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Abstract. Consider a unital C∗-algebra A. Let n ≥ 2 and let P1, . . . , Pn

be projections in A such that P1 + . . . + Pn = I. We costruct Pn:A →
A being a block projection operator given by the formula Pn(X) =∑n

k=1 PkXPk for all X ∈ A. For a weight ϕ on a von Neumann algebra
A, we prove that ϕ is a trace if and only if ϕ(P2(A)) = ϕ(A) for all
A ∈ A+. We also prove that if A is a von Neumann algebra then for a
normal semifinite weight ϕ on A the following conditions are equivalent:
(i) ϕ is a trace; (ii) ϕ((Am/2BmAm/2)k) ≤ ϕ((Ak/2BkAk/2)m) for all
A,B ∈ A+ and some numbers k,m ∈ R such that k > m > 0; (iii)
ϕ(|Pn(A)|) ≤ ϕ(|A|) for all A ∈ A and for all projections P1, . . . , Pn ∈
A. As a consequence, we obtain a criterions for commutativity of von
Neumann algebras and C∗-algebras.
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1 Introduction

Traces and weights on C∗-algebras are basic tools in the operator theory and its
applications. So it seems important to characterize traces in different classes of
weights on C∗-algebras, see [1]–[10].

Consider a tracial positive normal linear functional ϕ on a von Neumann
algebra A, and positive numbers p, q such that 1/p+ 1/q = 1, then we have:
• Hölder’s inequality [11, Chapter IX, Theorem 2.13], [10, Theorem 5]:

ϕ(|XY |) ≤ ϕ(Xp)1/pϕ(Y q)1/q for all X,Y ∈ A+;

• Cauchy–Schwarz–Buniakowski inequality [12, Theorem 4.21]:

ϕ(|XY |1/2) ≤ ϕ(X)1/2ϕ(Y )1/2 for all X,Y ∈ A+;

• Golden–Thompson inequality [13, Theorem 4]:

ϕ(eX+Y ) ≤ ϕ(eX/2eY eX/2) for all X,Y ∈ Asa;
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• Peierls–Bogoliubov inequality [13, Theorem 7]:

ϕ(eX) exp
ϕ(eX/2Y eX/2)

ϕ(eX)
≤ ϕ(eX+Y ) for all X,Y ∈ A+.

Also inequality

tr((X1/2Y X1/2)rp) ≤ tr((Xr/2Y rXr/2)p), r ≥ 1, p > 0,

holds true for positive operators X, Y on a Hilbert space H [14]. This inequality
generalizes the inequalities of Lieb and Thirring, and resembles the Golden–
Thompson inequality (see [15, §8]).

It can be said that any of the given trace inequalities is sharp in the following
sense: only the trace of all positive linear functionals satisfies the inequality. It
is known that if we limit ourselves only to projections of a von Neumann alge-
bra A then each and every inequality of Hölder, Cauchy–Schwarz–Buniakowski,
Golden–Tompson, Peierls–Bogoliubov, Araki–Lieb–Thirring etc., characterizes
the tracial functionals among all positive normal functionals, see [16]–[22].

Gohberg and Krein had begun to study the block projection operators in [23].
These operators admit a natural extension to the setting of quasi-normed ideals
and noncommutative integration. Consider a number n ≥ 2 and let P1, . . . , Pn
be such projections in a unital C∗-algebra A that P1 + . . .+ Pn = I. Introduce
a block projection operator Pn:A → A as follows: Pn(X) =

∑n
k=1 PkXPk for

all X ∈ A.
Consider a weight ϕ on a von Neumann algebra A. Here we prove that the

following conditions are equivalent: (i) ϕ is a trace; (ii) ϕ(P2(A)) = ϕ(A) for
all A ∈ A+ (Theorem 1). Note that the block projection operators on cer-
tain algebras (von Neumann algebras and algebras of operators measurable
with respect to semifinite normal traces) already appeared in [24], [25]. We
also proved several uniform submajorization inequalities for block projection
operators [26]. Here we show that the following conditions are equivalent for a
normal semifinite weight ϕ on a von Neumann algebra A: (i) ϕ is a trace; (ii)
ϕ((Am/2BmAm/2)k) ≤ ϕ((Ak/2BkAk/2)m) for all A,B ∈ A+ and some numbers
k,m ∈ R such that k > m > 0; (iii) ϕ(|Pn(A)|) ≤ ϕ(|A|) for all A ∈ A and
for all P1, . . . , Pn ∈ Apr with P1 + . . . + Pn = I, where Pn(A) =

∑n
k=1 PkAPk

(Theorem 2). As a consequence, we obtain certain criterions for commutativity
of von Neumann algebras and C∗-algebras (Corollaries 1, 3).

