Characterization of certain traces on von Neumann algebras

Airat Bikchentaev¹

N.I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008 Russia, Airat.Bikchentaev@ kpfu.ru, WWW home page:

Abstract. Consider a unital C^{*}-algebra A. Let $n \geq 2$ and let P_1, \ldots, P_n be projections in A such that $P_1 + \ldots + P_n = I$. We costruct $\mathcal{P}_n: \mathcal{A} \to$ A being a block projection operator given by the formula $\mathcal{P}_n(X) =$ $\sum_{k=1}^{n} P_k X P_k$ for all $X \in \mathcal{A}$. For a weight φ on a von Neumann algebra A, we prove that φ is a trace if and only if $\varphi(\mathcal{P}_2(A)) = \varphi(A)$ for all $A \in \mathcal{A}^+$. We also prove that if A is a von Neumann algebra then for a normal semifinite weight φ on $\mathcal A$ the following conditions are equivalent: (i) φ is a trace; (ii) $\varphi((A^{m/2}B^mA^{m/2})^k) \leq \varphi((A^{k/2}B^kA^{k/2})^m)$ for all $A, B \in \mathcal{A}^+$ and some numbers $k, m \in \mathbb{R}$ such that $k > m > 0$; (iii) $\varphi(|\mathcal{P}_n(A)|) \leq \varphi(|A|)$ for all $A \in \mathcal{A}$ and for all projections $P_1, \ldots, P_n \in$ A. As a consequence, we obtain a criterions for commutativity of von Neumann algebras and C^* -algebras.

Keywords: Hilbert space, linear operator, von Neumann algebra, C^* algebra, block projection operator, weight, trace, tracial inequality, commutativity

1 Introduction

Traces and weights on C^* -algebras are basic tools in the operator theory and its applications. So it seems important to characterize traces in different classes of weights on C^* -algebras, see [1]-[10].

Consider a tracial positive normal linear functional φ on a von Neumann algebra A, and positive numbers p, q such that $1/p + 1/q = 1$, then we have:

• Hölder's inequality $[11, Chapter IX, Theorem 2.13], [10, Theorem 5]:$

 $\varphi(|XY|) \leq \varphi(X^p)^{1/p} \varphi(Y^q)^{1/q}$ for all $X, Y \in \mathcal{A}^+;$

• Cauchy–Schwarz–Buniakowski inequality [12, Theorem 4.21]:

$$
\varphi(|XY|^{1/2}) \le \varphi(X)^{1/2} \varphi(Y)^{1/2} \text{ for all } X, Y \in \mathcal{A}^+;
$$

• Golden–Thompson inequality [13, Theorem 4]:

$$
\varphi(e^{X+Y}) \leq \varphi(e^{X/2}e^Ye^{X/2})
$$
 for all $X, Y \in \mathcal{A}^{sa}$;

- 2 Airat Bikchentaev
	- Peierls–Bogoliubov inequality [13, Theorem 7]:

$$
\varphi(e^X) \exp \frac{\varphi(e^{X/2} Y e^{X/2})}{\varphi(e^X)} \leq \varphi(e^{X+Y}) \text{ for all } X, Y \in \mathcal{A}^+.
$$

Also inequality

$$
\text{tr}((X^{1/2}YX^{1/2})^{rp}) \le \text{tr}((X^{r/2}Y^{r}X^{r/2})^{p}), \quad r \ge 1, \ p > 0,
$$

holds true for positive operators X, Y on a Hilbert space \mathcal{H} [14]. This inequality generalizes the inequalities of Lieb and Thirring, and resembles the Golden– Thompson inequality (see [15, §8]).

It can be said that any of the given trace inequalities is sharp in the following sense: only the trace of all positive linear functionals satisfies the inequality. It is known that if we limit ourselves only to projections of a von Neumann algebra A then each and every inequality of Hölder, Cauchy–Schwarz–Buniakowski, Golden–Tompson, Peierls–Bogoliubov, Araki–Lieb–Thirring etc., characterizes the tracial functionals among all positive normal functionals, see [16]–[22].

Gohberg and Krein had begun to study the block projection operators in [23]. These operators admit a natural extension to the setting of quasi-normed ideals and noncommutative integration. Consider a number $n \geq 2$ and let P_1, \ldots, P_n be such projections in a unital C^* -algebra A that $P_1 + \ldots + P_n = I$. Introduce a block projection operator $\mathcal{P}_n: \mathcal{A} \to \mathcal{A}$ as follows: $\mathcal{P}_n(X) = \sum_{k=1}^n P_k X P_k$ for all $X \in \mathcal{A}$.

