice of δ.

Based on the obtained conclusion about the structure of Γε, we get that the level lines R(u, v) = ε
define the domain Dε ⊂ D with the boundary consisting of n closed smooth Jordan curves Γ1ε, . . . ,Γnε

and approximating the boundary of the domain D. �

Let us define the rotation of the vector field gradR along any curve Γ lying in the domain D:

γ(Γ) =
1

2π
var arg

∂R

∂w
= − 1

2πi

∫

Γ

d ln
∂R

∂w
.

Geometrically, the value of γ(Γ) is equal to the winding number of the field vector under the single
circuit of the curve Γ. Let us take as Γ the system Γε = ∂Dε of closed curves Γ1ε, . . . ,Γnε, each of which
is the ε-level line of the function R(u, v). Let’s calculate the rotation of the gradient field on Γnε. To do
this, note that on the level line we have the equality

∂R

∂u
du+

∂R

∂v
dv = 0.

Hence, the tangent vector (du, dv) is orthogonal to the vector-gradient (5), that is,
−−→
gradR is directed

along the normal to level line. The rotation of the normal field on a smooth simple closed curve Γ is 1 if Γ
is traversed counterclockwise, and is equal to −1 if the traversal is clockwise. Therefore, the rotation of
the gradient field along the boundary of the region Dε is equal to 1− (n− 1) = 2− n.

Let us denote the critical points of the inner radius R(w) by w0, w1, . . . , wm. For an isolated singular
point wi of the vector field (4), we define the index by the formula

γ(wi) = − 1

2πi

∫

li

d ln
∂R

∂w
.
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The quantity γ(wi) does not depend on the closed curve li with only one singularity wi in its interior. By
the main theorem in the theory of plane vector fields [12, p. 28] the algebraic number of (the indices of)
the singular points

∑m
i=0 γ(wi) is equal to the rotation of the field on Γε = ∂Dε, that is

m∑

i=0

γ(wi) = 2− n. (6)

One of the terms on the left side of (6) is known: the index of an isolated maximum point, say w0, of the
function R(w) is equal to 1 [14, p. 210]. Therefore, the equality (6) can be rewritten as

m∑

i=1

γ(wi) = 1− n. (7)

The index of each of the remaining points wi (1 ≤ i ≤ m) depends on the order of the zero wi of the
function ∂R(w)/∂w. To clarify this question, consider the behavior of the second differential form of the
function R(u, v) in a neighborhood of singular points:

Ruudu
2 + 2Ruvdu dv +Rvvdv

2. (8)

Let us prove that at singular points of the vector field (5) the differential form (8) is nondegenerate, that
is, at least one of the elements Ruu, Ruv, Rvv is different from zero.

Lemma 3. The function lnR(w) = g(w,w) is strictly superharmonic in the domain D, that is,

∂2g

∂u2
+

∂2g

∂v2
< 0 ⇐⇒ ∂2g(w,w)

∂w ∂w
< 0. (9)

Proof. We transform the expression on the right-hand side of (9), namely, we prove the equality

∂2g(w,w)

∂w ∂w
= 2

[
∂2g(w, z)

∂w ∂z

]

z=w

. (10)

To do this, we introduce new notation: instead of g(w, z) we will write g(w,w; z, z), thus emphasizing the
dependence of the function g on the variables w and z. It follows from the symmetry, G(w, z) = G(z, w),
of the Green function that the function g(w, z) has the same symmetry property; in the new notation this
property is written as

g(w,w; z, z) = g(z, z;w,w). (11)

Differentiating (11) with respect to w, we obtain

g′1(w,w; z, z) = g′3(z, z;w,w), (12)

where the subscript (1,2,3 or 4) indicates by what argument the function g(w,w; z, z) is differentiated.
The right-hand side of the equality (10) in the new notation coincides with 2g′′14(w,w;w,w). Let’s treat
the left-hand side of (10). By virtue of (12) we have

∂g(w,w)/∂w = g′1(w,w;w,w) + g′3(w,w;w,w) = 2g′1(w,w;w,w),

and therefore

∂2g(w,w)/∂w ∂w = 2g′′12(w,w;w,w) + 2g′′14(w,w;w,w).

