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Abstract. Consider a unital C*-algebra A. Let n > 2 and let P1,..., P,
be projections in A such that Py + ...+ P, = I. We costruct P,: A —
A being a block projection operator given by the formula P,(X) =
22:1 Py X Py, for all X € A. For a weight ¢ on a von Neumann algebra
A, we prove that ¢ is a trace if and only if p(P2(A)) = ¢(A) for all
A € AT. We also prove that if A is a von Neumann algebra then for a
normal semifinite weight ¢ on A the following conditions are equivalent:
(i) ¢ is a trace; (i) @((A™/2B™A™/2)*) < o((A*2B* A*/?)™) for all
A, B € A" and some numbers k,m € R such that & > m > 0; (iii)
e(|Pn(A)]) < ¢(|A]) for all A € A and for all projections P,..., P, €
A. As a consequence, we obtain a criterions for commutativity of von
Neumann algebras and C*-algebras.
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1 Introduction

Traces and weights on C'*-algebras are basic tools in the operator theory and its
applications. So it seems important to characterize traces in different classes of
weights on C*-algebras, see [1]-[10].

Consider a tracial positive normal linear functional ¢ on a von Neumann
algebra A, and positive numbers p, ¢ such that 1/p + 1/q = 1, then we have:

e Holder’s inequality [11, Chapter IX, Theorem 2.13], [10, Theorem 5]:

o(|XY|) < o(XP)/Pp(Y)V for all X,Y € A;

e Cauchy—Schwarz—Buniakowski inequality [12, Theorem 4.21]:
P(IXY12) < p(X)2p(Y)!/? for all XY € A™;

e Golden—Thompson inequality [13, Theorem 4]:

o(eXTY) < p(eX/2e¥eX/?) for all X,Y € A%
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e Peierls—Bogoliubov inequality [13, Theorem 7]:

X/QY X/2
@(ex)expgp(e(p(exe)) < (eXtY) forall X,Y € AT.

Also inequality
tr(XY2Y XV/2)P) < tr((X7/2YTXT/2)P), r>1, p >0,

holds true for positive operators X, Y on a Hilbert space H [14]. This inequality
generalizes the inequalities of Lieb and Thirring, and resembles the Golden—
Thompson inequality (see [15, §8]).

It can be said that any of the given trace inequalities is sharp in the following
sense: only the trace of all positive linear functionals satisfies the inequality. It
is known that if we limit ourselves only to projections of a von Neumann alge-
bra A then each and every inequality of Hélder, Cauchy—Schwarz—Buniakowski,
Golden—Tompson, Peierls—Bogoliubov, Araki-Lieb—Thirring etc., characterizes
the tracial functionals among all positive normal functionals, see [16]-[22].

Gohberg and Krein had begun to study the block projection operators in [23].
These operators admit a natural extension to the setting of quasi-normed ideals
and noncommutative integration. Consider a number n > 2 and let P;,..., P,
be such projections in a unital C*-algebra A that P; + ...+ P, = I. Introduce
a block projection operator P,: A — A as follows: P, (X) = ZZ=1 P.X Py, for
all X € A

Consider a weight ¢ on a von Neumann algebra A. Here we prove that the
following conditions are equivalent: (i) ¢ is a trace; (ii) p(P2(A4)) = ¢(A) for
all A € A" (Theorem 1). Note that the block projection operators on cer-
tain algebras (von Neumann algebras and algebras of operators measurable
with respect to semifinite normal traces) already appeared in [24], [25]. We
also proved several uniform submajorization inequalities for block projection
operators [26]. Here we show that the following conditions are equivalent for a
normal semifinite weight ¢ on a von Neumann algebra A: (i) ¢ is a trace; (ii)
o((A™/2B™mA™I2)k) < o((AR/2 Bk A¥/2)™) for all A, B € At and some numbers
kE,m € R such that & > m > 0; (iii) ¢(|Pn(4)]) < ¢(|A]) for all A € A and
for all Py,...,P, € AP with P + ...+ P, = I, where P,(A) = >}_, PLAP;
(Theorem 2). As a consequence, we obtain certain criterions for commutativity
of von Neumann algebras and C*-algebras (Corollaries 1, 3).

