KAZAN FEDERAL UNIVERSITY ZAVOISKY PHYSICAL-TECHNICAL INSTITUTE TATARSTAN ACADEMY OF SCIENCES # ACTUAL PROBLEMS OF MAGNETIC RESONANCE AND ITS APPLICATION ## XXII International Youth Scientific School # Program and Proceedings **Kazan August 22–26, 2022** KAZAN 2022 #### **Administration of the School:** E.M. Alakshin (KFU, Kazan) — rector; M.S. Tagirov (KFU, Kazan) — scientific adviser; Y.I. Talanov (KFTI RAS, Kazan) — vice-rector; V.K. Voronkova (KFTI RAS, Kazan) — vice-rector; A.V. Bogaychuk (KFU, Kazan) — vice-rector #### **Program committee:** Professor A.V. Aganov (KFU, Kazan); Professor V.A. Atsarkin (IREE, Moscow); Professor M.R. Gafurov (KFU, Kazan); Professor F.S. Dzheparov (ITEP, Moscow); Professor L.R. Tagirov (KFU, Kazan); Professor M.S. Tagirov (KFU, Kazan); Professor E.B. Feldman (IPCP RAS, Chernogolovka) #### **Organizing committee:** E.M. Alakshin, A.V. Bogaychuk, S.A. Volodin, A.V. Egorov, E.I. Kondrat'eva, Yu.Yu. Kochneva, V.V. Kuzmin, I.V. Romanova Actual problems of magnetic resonance and its application [Electronic resource]: program and proceedings of the XXII International Youth Scientific School (Kazan, August 22–26, 2022) / edited by M.S. Tagirov, E.M. Alakshin. – Electronic text data (1 file: 35 Mb). – Kazan: Kazan University Press, 2022. – 35 p. – System requirements: Acrobat Reader. – Access mode: http://apmra-kzn.com/proceedings/mrschool2022.pdf. – Heading from title screen. #### ISBN 978-5-00130-624-5 This collection contains the reports of young scientists submitted to the XXII International Youth Scientific School "Actual problems of magnetic resonance and its application", organized by the Kazan Federal University and the Zavoisky Physical-Technical Institute. The cover design was developed by D.A. Tayurskii. UDC 537 LBC 22.334 #### PROCEEDINGS # Van Vleck paramagnets – new features in comparison of LiTmF4 and Li(Tm_{0.02}Y_{0.98})F4: NMR study A.S. Parfishina¹, A.V. Egorov², A.G. Kiiamov¹, S.L. Korableva¹, D.S. Nuzhina¹, A.A. Rodionov¹, I.V. Romanova¹, K.R. Safiullin¹, M.S. Tagirov^{1,2} e-mail: arina.parfishina@gmail.com Both of the $\text{Li}(\text{Tm}_{0.02}\text{Y}_{0.98})\text{F}_4$ and $\text{Li}\text{Tm}\text{F}_4$ are Van Vleck paramagnets (VVP). They have a singlet ground state and the nearest excited doublet state of the ground multiplet in a paramagnetic rare-earth ion [1]. Van Vleck paramagnets could be researched by NMR method due to a gigantic induced magnetic field at the rare-earth nucleus as a consequence of strong hyperfine interaction. We reported the study of ^{169}Tm nucleus in diluted single crystal VVP $\text{Li}(\text{Tm}_{0.02}\text{Y}_{0.98})\text{F}_4$ in comparison with our the newest obtained data of $\text{Li}\text{Tm}\text{F}_4$. Van Vleck paramagnets $LiTm_{0.02}Y_{0.98}F_4$ and $LiTmF_4$ both have a tetragonal structure of scheelite (CaWO₄) with a space group $C_{4h}{}^6$ [2]. NMR studying of VVP single crystals were carried out by pulse home-built spectrometer. Magnetic field range was 0–0.8 T, working frequencies were 14.15 MHz, 8.43 MHz and 8.16 MHz, temperature range was 2–4.2 K. As a result of a series of experiments, an anisotropy of the spin-spin relaxation rate (T_2^{-1}) close to the direction [001] were measured and calculated for both VVP single crystals Li($Tm_{0.02}Y_{0.98}F_4$) and LiTmF₄. Angular dependence of a spin-lattice relaxation rate (T_1^{-1}) were measured for a diluted VVP Li($Tm_{0.02}Y_{0.98}F_4$). The inhomogeneous linewidth was obtained for the Li($Tm_{0.02}Y_{0.98}F_4$) and compared