Consider a weight φ on a von Neumann algebra A. Here we prove that the following conditions are equivalent: (i) φ is a trace; (ii) $\varphi(\mathcal{P}_2(A)) = \varphi(A)$ for all $A \in \mathcal{A}^+$ (Theorem 1). Note that the block projection operators on certain algebras (von Neumann algebras and algebras of operators measurable with respect to semifinite normal traces) already appeared in [24], [25]. We also proved several uniform submajorization inequalities for block projection operators [26]. Here we show that the following conditions are equivalent for a normal semifinite weight φ on a von Neumann algebra \mathcal{A} : (i) φ is a trace; (ii) $\varphi((A^{m/2}B^mA^{m/2})^k) \leq \varphi((A^{k/2}B^kA^{k/2})^m)$ for all $A, B \in \mathcal{A}^+$ and some numbers $k, m \in \mathbb{R}$ such that $k > m > 0$; (iii) $\varphi(|\mathcal{P}_n(A)|) \leq \varphi(|A|)$ for all $A \in \mathcal{A}$ and for all $P_1, \ldots, P_n \in \mathcal{A}^{pr}$ with $P_1 + \ldots + P_n = I$, where $\mathcal{P}_n(A) = \sum_{k=1}^n P_k A P_k$ (Theorem 2). As a consequence, we obtain certain criterions for commutativity of von Neumann algebras and C^* -algebras (Corollaries 1, 3).

2 Definitions and notation

The basic notion here is a C^* -algebra, being a complex Banach $*$ -algebra $\mathcal A$ such that $||A^*A|| = ||A||^2$ for every $A \in \mathcal{A}$. For a C^{*}-algebra \mathcal{A} by \mathcal{A}^{pr} , \mathcal{A}^{sa} and \mathcal{A}^+ we denote its subsets of projections $(A = A^* = A^2)$, self-adjoint elements $(A^* = A)$ and positive elements, respectively. For any $A \in \mathcal{A}$ we have $|A| = \sqrt{A^*A} \in \mathcal{A}^+$. If I is the unit of the algebra A and $P \in \mathcal{A}^{pr}$, then $P^{\perp} = I - P$.

We say that a mapping $\varphi : \mathcal{A}^+ \to [0, +\infty]$ is a weight on a C^{*}-algebra \mathcal{A} , if $\varphi(X+Y) = \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{A}^+, \lambda \geq 0$ (moreover, $0 \cdot (+\infty) \equiv 0$). Introduce the set

$$
\mathfrak{M}_{\varphi}^+ = \{ X \in \mathcal{A}^+ \colon \varphi(X) < +\infty \}, \quad \mathfrak{M}_{\varphi} = \mathrm{lin}_{\mathbb{C}} \mathfrak{M}_{\varphi}^+
$$

for a weight φ .

We can always extend by linearity the restriction $\varphi|_{\mathfrak{M}_{\varphi}^+}$ to a functional on \mathfrak{M}_{φ} . This extension is denoted by the same letter φ . Such an extension tells us that finite weights (i.e., $\varphi(X) < +\infty$ for all $X \in \mathcal{A}^+$) are virtually the same with positive functionals on A. We call a positive linear functional φ on A with $\|\varphi\|=1$ a state. A weight φ is said to be faithful, if $\varphi(X)=0$ $(X \in \mathcal{A}^+)$ implies that $X = 0$; a trace, if $\varphi(Z^*Z) = \varphi(ZZ^*)$ for every $Z \in \mathcal{A}$. If $\varphi(A) = \sup\{\varphi(B) :$ $B \in \mathcal{A}^+$, $B \leq A$, $\varphi(B) < +\infty$, for every $A \in \mathcal{A}^+$ then a trace φ on a C^* algebra A is *semifinite.* A subadditive weight on a C^* -algebra A is a mapping $\varphi: \mathcal{A}^+ \to [0, +\infty]$ such that $\varphi(X+Y) \leq \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{A}^+$, $\lambda \geq 0$ (here $0 \cdot (+\infty) \equiv 0$), see [27]–[30]. A subadditive weight φ is called a subadditive trace, if $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{A}$.

Let $\mathcal{B}(\mathcal{H})$ be the \ast -algebra of all bounded linear operators on a Hilbert space H over the field $\mathbb C$. Gelfand–Naimark theorem states that every C^* -algebra is isometrically isomorphic to a concrete C^* -algebra of operators on a Hilbert space \mathcal{H} [31, II.6.4.10]. For any set $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ we construct the commutant

$$
\mathcal{X}' = \{ Y \in \mathcal{B}(\mathcal{H}) : XY = YX \text{ for all } X \in \mathcal{X} \}.
$$

A von Neumann algebra A acting on a Hilbert space H is a ∗-subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ such that $\mathcal{A} = \mathcal{A}''$. For $P, Q \in \mathcal{A}^{pr}$ we write $P \sim Q$ (the Murray–von Neumann equivalence), if $P = U^*U$ and $Q = UU^*$ for some $U \in \mathcal{A}$.

A normal weight φ on von Neumann algebra A is a weight such that $\varphi(\sup X_i) =$ sup $\varphi(X_i)$ for every bounded increasing net $\{X_i\}$ in \mathcal{A}^+ ; a weight φ is *semifinite*, if the set \mathfrak{M}_{φ} is ultraweakly dense in A (see [32, Definition VII.1.1]).