2 Definitions and notation

The basic notion here is a C*-algebra, being a complex Banach *-algebra A such
that |A*A| = ||A||? for every A € A. For a C*-algebra A by AP*, A% and AT we
denote its subsets of projections (A4 = A* = A?), self-adjoint elements (A* = A)
and positive elements, respectively. For any A € A we have |A| = VA*A € AT.
If 1 is the unit of the algebra A and P € AP*, then P+ =1 — P.
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We say that a mapping ¢ : AT — [0, +00] is a weight on a C*-algebra A,
if (X +Y) = o(X) + oY), ©AX) = Ap(X) for all X,¥ € A", A >0
(moreover, 0 - (+00) = 0). Introduce the set

ME = {X € A": o(X) < +o0}, M, = lingM

for a weight .

We can always extend by linearity the restriction 90|£mj, to a functional on
IM,,. This extension is denoted by the same letter ¢. Such an extension tells us
that finite weights (i.e., ¢(X) < +o0o for all X € AT) are virtually the same
with positive functionals on .A. We call a positive linear functional ¢ on A with
lloll = 1 a state. A weight ¢ is said to be faithful, if o(X) =0 (X € AT) implies
that X = 0; a trace, if o(Z*Z) = o(ZZ*) for every Z € A.If p(A) = sup{p(B) :
B e A, B < A, ¢(B) < +oc}, for every A € AT then a trace ¢ on a C*-
algebra A is semifinite. A subadditive weight on a C*-algebra A is a mapping
o : AT — [0, 400] such that p(X +Y) < p(X) + ¢(Y), ¢(AX) = Ap(X) for
all X, Y € AT, A >0 (here 0- (+00) = 0), see [27]-[30]. A subadditive weight ¢
is called a subadditive trace, if o(Z*Z) = p(ZZ*) for all Z € A.

Let B(#) be the *-algebra of all bounded linear operators on a Hilbert space
‘H over the field C. Gelfand—Naimark theorem states that every C*-algebra is
isometrically isomorphic to a concrete C*-algebra of operators on a Hilbert space
H [31, 11.6.4.10]. For any set X C B(H) we construct the commutant

X' ={Y € B(H): XY =YX forall X € X}.

A von Neumann algebra A acting on a Hilbert space H is a *-subalgebra of
the algebra B(H) such that A = A”. For P,Q € AP" we write P ~ @ (the
Murray—von Neumann equivalence), if P = U*U and Q = UU* for some U € A.

A normal weight ¢ on von Neumann algebra A is a weight such that ¢(sup X;) =
sup p(X;) for every bounded increasing net {X;} in AT; a weight ¢ is semifinite,
if the set M, is ultraweakly dense in A (see [32, Definition VIIL.1.1]).

Consider a von Neumann algebra A, let U € A be a unitary operator, i.e.,
U*U = UU* = I. There exists an automorphism « of a von Neumann algebra
A, defined by the formula a(A) = U*AU for all A € A. By [33, Theorem
1.4] it follows that the automorphism « can be represented as a finite product
of involutions Ug : A +— SAS, here S is a symmetry in A, ie., U"AU =
S1++SmASy, -+ - S1 with unitaries Sq,...,S5,, € A%*. Moreover, if A possesses
no type Ig;;, direct summands then the unitary operator U by itself is a finite
product of symmetries from 4% [33, Theorem 1.6].

The universal representation of a C*-algebra A is the pair

roy= 3 {mp ),

pES(A)

where S(A) is the set of all states on A, (74, ) is the Gelfand-Naimark-Segal
representation of a C*-algebra A, assosiated with ¢. Here we say that the von
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Neumann algebra M = 7(A)", generated by 7(A), is the universal enveloping
von Neumann algebra of C*-algebra A [11, Chap. III, Definition 2.3].

