## ВЛИЯНИЕ ПАРАМЕТРОВ ПОРИСТОЙ СИСТЕМЫ НОСИТЕЛЯ МИКРОСФЕРИЧЕСКОГО АЛЮМОХРОМОВОГО КАТАЛИЗАТОРА НА СОСТОЯНИЕ КИСЛОРОДНЫХ СОЕДИНЕНИЙ ХРОМА И КАТАЛИТИЧЕСКИЕ ПОКАЗАТЕЛИ В ПРОЦЕССЕ ДЕГИДРИРОВАНИЯ ИЗОБУТАНА

## <u>Гизятуллов Р.Н.,</u> Ермолаев Р.В., Курбангалеева А.З., Егорова С.Р., Ламберов А.А. NFLUENCE OF THE PARAMETERS OF THE POROUS SYSTEM OF THE CARRIER OF A MICROSPHERICAL ALUMINUM-CHROMIUM CATALYST ON THE STATE OF OXYGEN COMPOUNDS OF CHROMIUM AND CATALYTIC PARAMETERS IN THE PROCESS OF ISOBUTANE DEHYDROGENATION

Казанский (Приволжский) федеральный университет, Россия, Казань E-mail: <u>gramil.03@mail.ru</u>

Методами РФА, РФлС, низкотемпературной адсорбции азота, УФ-Вид-, Раманспектроскопии, ТПД-NH<sub>3</sub>, ТПВ, хемрсорбции кислорода, химического анализа изучено влияние параметров пористой системы носителя co структурой  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> микросферических алюмохромовых катализаторов на состояние кислородных соединений хрома и на каталитические показали в процессе дегидрирования изобутана в изобутилен в условиях длительного пребывания в лабораторном реакторе при температурах реакции, регенерации, соответствующих промышленному процессу дегидрирования изобутана в изобутилен. Объектами исследования являлись микросферические алюмохромовые катализаторы дегидрирования изобутана в изобутилен с размером гранул 40-150 мкм. Для их синтеза использовали промышленные алюмооксидные носители со структурой γ-Al<sub>2</sub>O<sub>3</sub>, которые получали прокаливанием при 550°C носителей, микросферических бемитных синтезированных по ранее разработанной технологии последовательной термической и гидротермальной обработки тригидроксида алюминия в автоклаве при T=180-190°C в течение 60 мин. Катализаторы готовили пропиткой носителей водным раствором хромовой кислоты и карбоната калия с последующей сушкой в вакууме. В промышленном вакуумном смесителе получали промышленный образец, в лабораторном роторно-вакуумном испарителе – лабораторный.

В свежих лабораторном и промышленном АХК общее содержание хрома составило 7.1 и 7.4% соответственно, калия – 1.0 и 1.7% соответственно. После 54 циклов испытаний содержание хрома в обоих катализаторах составило 7.5%, калия – не изменилось. В табл. 1 приведены данные по распределению хрома в составе его различных кислородных соединений в свежих и отработанных образцах АХК.

|                                          | Содержание (мас.%) хрома и                                          |            |                  |            |
|------------------------------------------|---------------------------------------------------------------------|------------|------------------|------------|
| Виды кислородных                         | его поверхностная концентрация (ат <sub>Сг</sub> /нм <sup>2</sup> ) |            |                  |            |
| соединений хрома                         | Лабораторный АХК                                                    |            | Промышленный АХК |            |
|                                          | Свежий                                                              | 54 цикла   | Свежий           | 54 цикла   |
| Cr <sub>2</sub> O <sub>3</sub> и хроматы | 7.1 (20.1)                                                          | 7.5 (21.6) | 7.4 (9.9)        | 7.5 (11.6) |
| $\alpha$ -Cr <sub>2</sub> O <sub>3</sub> | 3.6 (10.2)                                                          | 3.5 (10.1) | -                | -          |
| Аморфный Cr <sub>2</sub> O <sub>3</sub>  | 2.8 (7.8)                                                           | 3.0 (8.7)  | 5.6 (7.5)        | 5.7 (8.8)  |
| Хроматы                                  | 0.7 (2.1)                                                           | 1.0 (2.8)  | 1.8 (2.4)        | 1.8 (2.8)  |
| Привитая форма                           | 0.2 (0.6)                                                           | 0.2 (0.7)  | 0.5 (0.6)        | 0.5 (0.8)  |
| Растворимая форма                        | 0.5 (1.5)                                                           | 0.7 (2.1)  | 1.3 (1.7)        | 1.3 (2.0)  |

Таблица 1. Содержание и поверхностные концентрации хрома в различных видах его кислородных соединений в образцах АХК

Катализаторы существенно отличаются значениями поверхностных концентраций хрома. В лабораторном образце высокую поверхностную концентрацию хрома обеспечивает α-Cr<sub>2</sub>O<sub>3</sub>, вклад которого достигает 51%. За вычетом хрома, включенного в состав хроматов, вклад аморфного Cr<sub>2</sub>O<sub>3</sub> в поверхностную концентрацию хрома снижается до 39% в свежем образце и 40% после 54 циклов испытаний. В промышленном АХК он значительно выше и составляет 76%. Для обоих АХК в начале суммарные испытаний вычисленные поверхностные концентрации хрома, обусловленные аморфным Cr<sub>2</sub>O<sub>3</sub> и обеими формами хроматов, равны 9.9 ат<sub>Cr</sub>/нм<sup>2</sup> вследствие чего отмечаются одинаковые значения начальной конверсии изобутана в их присутствии – 56.5% на 20 минуте и 57.6% на 40 минуте первого цикла (рис. 1). При этом свежие лабораторный и промышленный катализаторы обеспечивают различные выходы целевого и побочных (С1-С3 углеводороды, углеродистые отложения) продуктов дегидрирования изобутана. Большая активность лабораторного катализатора связана с формированием на его поверхности преимущественно устойчивых к нежелательной агломерации малых частиц аморфного Cr<sub>2</sub>O<sub>3</sub> и полихроматов стабилизированных ограниченным пространством между крупными кристаллами α-Cr<sub>2</sub>O<sub>3</sub>.





Рис. 1 Каталитические показатели: лабораторного (LC) и промышленного (IC) образцов