Consider a von Neumann algebra \mathcal{A} , let $U \in \mathcal{A}$ be a unitary operator, i.e., $U^*U = UU^* = I$. There exists an automorphism α of a von Neumann algebra A, defined by the formula $\alpha(A) = U^*AU$ for all $A \in \mathcal{A}$. By [33, Theorem 1.4] it follows that the automorphism α can be represented as a finite product of involutions U_S : $A \mapsto SAS$, here S is a symmetry in A, i.e., $U^*AU =$ $S_1 \cdots S_m A S_m \cdots S_1$ with unitaries $S_1, \ldots, S_m \in \mathcal{A}^{sa}$. Moreover, if A possesses no type I_{fin} direct summands then the unitary operator U by itself is a finite product of symmetries from \mathcal{A}^{sa} [33, Theorem 1.6].

The universal representation of a C^* -algebra $\mathcal A$ is the pair

$$
\{\pi, \mathfrak{H}\} = \sum_{\varphi \in \mathcal{S}(\mathcal{A})} \mathbb{f}_{\pi_{\varphi}}, \mathfrak{H}_{\varphi}, \mathfrak{h}_{\varphi}\},
$$

where $\mathcal{S}(\mathcal{A})$ is the set of all states on $\mathcal{A}, (\pi_{\varphi}, \mathfrak{H}_{\varphi})$ is the Gelfand–Naimark–Segal representation of a C^* -algebra \mathcal{A} , assosiated with φ . Here we say that the von

4 Airat Bikchentaev

Neumann algebra $\mathcal{M} = \pi(\mathcal{A})''$, generated by $\pi(\mathcal{A})$, is the universal enveloping von Neumann algebra of C^* -algebra $\mathcal A$ [11, Chap. III, Definition 2.3].

Consider a C^{*}-algebra A. Let φ be a positive linear functional on A and π be the universal representation of A . Then arbitrary state on A by construction of π turns into a vector state on $\pi(A)$, hence it extends to a normal state on the universal enveloping algebra $\mathcal{M} = \pi(\mathcal{A})^{\prime\prime}$. Then φ yields such a positive normal functional $\hat{\varphi}$ on the universal enveloping von Neumann algebra that $\widehat{\varphi}(\pi(A)) = \varphi(A) \ \ (A \in \mathcal{A}^+).$

Recall the finite dimensional Spectral Theorem: every normal matrix $A \in$ $\mathbb{M}_n(\mathbb{C})$ reduces to the sum $A = \sum_{i=1}^m \lambda_i P_i$, where $\lambda_i \in \mathbb{C}$, and the projections $P_i \in M_n(\mathbb{C})^{\text{pr}}$ with $P_i P_j = 0$ for $i \neq j$ and $i, j = 1, \ldots, m, m \leq n$.

3 Trace characterization on C^* - algebras

Lemma 1. Let A be a unital C^{*}-algebra. Let $n \geq 2$ and let $P_1, \ldots, P_n \in A^{\text{pr}}$ be such that $P_1 + \ldots + P_n = I$, $\mathcal{P}_n(A) = \sum_{k=1}^n P_k A P_k$ for $A \in \mathcal{A}$. Then

(i) If φ is a trace on A, then $\varphi(\mathcal{P}_n(A)) = \varphi(A)$ for all $A \in \mathcal{A}^+$.

(ii) If φ is a subadditive trace on A, then $\varphi(\mathcal{P}_n(A)) \leq \varphi(A)$ for all $A \in \mathcal{A}^+$.

Proof. (i). For any $A \in \mathcal{A}^+$ and $n \geq 2$ we have

$$
\varphi(\mathcal{P}_n(A)) = \sum_{k=1}^n \varphi(P_k A P_k) = \sum_{k=1}^n \varphi(P_k A^{1/2} \cdot A^{1/2} P_k) = \sum_{k=1}^n \varphi((A^{1/2} P_k)^* A^{1/2} P_k) =
$$

=
$$
\sum_{k=1}^n \varphi(A^{1/2} P_k (A^{1/2} P_k)^*) = \sum_{k=1}^n \varphi(A^{1/2} P_k A^{1/2}) = \varphi(A^{1/2} \left(\sum_{k=1}^n P_k\right) A^{1/2}) = \varphi(A).
$$

(ii). For any $A \in \mathcal{A}$ and $n \geq 2$ by [25, Lemma 2] we have the representation

$$
\mathcal{P}_n(A) = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} S_k A S_k,
$$

where the unitaries $S_k \in \mathcal{A}^{sa}, k = 1, \ldots, 2^{n-1}$, have the form

$$
P_1 \pm P_2 \pm \cdots \pm P_n.
$$

Consider $A \in \mathcal{A}^+$. We have $\varphi(S_kAS_k) = \varphi(A)$ for all $k = 1, \ldots, 2^{n-1}$ and

$$
\varphi(\mathcal{P}_n(A)) = \varphi\Big(\frac{1}{2^{n-1}}\sum_{k=1}^{2^{n-1}} S_kAS_k\Big) = \frac{1}{2^{n-1}}\varphi\Big(\sum_{k=1}^{2^{n-1}} S_kAS_k\Big) \le
$$

$$
\leq \frac{1}{2^{n-1}}\sum_{k=1}^{2^{n-1}} \varphi(S_kAS_k) = \varphi(A).
$$

Theorem 1. For a weight φ on a von Neumann algebra A the following conditions are equivalent:

- (i) φ is a trace;
- (ii) $\varphi(\mathcal{P}_2(A)) = \varphi(A)$ for all $A \in \mathcal{A}^+$.