But g′′12(w,w;w,w) ≡ 0 because the function g(w,w; z, z) is harmonic in w in the domain D. This yields
the required equality (10).

In 1946 M. Schiffer [15] (see also [13, p. 252]) showed that the function

K(w, z) = − 2

π

∂2G(w,w0)

∂w ∂w0
= − 2

π

∂2g(w, z)

∂w ∂z
, (13)

which plays an important role in the theory of conformal mappings, is closely related to complete
orthonormal systems of functions regular in the domain D. Let us introduce the necessary definitions
(see, for example, [13]).
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We denote by L2(D) the family of all functions f(w), analytic in the domain D and satisfying the
condition ∫∫

D

|f(w)|2 du dv < ∞, w = u+ iv.

We say that a system of functions {ϕi(w)}∞1 from the class L2(D) is orthonormal with respect to the
domain D if ∫∫

D

ϕi(w)ϕk(w) du dv = δik.

In the Hilbert space L2(D) the function K(w, z) has the so-called reproducing property: for any
function f(w) in L2(D) the following integral identity holds

f(w) ≡
∫∫

D

K(w, z) f(z) dx dy, z = x+ iy.

The kernel K(w, z) as an element of L2(D) can be expanded in a Fourier series in the orthonormal
system {ϕi(w)}∞1 ⊂ L2(D), and the reproducing property implies the expansion [13, p. 274]

K(w, z) =
∞∑

i=1

ϕi(w)ϕi(z). (14)

The infinite series in (14) converges absolutely and uniformly in each closed subdomain D. Using the
equalities (13), (14), we can rewrite the formula (10) as

∂2g(w,w)

∂w ∂w
= −πK(w,w) = −π

∞∑

i=1

|ϕi(w) |2.

This implies the inequality

∂2g(w,w)

∂w ∂w
≤ 0. (15)

Equality in (15) would lead to the existence of a point z where all functions ϕi(w) of the orthonormal
system vanish. Function f(w) ≡ 1 belongs to the space L2(D) due to the boundedness of the domain
D, so we can expand it in a series in the system {ϕi(w)}∞1 :

1 =
∞∑

i=1

ciϕi(w). (16)

Substituting the point w = z ∈ D into (16), we obtain a contradiction. This proves the inequality (9),
and completes the proof of the Lemma 3. �

Lemma 4. At the singular points wi of the vector field (5) at least one of the numbers Ruu, Rvv
is nonzero.

Proof. From the definition of the function R(w) we have

∂2g(w)

∂w ∂w
=

1

R(w)

∂2R(w)

∂w ∂w
− 1

R2(w)

∣
∣∣
∣
∂R(w)

∂w

∣
∣∣
∣

2

.

Since at the singular points of the field we have ∂R(w)/∂w = 0, then by Lemma 3

∂2g(wi)

∂w ∂w
=

1

R(wi)

∂2R(wi)

∂w ∂w
< 0,

that is, Ruu(wi) +Rvv(wi) < 0. This implies the assertion of Lemma 4. �

We continue the proof of the Theorem 1. By virtue of Lemma 4 at the singular point wi one of the
numbers Ruu, Rvv is nonzero, and therefore the second differential form (8) of the function R(u, v) is
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nondegenerate. As shown in [12, pp. 69–70], in this situation the index γ(wi) can take only three values:
−1, 0 or +1. Since the indices of the singular points in the equality (7) are at least −1, we conclude that
the number of such points is m ≥ n− 1.

Thus, with regard to the maximum point w0 the total number of critical points of the inner radius
R(w) will be at least n. Theorem 1 is proved.