Consider a C*-algebra A. Let ¢ be a positive linear functional on A and 7
be the universal representation of A. Then arbitrary state on A by construction
of m turns into a vector state on m(.A), hence it extends to a normal state on
the universal enveloping algebra M = 7(A)”. Then ¢ yields such a positive
normal functional @ on the universal enveloping von Neumann algebra that
B(r(A)) = p(A4) (A AY).

Recall the finite dimensional Spectral Theorem: every normal matrix A €
M, (C) reduces to the sum A = Y| \;P;, where \; € C, and the projections
P, € M,,(C)P" with P,P; =0fori#jandi,j=1,...,m, m<n.

3 Trace characterization on C*- algebras

Lemma 1. Let A be a unital C*-algebra. Let n > 2 and let Py,..., P, € AP* be
such that Py + ...+ P, =1, P,(A) = Y_;_, PLAP;, for A€ A. Then

(i) If  is a trace on A, then (Pn(A)) = ¢(A) for all A € AT.

(ii) If ¢ is a subadditive trace on A, then p(P,(A)) < p(A) for all A € AT.

Proof. (i). For any A € A" and n > 2 we have

n

(Pn(A Zgﬁ (PLAP) =Y (P AY? - AV2P) =Y " (A2 P,) AY?Py) =
k=1 k=1 k=1

BS

zn:go A2 P (AY2P)%) zn: (AV2p, AV2) = (Al/Q (Zn: Pk)Al/Q) — o(A).
k=1 k=1

k=1
(ii). For any A € A and n > 2 by [25, Lemma 2] we have the representation

on— 1

ASk7

where the unitaries S € A%, k =1,...,2""! have the form
Pi+Py+---+P,

Consider A € AT. We have (S, AS;) = ¢(A) for all k =1,...,2""1 and

oPa(4)) = 0525 ffsmsk) (Z SiASy) <
k=1

ASy) = @(A).
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Theorem 1. For a weight ¢ on a von Neumann algebra A the following condi-
tions are equivalent:
(i) ¢ is a trace;

(ii) ©(P2(A)) = (A) for all A € AT.

Proof. For (i)=-(ii) see item (i) of Lemma 1.

(ii)=(i). By applying Upmeier’s results [33], one can see that [34, Theorem
1.4.2] actually shows us that a weight ¢ on a von Neumann algebra A is a trace if
and only if p(SAS) = ¢(A) for any positive operator A € A* and any symmetry
S € A2 see Section 2. Let A € AT, a symmetry S € A% and P; € AP' be such
that S = 2P, —1, i.e., P = (541)/2. For P, = Pj- we have P5(A) = $(A+SAS)
and

P(A) = o(Pa(A)) = (5 (A + SAS)) = Zo(A) + 2o(SAS).

For p(A) < 400, or p(SAS) = p(A) = +oo we obtain p(SAS) = ¢(A),
the theorem is thereby established. Assume that (SAS) < ¢(A) = +o00. By
repeating the above argument for the operator A; = SAS instead of A (then
SA;S = A), we conclude that

1 1
+oo > (SAS) = 590(5145) + 5@(14) = +4o00.

This is a contradiction, hence the theorem holds.
Recall Taylor’s formula with Peano’s remainder. Then we have

Lemma 2. If a € R, then

(1+t)* = 1+at+%a(a—l)t2+. . .+%a(a—1) o (a=—n+1)t"+o(t") as t — 0.
Theorem 2. For a normal semifinite weight ¢ on a von Neumann algebra A
the following conditions are equivalent:

(i) ¢ is a trace;

(ii) @((A™/2B™A™/2)k) < o((AF/2BE AF/2)™) for all A, B € At and some
numbers k,m € R with k > m > 0;

(iii) e(|Pn(A)]) < @(JA]) for all A € A and for all Py,...,P, € AP with
Py +...4+ P, =1, where P,(A) = Y}_, PrAPy.