Proof. For (i) \Rightarrow (ii) see item (i) of Lemma 1.

 $(ii) \Rightarrow (i)$. By applying Upmeier's results [33], one can see that [34, Theorem 1.4.2] actually shows us that a weight φ on a von Neumann algebra $\mathcal A$ is a trace if and only if $\varphi(SAS) = \varphi(A)$ for any positive operator $A \in \mathcal{A}^+$ and any symmetry $S \in \mathcal{A}^{sa}$, see Section 2. Let $A \in \mathcal{A}^+$, a symmetry $S \in \mathcal{A}^{sa}$ and $P_1 \in \mathcal{A}^{pr}$ be such that $S = 2P_1 - I$, i.e., $P_1 = (S+I)/2$. For $P_2 = P_1^{\perp}$ we have $\mathcal{P}_2(A) = \frac{1}{2}(A + SAS)$ and

$$
\varphi(A) = \varphi(\mathcal{P}_2(A)) = \varphi\Big(\frac{1}{2}(A + SAS)\Big) = \frac{1}{2}\varphi(A) + \frac{1}{2}\varphi(SAS).
$$

For $\varphi(A) < +\infty$, or $\varphi(SAS) = \varphi(A) = +\infty$ we obtain $\varphi(SAS) = \varphi(A)$, the theorem is thereby established. Assume that $\varphi(SAS) < \varphi(A) = +\infty$. By repeating the above argument for the operator $A_1 = SAS$ instead of A (then $SA₁S = A$, we conclude that

$$
+\infty > \varphi(SAS) = \frac{1}{2}\varphi(SAS) + \frac{1}{2}\varphi(A) = +\infty.
$$

This is a contradiction, hence the theorem holds.

Recall Taylor's formula with Peano's remainder. Then we have

Lemma 2. If $a \in \mathbb{R}$, then

$$
(1+t)^a = 1 + at + \frac{1}{2!}a(a-1)t^2 + \ldots + \frac{1}{n!}a(a-1)\cdots(a-n+1)t^n + o(t^n) \text{ as } t \to 0.
$$

Theorem 2. For a normal semifinite weight φ on a von Neumann algebra A the following conditions are equivalent:

(i) φ is a trace;

(ii) $\varphi((A^{m/2}B^mA^{m/2})^k) \leq \varphi((A^{k/2}B^kA^{k/2})^m)$ for all $A, B \in \mathcal{A}^+$ and some numbers $k, m \in \mathbb{R}$ with $k > m > 0$;

(iii) $\varphi(|\mathcal{P}_n(A)|) \leq \varphi(|A|)$ for all $A \in \mathcal{A}$ and for all $P_1, \ldots, P_n \in \mathcal{A}^{pr}$ with $P_1 + \ldots + P_n = I$, where $\mathcal{P}_n(A) = \sum_{k=1}^n P_k A P_k$.

Proof. (i)⇒(ii). Consider $A, B \in \mathcal{A}^+$ and $k > m > 0$. Put

$$
X = A^{m}, \ Y = B^{m}, \ r = \frac{k}{m}, \ p = m.
$$
 (1)

Then $r > 1$ and

$$
(A^{m/2}B^mA^{m/2})^k = (X^{1/2}YX^{1/2})^{rp}, \ (A^{k/2}B^kA^{k/2})^m = (X^{r/2}Y^rX^{r/2})^p.
$$

The inequality

$$
\varphi((X^{1/2}YX^{1/2})^{rp}) \le \varphi((X^{r/2}Y^{r}X^{r/2})^{p}), \quad r \ge 1, \ p > 0 \tag{2}
$$

6 Airat Bikchentaev

was proved in [35].

 $(ii) \Rightarrow (i)$. Again we rewrite the inequality of item (ii) in the form of relation (2) applying transformations (1). It follows by Lemma 2 of [20] that for every projection $P \in \mathcal{A}^{pr}$ with $\varphi(P) < +\infty$ the reduced weight $\varphi|_P$ on the reduced von Neumann algebra $P\mathcal{A}P$ is a trace. Therefore φ is a trace by Lemma 2 of [36].

(i)⇒(iii). For $n = 2$ see [37, Lemma 13]; for the general case see [24, Lemma 3.2].

(iii)⇒(i). Step 1. Consider a positive normal functional φ on a von Neumann algebra A. Then the proof of implication (iii) \Rightarrow (i) for arbitrary von Neumann algebra is reducible to the case of the algebra $M_2(\mathbb{C})$ as in similar situations (see [7] or [38]).