3. CLASSIFICATION OF CRITICAL POINTS OF THE INNER RADIUS

Let us investigate the surface of the inner radius R = R(u, v), w = u+ iv, near its critical points.
Assuming, as before, that the number of such points is finite, we denote them by w0, w1, . . . , wm.

Let k1 and k2 be the principal curvatures of the surface R(u, v) at the point w = u+ iv. Let us
recall some definitions from surface theory (see, for example, [16]). The total (or Gaussian) curvature
of the surface at a given point is found by the formula K = k1k2. The half-sum of principal curvatures
H = 1

2 (k1 + k2) is called the mean curvature of the surface at the point w.

The sign of the total curvature characterizes the structure of the surface in the vicinity of a given
point. In the case when the surface is given in the form of a graph R = R(u, v), the value of the total
curvature K at the singular points wi is

K(wi) = Ruu(wi)Rvv(wi)−R2
uv(wi). (17)

To determine the principal curvatures of k1 and k2 at the points wi, we use the quadratic equation

k2 − [Ruu(wi) +Rvv(wi)]k +K(wi) = 0. (18)

Lemma 5. The mean curvature H of the inner radius surface in a neighborhood of critical
points is negative.

Proof. The sum of the roots of the equation (18) is k1 + k2 = Ruu(wi) +Rvv(wi). Due to the
strict superharmonicity of the function R(w) near singular points (Lemma 4), this yields the inequality
k1 + k2 < 0, and hence H < 0. This inequality, in particular, implies that in a neighborhood of the
points wi at least one of the principal curvatures is negative. Therefore, on the surface with the equation
R = R(u, v), there are no flattening points, that is, the points at which k1 = k2 = 0. �

Remark. It also follows from the lemma that on the surface of the inner radius there are no points of
relative minima at which k1 > 0 and k2 > 0.

Let us denote by ri the number of branches of the level lineR(w) = R(wi), converging at the pointwi.
Since the critical points are isolated, there is a sufficiently small neighborhood wi in which gradR �= 0.
As proved in [17, p. 76] (see also [14, p. 223]), under these assumptions the number ri is always finite
and even. The quantity m(wi) = ri/2 is called the saddle-like order at the point wi.

The saddle-like order characterizes exactly the structure of the surface R = R(w) in a neighborhood
of a given point. For example, to the point wi of the local convexity of the surface there corresponds a
saddle-like order equal to zero. If the intersection line of the surface R = R(w) with the tangent plane at
the point R(wi) has only one branch passing through wi, then m(wi) = 1. An ordinary saddle with apex
in wi corresponds to a saddle-like order equal to 2.

There is a simple relationship between the saddle-like order m(wi) and the index γ(wi) of the point
wi, γ(wi) = 1−m(wi), installed in [17, p. 80] (see also [14, p. 225]).

It is more convenient to classify the critical points wi ∈ D of the surface R = R(w) geometrically
according to the values of their indices γ(wi), and to calculate using the curvature K(wi) (cf. [14,
p. 224]). Taking into account the admissible values of the indices of points, we obtain

Theorem 2. The inner radius surface R = R(w) in the neighborhood U(wi) of an isolated
critical point wi admits only three types of structure:

1) if γ(wk) = +1, then Uk is convex upwards;

2) if γ(wk) = 0, then Uk has a “semi-saddle” structure;

3) if γ(wk) = −1, then Uk is similar to an ordinary saddle.
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From the proof of Theorem 1 it is easy to obtain a connection between the number of the points of
positive and negative indices. If by M we denote the number of critical points with index +1, and by S
the number of saddle points (that is, points with index −1), then the formula (6) can be rewrite as

M − S = 2− n. (19)

Other quantitative information can be obtained from the formula (19). Suppose that the function R(w),
in addition to the maximum point w0, has at least one more stationary point. Then (19) implies that
there must be at least n saddle points.

4. SHARPNESS OF AN ESTIMATE FOR THE NUMBER OF CRITICAL POINTS

The question of the sharpness of the estimate for the number of critical points of the inner radius R(w)
has been fully solved only in the one- and doubly connected cases.