2 Definitions and notation

The basic notion here is a C∗-algebra, being a complex Banach ∗-algebra A such
that ‖A∗A‖ = ‖A‖2 for every A ∈ A. For a C∗-algebra A by Apr, Asa and A+ we
denote its subsets of projections (A = A∗ = A2), self-adjoint elements (A∗ = A)
and positive elements, respectively. For any A ∈ A we have |A| =

√
A∗A ∈ A+.

If I is the unit of the algebra A and P ∈ Apr, then P⊥ = I − P .
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We say that a mapping ϕ : A+ → [0,+∞] is a weight on a C∗-algebra A,
if ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for all X,Y ∈ A+, λ ≥ 0
(moreover, 0 · (+∞) ≡ 0). Introduce the set

M+
ϕ = {X ∈ A+: ϕ(X) < +∞}, Mϕ = linCM

+
ϕ

for a weight ϕ.
We can always extend by linearity the restriction ϕ|M+

ϕ
to a functional on

Mϕ. This extension is denoted by the same letter ϕ. Such an extension tells us
that finite weights (i.e., ϕ(X) < +∞ for all X ∈ A+) are virtually the same
with positive functionals on A. We call a positive linear functional ϕ on A with
‖ϕ‖ = 1 a state. A weight ϕ is said to be faithful, if ϕ(X) = 0 (X ∈ A+) implies
that X = 0; a trace, if ϕ(Z∗Z) = ϕ(ZZ∗) for every Z ∈ A. If ϕ(A) = sup{ϕ(B) :
B ∈ A+, B ≤ A, ϕ(B) < +∞}, for every A ∈ A+ then a trace ϕ on a C∗-
algebra A is semifinite. A subadditive weight on a C∗-algebra A is a mapping
ϕ : A+ → [0,+∞] such that ϕ(X + Y ) ≤ ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for
all X,Y ∈ A+, λ ≥ 0 (here 0 · (+∞) ≡ 0), see [27]–[30]. A subadditive weight ϕ
is called a subadditive trace, if ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ A.

Let B(H) be the ∗-algebra of all bounded linear operators on a Hilbert space
H over the field C. Gelfand–Naimark theorem states that every C∗-algebra is
isometrically isomorphic to a concrete C∗-algebra of operators on a Hilbert space
H [31, II.6.4.10]. For any set X ⊂ B(H) we construct the commutant

X ′ = {Y ∈ B(H): XY = Y X forall X ∈ X}.

A von Neumann algebra A acting on a Hilbert space H is a ∗-subalgebra of
the algebra B(H) such that A = A′′. For P,Q ∈ Apr we write P ∼ Q (the
Murray–von Neumann equivalence), if P = U∗U and Q = UU∗ for some U ∈ A.

A normal weight ϕ on von Neumann algebraA is a weight such that ϕ(supXi) =
supϕ(Xi) for every bounded increasing net {Xi} in A+; a weight ϕ is semifinite,
if the set Mϕ is ultraweakly dense in A (see [32, Definition VII.1.1]).

Consider a von Neumann algebra A, let U ∈ A be a unitary operator, i.e.,
U∗U = UU∗ = I. There exists an automorphism α of a von Neumann algebra
A, defined by the formula α(A) = U∗AU for all A ∈ A. By [33, Theorem
1.4] it follows that the automorphism α can be represented as a finite product
of involutions US : A 7→ SAS, here S is a symmetry in A, i.e., U∗AU =
S1 · · ·SmASm · · ·S1 with unitaries S1, . . . , Sm ∈ Asa. Moreover, if A possesses
no type Ifin direct summands then the unitary operator U by itself is a finite
product of symmetries from Asa [33, Theorem 1.6].

