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Abstract: The ab initio calculations of a heterostructure based on the ferroelectric phase of barium
titanate and dielectrics lanthanum manganese (LaMnO3) or silicon (Si) are presented. We analyze
structures of BaTiO3/LaMnO3 and BaTiO3/Si interfaces, investigate magnetic properties and the
impact of ferroelectric polarization. The use of ferroelectrics in the heterostructure plays a crucial
role; in particular, ferroelectric polarization leads to the appearance of the conducting state at the
interface and in the layers close to it. We show that defects (here, oxygen vacancies) incorporated
into the system may change the electronic and magnetic properties of a system. Experimental results
of magnetic susceptibility measurements for the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure are also
presented. It is shown that a correlation between the behavior of the ferromagnetic ordering and the
resistance takes place. In addition, the ferromagnetic ordering at the interface of the heterostructure
can be associated with the exchange interaction through current carriers that appear in high carrier
concentration regions.

Keywords: ferroelectric; heterostructure; density functional theory; 2DEG; silicon

1. Introduction

The extensive investigation of heterostructures began in 2004 with the discovery
of a two-dimensional electron gas (2DEG) [1]. The main interest to that branch of con-
densed matter physics is associated with the variety of physical phenomena observed
at the interface of two or more components. Moreover, it became possible to combine
incompatible properties in one material, for example, superconductivity [2–4] and mag-
netism [5], at the interface. The heterostructures from previous works on 2DEG were
primarily LaAlO3/SrTiO3 (LAO/STO). There, the interfacial magnetism is very weak due
to the non-magnetic nature of the starting material. It was also shown that magnetism
in such systems arises due to the presence of defects [6–11]. For example, the maximum
magnetic moment created by an oxygen vacancy located at the LAO/STO interface is
0.2 µB per Ti atom located in the vicinity of a defect [12]. Despite the great interest in
heterostructures over the past two decades and a substantial amount of research, this area
is still fascinating and attracts attention with the discovery of new phenomena [13–17]. To
enhance the interfacial magnetism, it is necessary to use magnetic insulators as part of
heterostructures to create a spin-polarized 2DEG. Another possibility is to have defects in
the structure, which is not a complicated task since defects are ubiquitous in most experi-
ments with oxide heterostructures growth. Even more promising is the manipulation of
conducting states by an external electric field using ferroelectric materials [13–17], as well
as the implementation of the inverse magnetoelectric effect, when the magnetization can be
changed by an electric field [16].
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The motivation for the BaTiO3/Si heterostructure was provided by the fact that silicon
is still the main component of most microelectronic devices and a subject of scientific
investigations [18,19]. In addition, BaTiO3 is a promising material for electro-optical (EO)
modulators due to its large effective Pockels coefficient, especially in epitaxial form. Re-
cently, the electrooptical properties of BaTiO3 epitaxial films on SrTiO3/Si were reported for
the first time [20]. It has been shown that BaTiO3 exhibits a much higher effective Pockels
coefficient, at least five times larger than LiNbO3. Being a ferroelectric, BTO has a unique
crystallographic direction in which the ferroelectric polarization is indicated. It is also
proposed to use BaTiO3 integrated in Si as a modulator for silicon photonics since silicon
itself has a high energy consumption [21]. In addition, there is a huge variety of other appli-
cations of heterostructures based on BaTiO3: among others, plasmonic photocatalysts and
piezocatalysis applications [22–24], as a device platform for ethanol vapor detection [25],
data storage application as well as tunable functionalities such as memristor behavior [26].
The ferroelectric properties of BTO-based heterostructures reignited the interest in the
development and implementation of alternative ferroelectric memory concepts, such as
ferroelectric field-effect transistors (FFET) [27–30] and negative-capacitance field effect
transistors (NCFET) [31,32]. To date, the FFETs have been demonstrated to exhibit either
good retention or endurance, whereas complementary performance characteristics were
poor. It is shown that the range of characteristics is quite wide and varies from a few
second/hour retention time and endurance up to 1012 cycles to a ten-year retention time
and endurance down to ~103–104 cycles [30].