1◦. For simply connected domains, the corresponding example can be easily constructed if we take
as D, for example, the unit disc |w| < 1. Then

g(w,w0) = G(w,w0) + ln |w − w0| = ln(1− ww0),

and the inner (conformal) radius R(w) = 1− |w|2 has a single critical point w = 0. It is clear that its
index is +1, and M = 1, S = 0.

2◦. Consider an example of a doubly connected domain D for which the inner radius surface R =
R(w) has an infinite set of stationary points. Let D be a concentric ring Eq = {w | q < |w| < 1}. Green’s
function for the region Eq is known (see, for example, [18, p. 171]):

G(w,w0) =
ln |w| · ln |w0|

ln q
− ln |F (w,w0)|,

where F (w,w0) is a function that conformally and univalently maps Eq onto the unit disc with a circular
concentric cut of radius |w0|:

F (w,w0) =
w −w0

1−w0w

∞∏

k=1

[
(1− q2kw/w0)(1− q2kw0/w)

(1− q2kww0)(1− q2k/(ww0))

]
.

The inner radius at the point w, up to a constant factor, will be equal to

R(w) = r
ln r
ln q (1− r2)

∞∏

k=1

(1− q2kr2)(1− q2kr−2), r = |w|.

The critical points of R(w) are found from the equation (4):

ln r

ln q
=

r2

1− r2
+

∞∑

k=1

[
q2kr2

1− q2kr2
− q2kr−2

1− q2kr−2

]
. (20)

The function on the left-hand side of (20) decreases, and on the right-hand side it increases. Since for
r → 1 (r → q) the right-hand side tends to +∞ (−∞), we conclude that the equation (20) has a unique
solution r = r0.

Changing the order of summation of the terms, we represent (20) in the equivalent form

ln r

ln q
=

∞∑

k=0

q2k(r4 − q2)

(1− q2kr2)(r2 − q2k+2)
.

For r <
√
q all terms of the series are negative, while the function on the left side is positive for all r,

q < r < 1. It follows that the critical points of the inner radius of the ring Eq are all points of some circle
of radius r0,

√
q < r0 < 1. The above example also shows that in the general case it is impossible to

indicate an upper bound for the number of critical points of the inner radius.
3◦. Consider an example of a doubly connected domain D, for which the inner radius surface has

exactly two critical points. Let f(w) be a conformal mapping of the domain D. Then the inner radius
of the domain f(D) at the point f(w) is R(f(w)) = R(w)|f ′(w)|. This relation is easily deduced from
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the corresponding property G(f(w), f(w0)) = G(w,w0) for Green’s function of the domain D. The
equation (4) for finding the critical points of the function R(f(w)) is equivalent to the following:

f ′′(w)

f ′(w)
= −2

∂

∂w
lnR(w) = −2

∂g(w,w)

∂w
. (21)

We choose D = f(Eq)—the image of the ring Eq mapped by the function f(w) = ew. In this case,
the equality (21) has the form

w = −2 ln r

ln q
+

2r2

1− r2
+ 2

∞∑

k=1

[
q2kr2

1− q2kr2
− q2kr−2

1− q2kr−2

]
, w = reiϕ. (22)

The right-hand side takes only real values, so from (22) we find the arguments of the critical points of
the function R(w): ϕ = 0, π. After substituting these values ϕ into (22), we obtain the condition on the
modules of critical points:

±1 = −2 ln r

r ln q
+

2r

1− r2
+ 2

∞∑

k=1

[
q2kr

1− q2kr2
− q2kr−3

1− q2kr−2

]
. (23)

The plus sign here corresponds to the value ϕ = 0, the minus sign—to the value ϕ = π. Since the right-
hand side is strictly monotonic (its derivative with respect to r is greater than zero), each of the two
equations (23) has a single root.

Thus, the equation (21) for the critical points of the function R(w) has exactly two roots.
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