A positive normal linear functional φ on a von Neumann algebra $\mathcal A$ is tracial if and only if $\varphi(P) = \varphi(Q)$ for all $P, Q \in A^{\text{pr}}$ with $PQ = 0$ and $P \sim Q$ (see [7], [38, Lemma 2]). Consider a *-algebra $\mathcal N$ in the reduced algebra (P + Q) $\mathcal{A}(P+Q)$ generated by a partial isometry $V \in \mathcal{A}$ that realizes the equivalence between P and Q. The algebra $\mathcal N$ is ^{*}-isomorphic to $\mathbb M_2(\mathbb C)$. Inequality (iii) holds for operators of N and the restricted functional φ |N. Let us show that this restriction is tracial on N; henceforce, $\varphi(P) = \varphi(Q)$.

Recall that every linear functional φ on $\mathbb{M}_2(\mathbb{C})$ possesses the form $\varphi(\cdot)$ = tr(S_{φ}). The matrix $S_{\varphi} \in M_2(\mathbb{C})$ is the so-called density matrix of φ . Without loss of generality assume that

$$
S_{\varphi} = \text{diag}\Big(\frac{1}{2} - s, \frac{1}{2} + s\Big), \quad 0 \le s \le \frac{1}{2}.
$$

Thus $\varphi(X)$ equals $(1/2 - s)x_{11} + (1/2 + s)x_{22}$ for $X = [x_{ij}]_{i,j=1}^2 \in M_2(\mathbb{C})$.

Consider a complex $\sigma \in \mathbb{C}$ with $|\sigma| = 1$ and a real $t \in [0, 1]$. These numbers define the projection

$$
R^{(t,\sigma)} = \begin{pmatrix} t & \sigma\sqrt{t-t^2} \\ \bar{\sigma}\sqrt{t-t^2} & 1-t \end{pmatrix} \in M_2(\mathbb{C}).
$$

Put $P_1 = R^{(1/2,1)}$, $P_2 = P_1^{\perp} = R^{(1/2,-1)}$ and

$$
A = \begin{pmatrix} 1 & -\varepsilon \\ \varepsilon & \varepsilon^2 \end{pmatrix}
$$

for $0 < \varepsilon < 1/2$. Then $\mathcal{P}_2(A) = \frac{1+\varepsilon^2}{2}$ $\frac{1+\varepsilon^2}{2}I$ and $\varphi(|\mathcal{P}_2(A)|) = \text{tr}(S_{\varphi}\mathcal{P}_2(A)) = \frac{1+\varepsilon^2}{2}$ $\frac{1}{2} \varepsilon^2$. The matrix

$$
|A|^2 = \begin{pmatrix} 1 + \varepsilon^2 & -\varepsilon + \varepsilon^3 \\ -\varepsilon + \varepsilon^3 & \varepsilon^2 + \varepsilon^4 \end{pmatrix}
$$

has the characteristic equation $\lambda^2 - (1 + \varepsilon^2)^2 \lambda + 4\varepsilon^4 = 0$. Therefore,

$$
\lambda_1 = \frac{(1+\varepsilon^2)^2 + \sqrt{(1+\varepsilon^2)^4 - 16\varepsilon^4}}{2} \quad \text{and} \quad \lambda_2 = \frac{(1+\varepsilon^2)^2 - \sqrt{(1+\varepsilon^2)^4 - 16\varepsilon^4}}{2}.
$$

Taylor's formula with Peano remainder (cf Lemma 2 with $a = 1/2$) implies that

$$
\sqrt{(1+\varepsilon^2)^4 - 16\varepsilon^4} = 1 + 2\varepsilon^2 - 7\varepsilon^4 + o(\varepsilon^5), \quad (\varepsilon \to 0+).
$$

Hence

$$
\lambda_1 = 1 + 2\varepsilon^2 - 3\varepsilon^4 + o(\varepsilon^5), \quad \lambda_2 = 4\varepsilon^4 + o(\varepsilon^5), \quad (\varepsilon \to 0+).
$$

The finite-dimensional Spectral Theorem yields the representation

$$
|A|^2 = \lambda_1 R^{(t,1)} + \lambda_2 R^{(t,1)\perp} = \lambda_1 R^{(t,1)} + \lambda_2 R^{(1-t,-1)}.
$$

We determine the parameter $t \in [0, 1]$ from the equation

$$
1 + \varepsilon^2 = \lambda_1 t + \lambda_2 (1 - t), \text{ i.e.,}
$$

$$
1 + \varepsilon^2 = (1 + 2\varepsilon^2 - 3\varepsilon^4 + o(\varepsilon^5))t + (4\varepsilon^4 + o(\varepsilon^5))(1 - t), \quad (\varepsilon \to 0+).
$$

Hence

$$
t = \frac{1 + \varepsilon^2 - 4\varepsilon^4}{1 + 2\varepsilon^2 - 7\varepsilon^4 + o(\varepsilon^5)}, \quad (\varepsilon \to 0+).
$$

By Lemma 2 with $a = -1$ we find

$$
t = (1 + \varepsilon^2 - 4\varepsilon^4)(1 - 2\varepsilon^2 + 11\varepsilon^4 + o(\varepsilon^5)) = 1 - \varepsilon^2 + 5\varepsilon^4 + o(\varepsilon^5), \qquad (\varepsilon \to 0+).
$$