The universal representation of a C∗-algebra A is the pair

{π,H} =
∑

ϕ∈S(A)

⊕
{πϕ,Hϕ},

where S(A) is the set of all states on A, (πϕ,Hϕ) is the Gelfand–Naimark–Segal
representation of a C∗-algebra A, assosiated with ϕ. Here we say that the von
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Neumann algebra M = π(A)′′, generated by π(A), is the universal enveloping
von Neumann algebra of C∗-algebra A [11, Chap. III, Definition 2.3].

Consider a C∗-algebra A. Let ϕ be a positive linear functional on A and π
be the universal representation of A. Then arbitrary state on A by construction
of π turns into a vector state on π(A), hence it extends to a normal state on
the universal enveloping algebra M = π(A)′′. Then ϕ yields such a positive
normal functional ϕ̂ on the universal enveloping von Neumann algebra that
ϕ̂(π(A)) = ϕ(A) (A ∈ A+).

Recall the finite dimensional Spectral Theorem: every normal matrix A ∈
Mn(C) reduces to the sum A =

∑m
i=1 λiPi, where λi ∈ C, and the projections

Pi ∈Mn(C)pr with PiPj = 0 for i 6= j and i, j = 1, . . . ,m, m ≤ n.

3 Trace characterization on C∗- algebras

Lemma 1. Let A be a unital C∗-algebra. Let n ≥ 2 and let P1, . . . , Pn ∈ Apr be
such that P1 + . . .+ Pn = I, Pn(A) =

∑n
k=1 PkAPk for A ∈ A. Then

(i) If ϕ is a trace on A, then ϕ(Pn(A)) = ϕ(A) for all A ∈ A+.

(ii) If ϕ is a subadditive trace on A, then ϕ(Pn(A)) ≤ ϕ(A) for all A ∈ A+.

Proof. (i). For any A ∈ A+ and n ≥ 2 we have

ϕ(Pn(A)) =

n∑
k=1

ϕ(PkAPk) =

n∑
k=1

ϕ(PkA
1/2 ·A1/2Pk) =

n∑
k=1

ϕ((A1/2Pk)∗A1/2Pk) =

=

n∑
k=1

ϕ(A1/2Pk(A1/2Pk)∗) =

n∑
k=1

ϕ(A1/2PkA
1/2) = ϕ

(
A1/2

( n∑
k=1

Pk

)
A1/2

)
= ϕ(A).

(ii). For any A ∈ A and n ≥ 2 by [25, Lemma 2] we have the representation

Pn(A) =
1

2n−1

2n−1∑
k=1

SkASk,

where the unitaries Sk ∈ Asa, k = 1, . . . , 2n−1, have the form

P1 ± P2 ± · · · ± Pn.

Consider A ∈ A+. We have ϕ(SkASk) = ϕ(A) for all k = 1, . . . , 2n−1 and

ϕ(Pn(A)) = ϕ
( 1

2n−1

2n−1∑
k=1

SkASk

)
=

1

2n−1
ϕ
(2n−1∑
k=1

SkASk

)
≤

≤ 1

2n−1

2n−1∑
k=1

ϕ(SkASk) = ϕ(A).
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Theorem 1. For a weight ϕ on a von Neumann algebra A the following condi-
tions are equivalent:

(i) ϕ is a trace;
(ii) ϕ(P2(A)) = ϕ(A) for all A ∈ A+.

Proof. For (i)⇒(ii) see item (i) of Lemma 1.
(ii)⇒(i). By applying Upmeier’s results [33], one can see that [34, Theorem

1.4.2] actually shows us that a weight ϕ on a von Neumann algebra A is a trace if
and only if ϕ(SAS) = ϕ(A) for any positive operator A ∈ A+ and any symmetry
S ∈ Asa, see Section 2. Let A ∈ A+, a symmetry S ∈ Asa and P1 ∈ Apr be such
that S = 2P1−I, i.e., P1 = (S+I)/2. For P2 = P⊥1 we have P2(A) = 1

2 (A+SAS)
and

ϕ(A) = ϕ(P2(A)) = ϕ
(1

2
(A+ SAS)

)
=

1

2
ϕ(A) +

1

2
ϕ(SAS).