The aim of the present study is to provide a comparative study of the electronic and
magnetic properties of two different structures, with BaTiO3 as an overlayer used as a tool
for the property’s manipulation. The essential aim is to uncover the common features of
heterostructures with ferroelectric overlayer and to evaluate the role of BaTiO3. To do so,
we used the density functional theory (DFT) as a comprehensive tool for the prediction of
the electronic and magnetic properties. We present here computation results for BaTiO3/Si
and for BaTiO3/LaMnO3 heterostructures complemented by the magnetic susceptibility
measurements for the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure.

2. Materials and Methods
2.1. DFT Details

This research contains ab initio calculations based on the density functional the-
ory [33,34]. The exchange and correlation effects were accounted for using the generalized
gradient approximation (GGA-PBE) [35]. The Kohn-Sham equations were solved using the
plane wave basis, implemented in the VASP software [36–38] as a part of the MedeA com-
putational environment [39]. The cut-off energy of 400 eV was used, the residual force was
0.05 eV/Å, and the total energy was equal to 10−5 eV. The Brillouin zone was split using a
5 × 5 × 1 grid. The calculations were completed using the simplified GGA + U method,
proposed by S.L. Dudarev [40]. We have chosen the following parameters: +U = 2 eV,
4 eV, and 8 eV [41,42] for the Ti 3d, Mn 3d, and La 4f orbitals during the optimization and
calculation of electronic and magnetic properties.

The heterostructures supercells modeling was performed by adding the BaTiO3 over-
layers with interfacial TiO2 layers toward the substrate and BaO surface layers. In addition,
the overlayers were added on both sides of the substrate, symmetrically, with respect
to the center of the Si substrate or LaMnO3 slab. The underlying model guarantees a
heterostructure without any artificial dipoles. In addition, a vacuum region was added to
prevent unwanted interaction between surfaces and their periodic copies.

2.2. Resistivity and Magnetic Susceptibility Measurements Details

The electrical and magnetic properties have been studied for heterostructures formed by
antiferromagnetic LaMnO3 single crystals with epitaxial films of ferroelectric Ba0.8Sr0.2TiO3
(BSTO) were deposited on top of them by reactive sputtering of stoichiometric targets,
using the RF-sputtering method [42,43] at 650 ◦C. The average roughness of the LaMnO3
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single crystals surface was approximately 1 nm before deposition. The results are presented
for the sample in the which the thickness of the BSTO film was 453 nm. The BSTO film
was in the tetragonal phase and in the ferroelectric state, as will be shown below. The
electrical resistance was measured at the DC current in a standard four-pole configuration.
To measure the current and the voltage, 50-micron golden leads were attached to the surface
of the sample in the interface area using silver paint. The temperature dependences of
magnetic susceptibility were measured in the temperature range 2–300 K by means of a
Quantum Design superconducting quantum interference device magnetometer.

3. Results and Discussion
3.1. BaTiO3/Si Heterostructure

At the first stage bulk structures of silicon, barium titanate in the tetragonal phase and
lanthanum manganite with an A type of ferromagnetic ordering (A-AFM) were examined
by means of DFT. The explanation for the choice of the phases and magnetic ordering
was presented in our previous research [43]. Here, we emphasize that all compounds are
semiconductors with indirect band gaps of 0.615 eV, 2.113 eV and 1 eV for Si, BTO and
LaMnO3, respectively (the unit cells along with the density of states spectra are shown in
Figure 1).
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= 27%, to integrate BTO on the silicon substrate, the BTO cell was rotated by 45 degrees 

Figure 1. The unit cells of silicon (a) barium titanate (b) and LaMnO3 (c), as well as the calculated
DOS spectra for these compounds. The DOS spectra confirm the presence of band gaps.