Proof. (i)=(ii). Consider A, B € AT and k > m > 0. Put

k
X=A" Y=B", r=—, p=m. (1)
m

Then r > 1 and
(Am/2BmAm/2)k _ (XI/QYXI/Q)TP, (Ak/2BkAk/2)m _ (XT/QYTXT/Z):D.
The inequality

P((XPYXV2)P) < o(XTRYTXT2)P), 121, p>0 (2)
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was proved in [35].

(ii)=(i). Again we rewrite the inequality of item (ii) in the form of relation
(2) applying transformations (1). It follows by Lemma 2 of [20] that for every
projection P € AP with ¢(P) < 400 the reduced weight ¢|p on the reduced
von Neumann algebra PAP is a trace. Therefore ¢ is a trace by Lemma 2 of
(36].

(i)=(iii). For n = 2 see [37, Lemma 13]; for the general case see [24, Lemma
3.2].

(iii)=-(i). Step 1. Consider a positive normal functional ¢ on a von Neumann
algebra A. Then the proof of implication (iii)=-(i) for arbitrary von Neumann
algebra is reducible to the case of the algebra My (C) as in similar situations (see
[7] or [38]).

A positive normal linear functional ¢ on a von Neumann algebra A is tracial
if and only if p(P) = ¢(Q) for all P,Q € AP" with PQ = 0 and P ~ @
(see [7], [38, Lemma 2]). Consider a *-algebra A in the reduced algebra (P +
Q)A(P+ Q) generated by a partial isometry V' € A that realizes the equivalence
between P and Q. The algebra A is *-isomorphic to My (C). Inequality (iii)
holds for operators of N and the restricted functional p|A. Let us show that
this restriction is tracial on N; henceforce, ¢(P) = ¢(Q).

Recall that every linear functional ¢ on My(C) possesses the form ¢(-) =
tr(S, -). The matrix S, € My(C) is the so-called density matrix of ¢. Without
loss of generality assume that

1 1
Syzdiag(f—s,f—&—s), 0<s<

1
2 2 2

Thus (X) equals (1/2 — s)z11 4 (1/2 + s)xa for X = [4;]7 2, € M(C).
[

Consider a complex o € C with |o| =1 and a real t € [0,1]. These numbers
define the projection

. t oVi— P2
R(u):(Um " )GMQ(C).

Put P, = R/21) p, = pt = R(1/2-1) and

1—¢
1= (1)

for 0 < & < 1/2. Then Py(A) = 22T and o(|Pa(A)]) = tr(S,Pa(A)) = L.
The matrix

|A|2< 1+¢e2 —€+€3>

—5—1—53 52—1—54

has the characteristic equation A2 — (1 + £2)2\ 4 4e* = 0. Therefore,

(14¢e2)? + /(1 +e2)* — 16t and Ag — (1+e2)?—/(1+e2)* - 16"

A= 2 2
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Taylor’s formula with Peano remainder (cf Lemma 2 with a = 1/2) implies
that
(1+e2)4 —16e* =1+2e2 — 7' +0(%), (e — 0+).

Hence
Mo =142% —3c 4 0(e%), I =4e+0(%), (¢ — 0+).
The finite-dimensional Spectral Theorem yields the representation
|A)? = M R®YD 4 X\ REDL = X\ RV 4 ), RO-H-D),
We determine the parameter ¢ € [0, 1] from the equation
L+e? =Mt + (1 —1), ie,

14+e? = (142 = 3" + 0(e”))t + (4e* + 0(®))(1 — 1), (¢ = 0+).

Hence

= L+e — 4t (e = 0+4)
1422 —Tet +o(ed)’ c ’
By Lemma 2 with a = —1 we find
= (14¢e? —4e?)(1 —2e% +11e* 4 0(%)) = 1 — 2 + 5e* + (&), (e = 0+4).