For ϕ(A) < +∞, or ϕ(SAS) = ϕ(A) = +∞ we obtain ϕ(SAS) = ϕ(A),
the theorem is thereby established. Assume that ϕ(SAS) < ϕ(A) = +∞. By
repeating the above argument for the operator A1 = SAS instead of A (then
SA1S = A), we conclude that

+∞ > ϕ(SAS) =
1

2
ϕ(SAS) +

1

2
ϕ(A) = +∞.

This is a contradiction, hence the theorem holds.

Recall Taylor’s formula with Peano’s remainder. Then we have

Lemma 2. If a ∈ R, then

(1+t)a = 1+at+
1

2!
a(a−1)t2+. . .+

1

n!
a(a−1) · · · (a−n+1)tn+o(tn) as t→ 0.

Theorem 2. For a normal semifinite weight ϕ on a von Neumann algebra A
the following conditions are equivalent:

(i) ϕ is a trace;
(ii) ϕ((Am/2BmAm/2)k) ≤ ϕ((Ak/2BkAk/2)m) for all A,B ∈ A+ and some

numbers k,m ∈ R with k > m > 0;
(iii) ϕ(|Pn(A)|) ≤ ϕ(|A|) for all A ∈ A and for all P1, . . . , Pn ∈ Apr with

P1 + . . .+ Pn = I, where Pn(A) =
∑n
k=1 PkAPk.

Proof. (i)⇒(ii). Consider A,B ∈ A+ and k > m > 0. Put

X = Am, Y = Bm, r =
k

m
, p = m. (1)

Then r > 1 and

(Am/2BmAm/2)k = (X1/2Y X1/2)rp, (Ak/2BkAk/2)m = (Xr/2Y rXr/2)p.

The inequality

ϕ((X1/2Y X1/2)rp) ≤ ϕ((Xr/2Y rXr/2)p), r ≥ 1, p > 0 (2)
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was proved in [35].
(ii)⇒(i). Again we rewrite the inequality of item (ii) in the form of relation

(2) applying transformations (1). It follows by Lemma 2 of [20] that for every
projection P ∈ Apr with ϕ(P ) < +∞ the reduced weight ϕ|P on the reduced
von Neumann algebra PAP is a trace. Therefore ϕ is a trace by Lemma 2 of
[36].

(i)⇒(iii). For n = 2 see [37, Lemma 13]; for the general case see [24, Lemma
3.2].

(iii)⇒(i). Step 1. Consider a positive normal functional ϕ on a von Neumann
algebra A. Then the proof of implication (iii)⇒(i) for arbitrary von Neumann
algebra is reducible to the case of the algebra M2(C) as in similar situations (see
[7] or [38]).

A positive normal linear functional ϕ on a von Neumann algebra A is tracial
if and only if ϕ(P ) = ϕ(Q) for all P,Q ∈ Apr with PQ = 0 and P ∼ Q
(see [7], [38, Lemma 2]). Consider a *-algebra N in the reduced algebra (P +
Q)A(P +Q) generated by a partial isometry V ∈ A that realizes the equivalence
between P and Q. The algebra N is ∗-isomorphic to M2(C). Inequality (iii)
holds for operators of N and the restricted functional ϕ|N . Let us show that
this restriction is tracial on N ; henceforce, ϕ(P ) = ϕ(Q).

Recall that every linear functional ϕ on M2(C) possesses the form ϕ(·) =
tr(Sϕ ·). The matrix Sϕ ∈ M2(C) is the so-called density matrix of ϕ. Without
loss of generality assume that

Sϕ = diag
(1

2
− s, 1

2
+ s
)
, 0 ≤ s ≤ 1

2
.

Thus ϕ(X) equals (1/2− s)x11 + (1/2 + s)x22 for X = [xij ]
2
i,j=1 ∈M2(C).

Consider a complex σ ∈ C with |σ| = 1 and a real t ∈ [0, 1]. These numbers
define the projection

R(t,σ) =

(
t σ

√
t− t2

σ̄
√
t− t2 1− t

)
∈M2(C).