For creating the BTO/Si heterostructure, bulk lattice parameters were compared:
a = 3.998 Å for BTO and 5.469 Å for silicon. Due to the significant difference in parameters,
ε = 27%, to integrate BTO on the silicon substrate, the BTO cell was rotated by 45 degrees
around the z-axis. Further lattice discrepancy reached ε = 4.2%, which is much more
acceptable for modeling the epitaxial growth of BTO on Si. The heterostructures with
n-layers BaTiO3, where n = 2–5, were created. The optimized structure with five layers of
BTO (only the left half is presented), as well as the calculated density of states spectrum,
is demonstrated in Figure 2. In the beginning, for simplification, the calculations were
performed without considering the magnetic nature.
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Figure 2. (a) The left half of the BaTiO3/Si unit supercell obtained after structure optimization.
Barium atoms are brown spheres, titanium are blue, oxygen are red, and silicon are yellow. A vacuum
area of about 20 Å is also presented, but was not shown in full size. The dashed lane denotes the
middle of the supercell. (b) The corresponding density of the states spectrum, where the red region is
assigned to oxygen atoms, the blue one to silicon atoms, and the black one to titanium atoms. Zero
on the energy scale represents the Fermi level. The band gap is completely closed.

It should be noted that the density of the states spectra obtained for the structures with
less than five overlayers of BTO look similar, so we do not provide them here. However,
each of the considered structures with n = 2–5 exhibited the semiconductor-conductor
transition. The absence of a band gap for the Si atoms observed in the spectra indicates the
presence of conductivity within the silicon substrate as well.

In addition, Figure 2 also shows the presence of structural distortions in the overlayers
related to the displacement of titanium atoms out of the oxygen planes. As a result of
these displacements, ferroelectric polarization toward the surface of the heterostructure
takes place. The dependence of the Ti displacement with respect to the oxygen planes in
heterostructures with different numbers of ferroelectric overlayers is presented in Figure 3a.
There, “Number of layers” denotes the numbering of TiO2 layers; “1” is the interfacial layer.
The graph shows the size of displacements in different layers of the slab. In particular, for
the green line with five BTO overlayers, one can see that the displacement is the highest
in the interfacial layer and it decreases towards the surface. This means that the highest
polarization occurs in the interface layers. Secondly, for the heterostructure with the bigger
number of layers (ferroelectric film thickness) the displacement of titanium out of the planes
is higher within each layer (for instance, compare the first or second point in the figure).

At the next stage, the layer-resolved density of the states spectrum for the heterostruc-
ture with five BTO overlayers was examined (Figure 3b demonstrates DOS for Si layers).
We identified that, for the Si substrate, the maximum contribution to the conductivity corre-
sponds to the interface atoms (see the interface layer contribution at the Fermi level); then,
the DOS at the Fermi level decreases asymptotically to the center of the heterostructure.

The same structure with five layers of ferroelectric was used to analyze the influence
of oxygen vacancies (O-vacancies) on the conductive properties of the silicon substrate. The
optimized supercell is shown in Figure 4a. The vacancy was placed in the surface TiO2 layer
of the ferroelectric film, and it is marked by the cross. The layer-resolved density of the
states spectrum for the silicon substrate is shown in Figure 4b, demonstrating qualitatively
similar behavior to the bare heterostructure, with decreasing DOS at the Fermi level towards
the center. However, the difference is that, quantitatively, the DOS contribution at the Fermi
level, in the second case with O-vacancy, is slightly lower. That is a surprising feature as
the presence of the vacancy provides the additional positive charge and, consequently,
the field across the ferroelectric slab should have increased. We propose the following
explanation of this effect. In the bare care (as depicted in Figure 2a), all the layers in the
ferroelectric slab are neutral in the simple ionic limit: TiO2 and BaO. In that case, the out of
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O planes displacements led to the polarization occurrence towards the interface. In the case
of vacancy in the TiO2 layer, the resulting charge is (Ti4+O2−)2+, and the final displacement
and electrostatic field are lower (see Figure 4a). That fact affects the charge distribution
in the Si substrate, as demonstrated in Figure 4c. To summarize, it was obtained that the
presence of the vacancy negatively affects the conductivity of the substrate, in particular,
the density of states at the Femi-level, decreases (about 20% of the initial state without
vacancy).
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Figure 4. (a) The creation of an oxygen vacancy is demonstrated; the structure is identical to that
shown in Figure 2. (b) Layer-resolved DOS spectra for a silicon substrate of a heterostructure with an
oxygen vacancy located at the surface. The upper spectrum is associated with the interface layer; that
is, the layer at the silicon-BTO interface, and the bottom one corresponds to the central layer of the
modeled substrate. (c) The plot of the dependence of DOS values at the Fermi level on the number of
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Lastly, the spin polarized calculations were performed to test the magnetic properties
of the BTO/Si heterostructure. In Figure 5, the spin-polarized atom-resolved DOS spectra
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for the bare 5BTO/Si heterostructure (a) and with oxygen vacancy (b) are presented. The
heterostructures used to obtain plots are the same as used above (Figures 2a and 4a, respec-
tively). The spin-polarized calculations revealed that the systems are slightly magnetic; in
particular, the system without vacancy is negligibly magnetized, whereas the system with
surface vacancy has magnetic moments per surface Ti atoms of 0.183 µB. Thus, the presence
of oxygen vacancy does not have a substantial influence on the electronic and magnetic
properties. Qualitatively and quantitatively, the behavior does not change significantly. Let
us now consider a heterostructure LaMnO3/BaTiO3 (LMO/BTO) in which, even without
the presence of oxygen vacancies, a significant magnetic order can exist at the interface.