Finite-dimensional Spectral Theorem yields $|A| = \sqrt{\lambda_1} R^{(t,1)} + \sqrt{\lambda_2} R^{(1-t,-1)}$, where

$$
\sqrt{\lambda_1} = 1 + \varepsilon^2 - 2\varepsilon^4 + o(\varepsilon^5), \quad \sqrt{\lambda_2} = 2\varepsilon^2 \sqrt{1 + o(\varepsilon)} = 2\varepsilon^2 + o(\varepsilon^3), \qquad (\varepsilon \to 0+)
$$

for $a = 1/2$ in Lemma 2 and thanks to the relation $\varepsilon^k o(\varepsilon^m) = o(\varepsilon^{k+m})$, $(\varepsilon \to$ 0+) for all $k, m \in \mathbb{N}$. Hence

$$
\varphi(|A|) = \text{tr}(S_{\varphi}|A|) = \sqrt{\lambda_1} \text{tr}(S_{\varphi}R^{(t,1)}) + \sqrt{\lambda_2} \text{tr}(S_{\varphi}R^{(1-t,-1)}) =
$$

= $\sqrt{\lambda_1} \left(\left(\frac{1}{2} - s \right) t + \left(\frac{1}{2} + s \right) (1-t) \right) + \sqrt{\lambda_2} \left(\left(\frac{1}{2} - s \right) (1-t) + \left(\frac{1}{2} + s \right) t \right) =$
= $\frac{1}{2} - s + \frac{3}{2} \varepsilon^2 + 3s \varepsilon^2 + o(\varepsilon^3)$ as $\varepsilon \to 0 + .$

The inequality $\varphi(|P_2(A)|) \leq \varphi(|A|)$ then takes the form

$$
\frac{1}{2} + \frac{\varepsilon^2}{2} \le \frac{1}{2} - s + \frac{3}{2}\varepsilon^2 + 3s\varepsilon^2 + o(\varepsilon^3), \qquad (\varepsilon \to 0+).
$$

It holds true only for $s = 0$ for all ε , $0 < \varepsilon < \frac{1}{2}$.

Step 2. Let a normal semifinite weight φ on a von Neumann algebra A meet condition (iii). It follows by Step 1 that for every projection $P \in \mathcal{A}^{\text{pr}}$ with $\varphi(P)$ < + ∞ the reduced weight $\varphi|_P$ on the reduced von Neumann algebra PAP is a trace. Therefore φ is a trace by Lemma 2 of [36]. The assertion is proved.

8 Airat Bikchentaev

Corollary 1. For a von Neumann algebra A the following conditions are equivalent:

(i) the algebra A is commutative;

(ii) $\varphi(\mathcal{P}_2(A)) = \varphi(A)$ for all normal states φ on A, for all operators $A \in \mathcal{A}^+$, for all $P_1 \in \mathcal{A}^{pr}$ and $P_2 = P_1^{\perp}$;

(iii) $\varphi(|P_2(A)|) \leq \varphi(|A|)$ for all normal states φ on A, for all operators $A \in \mathcal{A}$, for all $P_1 \in \mathcal{A}^{pr}$ and $P_2 = P_1^{\perp}$;

(iv) $\varphi((A^{m/2}B^mA^{m/2})^k) \leq \varphi((A^{k/2}B^kA^{k/2})^m)$ for all normal states φ on A, for all operators $A, B \in \mathcal{A}^+$ and some numbers $k, m \in \mathbb{R}$ with $k > m > 0$.

Proof. (iv)⇒(i). Every normal state on A is tracial by Theorem 2, i.e., $\varphi(XY) =$ $\varphi(YX)$ for all $X, Y \in \mathcal{A}$. The set of all normal states separates elements of the algebra A [31, Chap. III, Theorem 2.4.5]. This fact implies that $XY = YX$ $(X, Y \in \mathcal{A})$. So the von Neumann algebra A is commutative.

Corollary 2. Let φ be a positive functional on C^* -algebra A such that the inequality $\varphi((A^{m/2}B^mA^{m/2})^k) \leq \varphi((A^{k/2}B^kA^{k/2})^m)$ holds for any $A, B \in \mathcal{A}^+$ and some numbers $k, m \in \mathbb{R}$ such that $k > m > 0$. Then φ is a tracial functional.

Proof. Consider the universal enveloping von Neumann algebra \mathcal{M} [11, III.2]. Assume that π is the corresponding universal representation of the C^* -algebra A, and $\hat{\varphi}$ is the positive normal functional on M with $\hat{\varphi}(\pi(A)) = \varphi(A)$ for $A \in \mathcal{A}$, see Section 2. Fix positive operators $\widehat{A}, \widehat{B} \in \mathcal{M}$. Then by Kaplansky density theorem there exist bounded positive nets ${A_{\alpha}}$ and ${B_{\alpha}}$ in A such that $\pi(A_{\alpha}) \to A$ and $\pi(B_{\alpha}) \to B$ in the strong operator topology. Fix $k, m \in$ R such that $k > m > 0$. We take into account inequality (ii) of Theorem 1, apply continuity of the operations in the strong operator topology and conclude that $\hat{\varphi}((\hat{A}^{m/2}\hat{B}^m\hat{A}^{m/2})^k) \leq \hat{\varphi}((\hat{A}^{k/2}\hat{B}^k\hat{A}^{k/2})^m)$. By Theorem 2 $\hat{\varphi}$ is a tracial functional on \hat{A} functional on M, hence φ is a tracial functional on A.