Finite-dimensional Spectral Theorem yields |A| = VA R®D 4 \/)\QR(l_t’_l),
where

VAL =142 =24 0(e%), VAo =221+ o0(e) = 22 +0(e?), (e = 0+4)
for a = 1/2 in Lemma 2 and thanks to the relation ¥0(¢™) = o(e*+™), (e —

0+) for all k,m € N. Hence
o(|A]) = tr(Su|A]) = VA1 tr(SyRGD) + /g tr(S,ROH7D) =
_\/7<(*—S>t—|—(; )l—t)—i-\/i((f—s)1—t)+<%+3>t>:

1

3 5
:5—5—1-55 +3se?+0(?) as e —0+.

The inequality ¢(|P2(A)]) < ¢(]A|) then takes the form

62

<
+5 <

3 .
—s+ 562 + 3se? + o(e?), (e = 0+).

N | =
N

It holds true only for s =0 for all ¢, 0 < e < %

Step 2. Let a normal semifinite weight ¢ on a von Neumann algebra A meet
condition (iii). It follows by Step 1 that for every projection P € AP* with
©(P) < +oo the reduced weight ¢|p on the reduced von Neumann algebra P AP
is a trace. Therefore ¢ is a trace by Lemma 2 of [36]. The assertion is proved.
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Corollary 1. For a von Neumann algebra A the following conditions are equiva-
lent:

(i) the algebra A is commutative;

(ii) @(P2(A)) = ¢(A) for all normal states ¢ on A, for all operators A € AT,
for all P, € A" and P, = Pj-;

(iii) (|P=(A)) < @(|A]) for all normal states ¢ on A, for all operators
A€ A, for all P, € AP" and Py = Pi-;

(iv) @((A™/2BmA™/2)kY < ((AF/2BkAF/2)™) for all normal states @ on
A, for all operators A, B € AT and some numbers k,m € R with k > m > 0.

Proof. (iv)=-(i). Every normal state on A is tracial by Theorem 2, i.e., p(XY) =
e(YX) for all X,Y € A. The set of all normal states separates elements of the
algebra A [31, Chap. III, Theorem 2.4.5]. This fact implies that XY = Y X
(X,Y € A). So the von Neumann algebra A is commutative.

Corollary 2. Let ¢ be a positive functional on C*-algebra A such that the in-
equality p((A™/2B™A™/2)k) < @((AF/2BF A*/2)™) holds for any A,B € At
and some numbers k,m € R such that k > m > 0. Then ¢ is a tracial func-
tional.

Proof. Consider the universal enveloping von Neumann algebra M [11, II1.2].
Assume that 7 is the corresponding universal representation of the C*-algebra
A, and @ is the positive normal functional on M with @(7(A)) = ¢(A) for
A € A, see Section 2. Fix positive operators E,E € M. Then by Kaplansky
density theorem there exist bounded positive nets {A,} and {B,} in A such
that m(Aq) — A and 7(B,) — B in the strong operator topology. Fix k,m €
R such that & > m > 0. We take into account inequality (ii) of Theorem 1,
apply continuity of the operations in the strong operator topology and conclude
that @((A™/2BmA™/2)k) < B((AF/2B*kA¥/2)™). By Theorem 2 @ is a tracial
functional on M, hence ¢ is a tracial functional on A.

Corollary 3. Let A be a C*-algebra such that (A™/2B™A™/2)k < (AF/2 Bk Ak/2ym
for all A, B € A* and some numbers k,m € R with k > m > 0. Then A is com-
mutative.

Proof. The inequality of Corollary 2 holds for every positive functional on A.
Then every positive functional on A is tracial, and A is commutative.

For other trace characterizations see also [38]-[44].
Acknowledgments. The author was supported by the development pro-
gram of Volga Region Mathematical Center (agreement no. 075-02-2021-1393).
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