Materials 2022, 15, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. (a) The creation of an oxygen vacancy is demonstrated; the structure is identical to that 
shown in Figure 2. (b) Layer-resolved DOS spectra for a silicon substrate of a heterostructure with 
an oxygen vacancy located at the surface. The upper spectrum is associated with the interface layer; 
that is, the layer at the silicon-BTO interface, and the bottom one corresponds to the central layer of 
the modeled substrate. (c) The plot of the dependence of DOS values at the Fermi level on the num-
ber of layers, where “1” is the interface. A decay towards the center of the substrate is observed here. 

Lastly, the spin polarized calculations were performed to test the magnetic properties 
of the BTO/Si heterostructure. In Figure 5, the spin-polarized atom-resolved DOS spectra 
for the bare 5BTO/Si heterostructure (a) and with oxygen vacancy (b) are presented. The 
heterostructures used to obtain plots are the same as used above (Figures 2a and 4a, re-
spectively). The spin-polarized calculations revealed that the systems are slightly mag-
netic; in particular, the system without vacancy is negligibly magnetized, whereas the sys-
tem with surface vacancy has magnetic moments per surface Ti atoms of 0.183 μB. Thus, 
the presence of oxygen vacancy does not have a substantial influence on the electronic 
and magnetic properties. Qualitatively and quantitatively, the behavior does not change 
significantly. Let us now consider a heterostructure LaMnO3/BaTiO3 (LMO/BTO) in 
which, even without the presence of oxygen vacancies, a significant magnetic order can 
exist at the interface. 

 
Figure 5. (a) Spin-polarized DOS spectra for bare BTO/Si and with (b) oxygen vacancy. (c) Top view 
on the surface TiO2 layer of the BTO/Si heterostructure with O-vacancy with denoted magnetic mo-
ments per atom in μB. 

Figure 5. (a) Spin-polarized DOS spectra for bare BTO/Si and with (b) oxygen vacancy. (c) Top view
on the surface TiO2 layer of the BTO/Si heterostructure with O-vacancy with denoted magnetic
moments per atom in µB.

3.2. BaTiO3/LaMnO3 Heterostructure

In the previous section, we concluded that the presence of O-vacancies does not change
significantly, neither conducting nor magnetic properties of the BTO/Si heterostructure. In
order to test the possibilities of a higher magnetization creation in the heterostructures, the
system with manganite substrate, i.e., LaMnO3/BaTiO3, was investigated. The electronic
properties of a bare LMO/BTO heterostructure with a varying number of BTO overlayers
were discussed in our previous research [35]. Here, we discuss the impact of oxygen
vacancies on magnetic properties. In Figure 6, we show that adding the vacancy changes
the DOS significantly (Figure 6a–c). That is different from the situation we observed for
BTO/Si. Here we observe a semiconductor-conductor transition due to the presence of
O-vacancy, located at both the surface and interface. In this case, as shown in Figure 6d,e,
the top layer with O-vacancy has changed the charge from (Ba2+O2−) to (Ba)+. Therefore,
the out-of-O-plane displacement increases due to the Coulomb attraction of oxygens from
the second TiO2 layer. In turn, that affects the overall charge distribution along the slab
leading to the downshift of states and closing of the band gap.