Corollary 3. Let A be a C^{*}-algebra such that $(A^{m/2}B^mA^{m/2})^k \leq (A^{k/2}B^kA^{k/2})^m$ for all $A, B \in \mathcal{A}^+$ and some numbers $k, m \in \mathbb{R}$ with $k > m > 0$. Then A is commutative.

Proof. The inequality of Corollary 2 holds for every positive functional on A. Then every positive functional on A is tracial, and A is commutative.

For other trace characterizations see also [38]–[44].

Acknowledgments. The author was supported by the development program of Volga Region Mathematical Center (agreement no. 075-02-2021-1393).

References

1. Abed, S.A.: An inequality for projections and convex functions. Lobachevskii J. Math. 39(9), 1287–1292 (2018). doi:10.1134/S1995080218090214

- 2. Bikchentaev, A.M.: Commutation of projections and characterization of traces on von Neumann algebras. III. Internat. J. Theor. Physics 54(12), 4482–4493 (2015). doi:10.1007/s10773-015-2639-6
- 3. Bikchentaev, A.M.: Inequality for a trace on a unital C^* -algebra. Math. Notes $99(4)$, 487–491 (2016). doi:10.1134/S0001434616030214
- 4. Bikchentaev, A.M.: Differences of idempotents in C^* -algebras. Sib. Math. J. 58(2), 183–189 (2017). doi:10.1134/S003744661702001X
- 5. Bikchentaev, A.M.: Differences of idempotents in C^* -algebras and the quantum Hall effect. Theoret. and Math. Phys. $195(1)$, $557-562$ (2018). doi:10.1134/S0040577918040074
- 6. Bikchentaev, A.M.: Trace and differences of idempotents in C^* -algebras. Math. Notes 105(5-6), 641–648 (2019). doi:10.1134/S0001434619050018
- 7. Gardner, L.T.: An inequality characterizes the trace. Canad. J. Math. 31(6), 1322– 1328 (1979). https://doi.org/10.4153/CJM-1979-109-9
- 8. Hoa, D.T., Tikhonov, O.E.: Weighted monotonicity inequalities for traces on operator algebras. Math. Notes 88(1-2), 177–182 (2010). doi:10.1134/S0001434610070175
- 9. Hoa, D.T., Osaka, H., Toan, H.M.: On generalized Powers-Størmer's inequality. Linear Algebra Appl. 438(1), 242–249 (2013). doi:10.1016/j.laa.2012.07.053
- 10. Petz, D., Zem´anek, J.: Characterizations of the trace. Linear Algebra Appl. 111, 43–52 (1988). doi:10.1016/0024-3795(88)90050-X
- 11. Takesaki, M.: Theory of operator algebras. Vol. I. Operator Algebras and Noncommutative Geometry, 5 (Springer-Verlag, Berlin, 2002).
- 12. Manjegani, S.M.: Inequalities in operator algebras. A thesis for the PhD in mathematics degree of Regina University. Canada, Regina, 2004. 95 pp.
- 13. Ruskai, M.: Inequalities for traces on von Neumann algebras. Commun. Math. Physics 26(4) , 280–289 (1972). doi:10.1007/BF01645523
- 14. Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19(2), 167–170 (1990). doi:10.1007/BF01045887
- 15. Simon, B.: Trace ideals and their applications. Second edition. Mathematical Surveys and Monographs, 120 (American Mathematical Society, Providence, RI, 2005).
- 16. Bikchentaev, A.M., Tikhonov, O.E.: Characterization of the trace by Young's inequality. JIPAM. J. Inequal. Pure Appl. Math. 6(2), no. 2, Article 49, 3 pp. (2005).
- 17. Bikchentaev, A.M., Tikhonov, O.E.: Characterization of the trace by monotonicity inequalities. Linear Algebra Appl. $422(1)$, $274-278$ (2007). doi:10.1016/j.laa.2006.10.005
- 18. Bikchentaev, A.M.: Commutativity of projections and characterization of traces on von Neumann algebras. Sib. Math. J. 51(6), 971–977 (2010). doi:10.1007/s11202- 010-0096-2
- 19. Bikchentaev, A.M.: Commutation of projections and trace characterization on von Neumann algebras. II. Math. Notes $89(3-4)$, $461-471$ (2011). doi:10.1134/S0001434611030175
- 20. Bikchentaev, A.M.: The Peierls-Bogoliubov inequality in C^* -algebras and characterization of tracial functionals. Lobachevskii J. Math. 32(3), 175–179 (2011). doi:10.1134/S1995080211030061
- 21. Bikchentaev, A.M.: Commutativity of operators and characterization of traces on C^* -algebras. Dokl. Math. 87(1), 79-82 (2013). doi:10.1134/S1064562413010298