Put P1 = R(1/2,1), P2 = P⊥1 = R(1/2,−1) and

A =

(
1 −ε
ε ε2

)
for 0 < ε < 1/2. Then P2(A) = 1+ε2

2 I and ϕ(|P2(A)|) = tr(SϕP2(A)) = 1+ε2

2 .
The matrix

|A|2 =

(
1 + ε2 −ε+ ε3

−ε+ ε3 ε2 + ε4

)
has the characteristic equation λ2 − (1 + ε2)2λ+ 4ε4 = 0. Therefore,

λ1 =
(1 + ε2)2 +

√
(1 + ε2)4 − 16ε4

2
and λ2 =

(1 + ε2)2 −
√

(1 + ε2)4 − 16ε4

2
.
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Taylor’s formula with Peano remainder (cf Lemma 2 with a = 1/2) implies
that √

(1 + ε2)4 − 16ε4 = 1 + 2ε2 − 7ε4 + o(ε5), (ε→ 0+).

Hence

λ1 = 1 + 2ε2 − 3ε4 + o(ε5), λ2 = 4ε4 + o(ε5), (ε→ 0+).

The finite-dimensional Spectral Theorem yields the representation

|A|2 = λ1R
(t,1) + λ2R

(t,1)⊥ = λ1R
(t,1) + λ2R

(1−t,−1).

We determine the parameter t ∈ [0, 1] from the equation

1 + ε2 = λ1t+ λ2(1− t), i.e.,

1 + ε2 = (1 + 2ε2 − 3ε4 + o(ε5))t+ (4ε4 + o(ε5))(1− t), (ε→ 0+).

Hence

t =
1 + ε2 − 4ε4

1 + 2ε2 − 7ε4 + o(ε5)
, (ε→ 0+).

By Lemma 2 with a = −1 we find

t = (1 + ε2 − 4ε4)(1− 2ε2 + 11ε4 + o(ε5)) = 1− ε2 + 5ε4 + o(ε5), (ε→ 0+).

Finite-dimensional Spectral Theorem yields |A| =
√
λ1R

(t,1) +
√
λ2R

(1−t,−1),
where√
λ1 = 1+ε2−2ε4 +o(ε5),

√
λ2 = 2ε2

√
1 + o(ε) = 2ε2 +o(ε3), (ε→ 0+)

for a = 1/2 in Lemma 2 and thanks to the relation εko(εm) = o(εk+m), (ε→
0+) for all k,m ∈ N. Hence

ϕ(|A|) = tr(Sϕ|A|) =
√
λ1 tr(SϕR

(t,1)) +
√
λ2 tr(SϕR

(1−t,−1)) =

=
√
λ1

((1

2
− s
)
t+
(1

2
+ s
)

(1− t)
)

+
√
λ2

((1

2
− s
)

(1− t) +
(1

2
+ s
)
t
)

=

=
1

2
− s+

3

2
ε2 + 3sε2 + o(ε3) as ε→ 0 + .

The inequality ϕ(|P2(A)|) ≤ ϕ(|A|) then takes the form

1

2
+
ε2

2
≤ 1

2
− s+

3

2
ε2 + 3sε2 + o(ε3), (ε→ 0+).

It holds true only for s = 0 for all ε, 0 < ε < 1
2 .

Step 2. Let a normal semifinite weight ϕ on a von Neumann algebra A meet
condition (iii). It follows by Step 1 that for every projection P ∈ Apr with
ϕ(P ) < +∞ the reduced weight ϕ|P on the reduced von Neumann algebra PAP
is a trace. Therefore ϕ is a trace by Lemma 2 of [36]. The assertion is proved.
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Corollary 1. For a von Neumann algebra A the following conditions are equiva-
lent:

(i) the algebra A is commutative;
(ii) ϕ(P2(A)) = ϕ(A) for all normal states ϕ on A, for all operators A ∈ A+,

for all P1 ∈ Apr and P2 = P⊥1 ;
(iii) ϕ(|P2(A)|) ≤ ϕ(|A|) for all normal states ϕ on A, for all operators

A ∈ A, for all P1 ∈ Apr and P2 = P⊥1 ;
(iv) ϕ((Am/2BmAm/2)k) ≤ ϕ((Ak/2BkAk/2)m) for all normal states ϕ on

A, for all operators A,B ∈ A+ and some numbers k,m ∈ R with k > m > 0.