The magnetic moments distribution here is not affected by the presence of O-vacancy,
as in the BTO/Si case. The bare LMO/BTO heterostructure is A-AFM type with ~3.9 µB per
Mn atom and that value changes to ~5 µB when the vacancy is located in the interfacial MnO
layer. Thus, although O-vacancies have a very small effect on the distribution of magnetic
moments in LMO/BTO, the magnetization in LMO/BTO is much larger than in the BTO/Si
case. However, the overall qualitative picture of the DOS distribution depends on the
position of the vacancy. In particular, as seen from comparison of Figure 6b,c the energetical
position of the states is similar, but the intensity distribution is different. In addition, the
Mn contribution at the Fermi-level is more significant for the case of heterostructure with
vacancy located at the interface. That is well understood due to the spatial proximity of
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Mn and vacancy and corresponding distortions of electronic orbitals. This is similar to the
effect discussed for magnetization appearing in LAO/STO due to interface vacancy [12].

To clarify the relationship between the magnetic states and the conducting properties
of the interfaces in the LMO/BTO-type heterostructure, magnetic measurements were
carried out on such a system in comparison with the results of measurements of the
temperature behavior of the resistance.
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3.3. Magnetic Susceptibility and Resistivity Measurement for
Ba0.8Sr0.2TiO3/LaMnO3 Heterostructure

The electrical resistance was measured at DC current in a four-pole configuration,
as shown in Figure 7a. The X-ray diffraction pattern of the heterostructure is shown in
Figure 7b (c = 0.4080 nm for BSTO film). The results of the X-ray measurements indicate that
the BSTO film is in the tetragonal phase, which means that this film is in the ferroelectric
state. In addition, these results also show that the polarization is directed predominantly in
the vertical direction. This is important because it means that the polarization-screening
charge is at the interface. Films of solid compositions of the Ba0.8Sr0.2TiO3, depending on
the magnitude and sign of deformation, experience ferroelectric phase transitions from
the cubic phase to the tetragonal phase with polarization perpendicular to the substrate,
or to the orthorhombic phase with polarization parallel to the substrate. In the case of
BSTO on LMO, in the configuration when the axis with LMO is perpendicular to the
surface, the compressive strain causes the unit cell to shrink in the a and b directions, and
therefore elongate in the c direction, which effectively stimulates the phase transition to the
ferroelectric state. Thus, a rather significant compression strain stimulates the tetragonal
phase. Therefore, the BSTO film on the LMO substrates will be in the tetragonal ferroelectric
phase up to very low temperatures. Figure 7c shows the temperature dependence of the
resistivity for Ba0.8Sr0.2TiO3/LaMnO3 (BSTO/LMO) heterostructure. The resistance of the
heterostructure decreases with decreasing the temperature and demonstrates a metallic-like
behavior below about 160 K. However, the temperature dependence of the resistance for
the single LaMnO3 crystalline demonstrates the semiconducting behavior of the resistance
for any temperature. The temperature dependence of resistivity on inverse temperature
is shown in the insert in Figure 7c. The resistance of LMO is shown by blue cycles in
Figure 7c. The Ba0.8Sr0.2TiO3/LaMnO3 heterostructure shows semiconducting behavior
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similar to LMO, only above 240 K, when main conduction is carried out through the main
volume of the LMO substrate. Below 160 K, the main current flows through the region
with a high concentration of carriers with metallic conductivity. At the temperature range
160–240 K, part of the current flows through the interface, reducing the resistance of the
heterostructure. The temperature dependence of magnetic susceptibility at a magnetic
field of 100 Oe for the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure is presented in Figure 7d.
Small values of magnetic susceptibility are observed below ~240 K (see insert in Figure 7d),
and slightly larger, but still small, values were observed in the temperature range below
140 K. Such values cannot be explained by the transition of the entire volume of the sample
to the ferromagnetic state. Therefore, magnetic order occurs only in the small sample
volumes: according to the lowest estimates, about 10−3 of the total volume of the sample at
temperatures below 140 K and less (in about 10−5)–at higher temperatures up to ~240 K.
Thus, the phase transition to the ferromagnetic phase in the limited volume, probably in
the interface area, is observed below 140 K. In addition, ferromagnetic ordering most likely
occurs in small uncorrelated areas of the interface, in the temperature range between 140 K
and ~240 K. Thus, there is a correlation between the behavior of the ferromagnetic ordering
and the behavior of the resistance. Thus, the ferromagnetic ordering of the heterostructure
can be associated with the appearance of regions with a high carrier concentration at the
interface and the appearance of an exchange interaction through these carriers.
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Figure 7. (a) The scheme of the electrical resistance measurements with the red color schematically
showing the placement of the contacts with grey silver paste and the current and measuring wires;
(b) the X-ray diffraction pattern of the heterostructure; (c) the temperature dependence of the resis-
tivity for the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure is shown, the insert shows the temperature
dependence of the resistivity for LaMnO3 single crystal in the inverse temperature; (d) the temper-
ature dependence of magnetic susceptibility for the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure. The
zoom of the temperature dependence of the magnetic susceptibility in the vicinity of phase transition
is shown in the insert.
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Indeed, the ferromagnetic order in the LaMnO3 substrate may appear in the interface
area of the BaTiO3/LaMnO3 heterostructure, and magnetic moments correspond mainly to
the Mn atoms [30]. It is known that manganite undergo the transition to a ferromagnetic
metallic state upon doping. When La atoms in LaMnO3 are substituted by strontium or
calcium ions, the samples demonstrate the metallic behavior at temperatures below TC
for a high dopant concentration. Ferromagnetism is caused by an indirect ferromagnetic
exchange through the current carriers. When free carriers appear at the interface of the
Ba0.8Sr0.2TiO3/LaMnO3 heterostructure leading to the metallic state, this state will have
ferromagnetic properties. This occurs due to a strong ferromagnetic interaction through free
current carriers with high concentration at the interface layer. Thus, observed ferromagnetic
properties of the interface area have this natural explanation.