- 22. Cho, K., Sano, T.: Young's inequality and trace. Linear Algebra Appl. 431(8), 1218–1222 (2009). doi:10.1016/j.laa.2009.04.016
- 23. Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. (Transl. Mathem. Monographs, v. 18, Amer. Math. Soc., Providence, R.I., 1969).
- 10 Airat Bikchentaev
- 24. Chilin, V., Krygin, A., Sukochev, F.: Extreme points of convex fully symmetric sets of measurable operators. Integr. Equ. Oper. Theory 15 (2), 186–226 (1992). doi:10.1007/BF01204237
- 25. Bikchentaev, A.M.: Block projection operator in normed ideal spaces of measurable operators. Russian Math. (Iz. VUZ) 56 (2), 75–79 (2012). doi:10.3103/S1066369X12020107
- 26. Bikchentaev, A.M., Sukochev, F.: Inequalities for the block projection operators. J. Funct. Anal. 280 (7), article 108851, 18 pp (2021). doi:10.1016/j.jfa.2020.108851
- 27. Haagerup, U.: Normal weights on W^* -algebras. J. Functional Analysis 19 (3), 302–317 (1975). doi: 10.1016/0022-1236(75)90060-9
- 28. Bikchentaev, A.M.: On the Haagerup problem on subadditive weights on W[∗] -algebras. Russian Math. (Iz. VUZ) 55 (10), 82–85 (2011). doi:10.3103/S1066369X11100112
- 29. Bikchentaev, A.M.: The Haagerup problem on subadditive weights on W^* -algebras. II. Russian Math. (Iz. VUZ) 57 (12), 66–69 (2013). doi:10.3103/S1066369X13120074
- 30. Bikchentaev, A.M.: Seminorms Associated with Subadditive Weights α C^* -Algebras. Mathematical Notes **107** (3-4), 383–391 (2020). doi:10.1134/S0001434620030025
- 31. Blackadar, B.: Operator algebras, theory of C^* -algebras and von Neumann algebras, in: Encyclopaedia of Mathematical Sciences, in: Operator Algebras and Noncommutative Geometry, III, vol. 122 (Springer-Verlag, Berlin, 2006).
- 32. Takesaki, M.: Theory of Operator Algebras, Operator Algebras and Non-Commutative Geometry, 6. v. II, Encyclopaedia Math. Sci., 125 (Springer-Verlag, New York, 2003).
- 33. Upmeier, H.: Automorphism groups of Jordan C^* -algebras. Math. Z. 176(1), 21–34 (1981). doi:10.1007/BF01258901
- 34. Ayupov, Sh.A.: Classification and representation of ordered Jordan algebras (Russian) ("Fan", Tashkent, 1986).
- 35. Kosaki, H.: On an inequality of Araki-Lieb-Thirring (von Neumann algebra case). Proc. Amer. Math. Soc. 114(2), 477–481 (1992). doi:10.1090/S0002-9939-1992- 1065951-1
- 36. Stolyarov, A.I., Tikhonov, O.E., Sherstnev, A.N.: Characterization of normal traces on von Neumann algebras by inequalities for the modulus. Math. Notes $72(3-4)$, 411–416 (2002). doi:10.1023/A:1020559623287
- 37. Kaftal, V., Weiss, G.: Compact derivations relative to semifinite von Neumann algebras. J. Funct. Anal. 62 (2), 202–220 (1985). doi:10.1016/0022-1236(85)90003-5
- 38. Tikhonov, O.E.: Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals. Positivity $9(2)$, 259–264 (2005). doi:10.1007/s11117-005-2711-1
- 39. Bikchentaev, A.M.: On a property of L_p -spaces on semifinite von Neumann algebras. Math. Notes 64(1-2), 159–163 (1998). doi:10.1007/bf02310299
- 40. Bikchentaev, A.M.: Metrics on projections of the von Neumann algebra associated with tracial functionals. Sib. Math. J. $60(6)$, $952-956$ (2019). doi:10.1134/S003744661906003X
- 41. Bikchentaev, A.M., Abed, S.A.: Projections and traces on von Neumann algebras. Lobachevskii J. Math. 40(9), 1260–1267 (2019). doi:10.1134/S1995080219090051
- 42. Bikchentaev, A.M.: Inequalities for determinants and characterization of the trace. Sib. Math. J. 61(2), 248–254 (2020). doi:10.1134/S0037446620020068
- 43. Bikchentaev, A.M., Sherstnev, A.N.: Studies on Noncommutative Measure Theory in Kazan University (1968-2018). Internat. J. Theor. Phys. 60(2), 585–596 (2021). doi:10.1007/s10773-019-04156-x

44. Hoa, D.T., Tikhonov, O.E.: Weighted trace inequalities of monotonicity. Lobachevskii J. Math. 26, 63–67 (2007).