with a results for concentrated VVP LiTmF₄. Temperature dependencies of T_1^{-1} and T_2^{-1} were measured for the Li(Tm_{0.02}Y_{0.98}F₄). Energy interval between the singlet ground state and first excited doublet state was obtained from approximation of experimental results and reached 25.9±0.2 cm⁻¹ in approach of two-phonon Aminov-Orbach relaxation process. It is markedly different from previously known value for the concentrated LiTmF₄ which was 31 cm⁻¹ [3]. According to this result, we assumed different roots of correlation time in cases of diluted Li(Tm_{0.02}Y_{0.98}F₄) and concentrated Van Vleck paramagnets LiTmF₄. The reported study was funded by Russian Science Foundation, project №22-22-00257. - [1] L.K. Aminov, M.A. Teplov. Sov. Phys. Usp., 28, 762–783 (1985) - [2] E. Garcia, R.R. Ryan. Acta Cryst.C., **49**, 2053–2054 (1993) - [3] I.V. Romanova, M.S. Tagirov. Magn. Reson. Solids, **21**, 19412 (2019) ¹Institute of Physics, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia ²Tatarstan Academy of Sciences, Institute of Applied Research, Russia, 420111, Kazan #### TABLE OF CONTENTS ## **Table of contents** | Program | |--| | Proceedings5 | | G.A. Bochkin, E.B Fel'dman, S.G.Vasil'ev, MQ NMR dynamics in an inhomogeneous spin chain | | S.I. Doronin, E.B. Fel'dman, <u>I.D. Lazarev</u>, Skew Wigner-Yanase information and its extensions in MQ NMR spectroscopy | | S.A. Lopatina, A.R. Khisameeva, G.A. Nikolaev, A.V. Shchepetilnikov, I.V. Kukushkin, Spin and isospin properties of two-dimensional semiconductor structures | | G.A. Nikolaev, A.R. Khisameeva, S.A. Lopatina, A.V. Shchepetilnikov, I.V. Kukushkin, Anomalous spin resonance around even fillings in a strongly correlated 2D electron system | | M.V. Stepushkin, A.V. Zdoroveishchev, A.G. Temiryazev, M.P. Temiryazeva, Influence of a change in the domain structure on the Hall effect in CoPt thin films11 | | N. Snegirev, I. Lyubutin, M. Chuev, S. Starchikov, S. Yagupov, M. Strugatsky, Singularity of a hyperfine structure in Mössbauer spectra under combined magnetic dipole and electric quadrupole interaction | | A.Yu. Germov, D.A. Prokopyev, K.N. Mikhalev, S.P. Savchenko, E.V. Suvorkova, Hyperfine fields in ferromagnetic nanoparticles according to NMR data in a local field14 | | Yu. N. Koemets, N. V. Kazantseva, I. V. Ezhov, D. I. Davydov, D. A. Shishkin, Effect of strain rate on magnetic transformation of L-Pbf medical steel 316L | | A.A. Seryapina, A.A. Malyavko, Y.K. Polityko, A.L. Markel, Search for metabolic markers of essential arterial hypertension in rats | | Yu. Slesareva, Yu. Kandrashkin, R. Zaripov, T. Ruffer, E. Vavilova, Transient phenomena in multi-pulse protocols in solid-state ¹ H NMR in Cu- and Nioxamidate complexes | | <u>D.V. Shurtakova</u> , F.F. Murzahanov, G.V. Mamin, Calculated and experimental the EPR spectra parameters of impurity centers in tricalcium phosphate | | K. R. Mirsalimova, A. M. Kusova, Yu. F. Zuev, Crowding-agents influence on BSA translational diffusion by pulsed field gradient NMR | | A.S. Parfishina, A.V. Egorov, A.G. Kiiamov, S.L. Korableva, D.S. Nuzhina, A.A. Rodionov, I.V. Romanova, K.R. Safiullin, M.S. Tagirov, Van Vleck paramagnets – new features in comparison of LiTmF ₄ and Li(Tm _{0.02} Y _{0.98})F ₄ : NMR study | | R.F. Likerov, R.B. Zaripov, V.A. Shustov, I.V. Yatsyk, K.B. Konov, R.M. Eremina. The CW EPR and pulsed EPR studies of the ⁵¹ V ⁴⁺ ions in Sc ₂ ²⁸ SiO ₅ | | D.V. Popov, I.V. Yatsyk, E.M. Moshkina, R.M. Eremina, ESR measurements of ludwigite Mn _{1.17} Co _{1.83} BO ₅ |