4. Conclusions

In this work, detailed ab initio calculations of BaTiO3/Si heterostructures were pre-
sented, and an impact of the oxygen vacancy in the surface layer of the ferroelectric film
onto the density of states at the interface was studied. Based on the calculations of the
band structures, the possibility of a conducting state in the silicon substrate of the BTO/Si
heterostructures was demonstrated. Similar conclusions concerning the electronic states
creation at the oxide interfaces with ferroelectrics have been made elsewhere [13–16]. Here,
we show that conductivity may arise in the silicon substrate with intensity decaying away
from the interface. In previous works [6–12], it was demonstrated that vacancies play
a crucial role in the electronic and magnetic states of the oxide heterostructures. Here,
for the BTO/Si heterostructure, it was shown that oxygen vacancies in the surface layer
have a small impact on the density of states at the Fermi level and magnetic moments
distribution. In contrast, in the discussed LMO/BTO heterostructure, oxygen vacancies
lead to the insulator-conductor transition due to the increase of the electrostatic field across
the ferroelectric slab. The reason for that is similar to one observed in the heterostructures
of LAO/STO type [6–12]. In particular, in LAO/STO, conductivity arises due to the charged
layers sequence and corresponding electrostatic field across the LAO overlayer, whereas in
the heterostructures with ferroelectrics, the field is associated with ferroelectric polariza-
tion. It was shown experimentally that ferromagnetic ordering most likely occurs in small
uncorrelated areas of the interface in the temperature range between 140 K and ~240 K and
in all volumes of the interface below 140 K. There is a correlation between the behavior of
the ferromagnetic ordering and the behavior of the resistance. The ferromagnetic ordering
at the interface of the heterostructure can be associated with the exchange interaction
through current carriers that appear in regions with a high carrier concentration. Thus, the
results obtained by DFT for LMO/BTO correlate well with experimental findings for the
BSTO/LMO heterostructure.
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