Proof. (iv)⇒(i). Every normal state on A is tracial by Theorem 2, i.e., ϕ(XY ) =
ϕ(Y X) for all X,Y ∈ A. The set of all normal states separates elements of the
algebra A [31, Chap. III, Theorem 2.4.5]. This fact implies that XY = Y X
(X,Y ∈ A). So the von Neumann algebra A is commutative.

Corollary 2. Let ϕ be a positive functional on C∗-algebra A such that the in-
equality ϕ((Am/2BmAm/2)k) ≤ ϕ((Ak/2BkAk/2)m) holds for any A,B ∈ A+

and some numbers k,m ∈ R such that k > m > 0. Then ϕ is a tracial func-
tional.

Proof. Consider the universal enveloping von Neumann algebra M [11, III.2].
Assume that π is the corresponding universal representation of the C∗-algebra
A, and ϕ̂ is the positive normal functional on M with ϕ̂(π(A)) = ϕ(A) for

A ∈ A, see Section 2. Fix positive operators Â, B̂ ∈ M. Then by Kaplansky
density theorem there exist bounded positive nets {Aα} and {Bα} in A such

that π(Aα) → Â and π(Bα) → B̂ in the strong operator topology. Fix k,m ∈
R such that k > m > 0. We take into account inequality (ii) of Theorem 1,
apply continuity of the operations in the strong operator topology and conclude
that ϕ̂((Âm/2B̂mÂm/2)k) ≤ ϕ̂((Âk/2B̂kÂk/2)m). By Theorem 2 ϕ̂ is a tracial
functional on M, hence ϕ is a tracial functional on A.

Corollary 3. Let A be a C∗-algebra such that (Am/2BmAm/2)k ≤ (Ak/2BkAk/2)m

for all A,B ∈ A+ and some numbers k,m ∈ R with k > m > 0. Then A is com-
mutative.

Proof. The inequality of Corollary 2 holds for every positive functional on A.
Then every positive functional on A is tracial, and A is commutative.

For other trace characterizations see also [38]–[44].
Acknowledgments. The author was supported by the development pro-

gram of Volga Region Mathematical Center (agreement no. 075-02-2021-1393).

References

1. Abed, S.A.: An inequality for projections and convex functions. Lobachevskii J.
Math. 39(9), 1287–1292 (2018). doi:10.1134/S1995080218090214



Characterization of certain traces 9

2. Bikchentaev, A.M.: Commutation of projections and characterization of traces on
von Neumann algebras. III. Internat. J. Theor. Physics 54(12), 4482–4493 (2015).
doi:10.1007/s10773-015-2639-6

3. Bikchentaev, A.M.: Inequality for a trace on a unital C∗-algebra. Math. Notes 99(4),
487–491 (2016). doi:10.1134/S0001434616030214

4. Bikchentaev, A.M.: Differences of idempotents in C∗-algebras. Sib. Math. J. 58(2),
183–189 (2017). doi:10.1134/S003744661702001X

5. Bikchentaev, A.M.: Differences of idempotents in C∗-algebras and the
quantum Hall effect. Theoret. and Math. Phys. 195(1), 557–562 (2018).
doi:10.1134/S0040577918040074

6. Bikchentaev, A.M.: Trace and differences of idempotents in C∗-algebras. Math.
Notes 105(5-6), 641–648 (2019). doi:10.1134/S0001434619050018

7. Gardner, L.T.: An inequality characterizes the trace. Canad. J. Math. 31(6), 1322–
1328 (1979). https://doi.org/10.4153/CJM-1979-109-9

8. Hoa, D.T., Tikhonov, O.E.: Weighted monotonicity inequalities for traces on opera-
tor algebras. Math. Notes 88(1-2), 177–182 (2010). doi:10.1134/S0001434610070175

9. Hoa, D.T., Osaka, H., Toan, H.M.: On generalized Powers-Størmer’s inequality.
Linear Algebra Appl. 438(1), 242–249 (2013). doi:10.1016/j.laa.2012.07.053
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