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Abstract 

A theoretical analysis of the contribution of the field of diffraction of electromagnetic waves by 

symmetric conducting objects to the total field of the VLF-VLF range near the sources, which can be 

individual elements of electric power systems, is presented. Quantitative estimates are given. The re-

sults obtained in the form of relations that are quite simple and convenient for practical use are of inter-

est for solving a set of problems associated with various aspects of the problems of electromagnetic 

compatibility, noise immunity and life safety in the electric power industry. 
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1. Introduction 

Study of the low-frequency (ELF-VLF frequency range – 10-10000 Hz) electromagnetic (EM) 

fields generated by the elements of the electric power systems (EPS), and investigation of the influence 

of the EM fields of natural and artificial origin onto different EPS structures are a great interest at solv-

ing the problems complex associated with different aspects of the electromagnetic compatibility, noise 

immunity and life safety in the electric power industry [1]. At this, the study of the structure and inten-

sity of the EM field near objects of various, some-times quite complex, configurations (various con-

struction objects, pipelines, open cable lines, etc.) requires an analysis of the overall picture, which is a 

superposition of the source field and the field resulting from diffraction at the appropriate object. The 

aim of this work is to theoretically analyze and obtaining quantitative estimates of the contribution of 

the diffraction field of EM waves on conducting objects of cylindrical and spherical shapes to the total 

field near the sources, which can be individual elements of the EPS. In our analysis, we will restrict 

ourselves to the assumptions: 1) the objects on which the EM field is studied are ideally conducting, 

that is permissible in conditions of low ground conductivity, that often occurs in real conditions; 2) the 

waves of the ELF-VLF frequency range are flat monochromatic, since a small region of the wave zone 

is considered.  

2. Diffraction on cylindrical object 

We will assume that in the case of low conductivity of the earth, in some approximation, it is 

permissible to reduce the problem to assessing the contribution of the field caused by diffraction on an 

ideally conducting cylinder of infinite length (the latter is true, since the resulting field is investigated at 

distances from the object much smaller than its linear dimensions).  

We introduce a cylindrical coordinate system so that the x-axis coincides with the cylinder axis 

(see fig. 1). Suppose that for the incident wave xkxE ,||0  (the task is to estimate the maximum 

contribution of the diffraction component), the angle  is measured from the direction k. In this case, 

the field has components HHE rx ,, . Taking into account the geometry of the problem, define the 

function xE  from the wave equation for E: 0)/()/1( 222  tv
ph

EE . The component сxE  of the 

secondary field due to diffraction, 0EEE c , satisfies the differential equation 
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By separating the variables in (1), we obtain [2] 

,0)()/()()/1()( 222'''   rErkrErrE                                        (2) 

,0)()( 2''   EE                                                            (3) 

where 2 = С is a separation constant. 

 

Fig. 1. Scheme of the statement of the problem 

of diffraction on a cylindrical object: A is a 

point, in which the field is calculated; 

K is a cylindrical object 

. 

Equation (2) is the Bessel equation, its solution 

can be written in the following form  

)()(
)2(
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1 krHCkrHCEc   , 

moreover, the second term describes a converging 

wave, which does not exist in the real conditions 

described by the problem. 

In the range of small values of r (near the ob-

ject where  r << ), using boundary condition 

0r , write function Ec in form of multiplication 

),()( 210  frfEc                     (4) 

where  f1(r) is a power-law function describing the 

attenuation of a wave with increasing r;  f2() is 

some function defining the oscillating distribution 

of vector Ес “within” the envelope – power func-

tion. 

Since in the considering frequency range ( 41 1010 f  Hz) 74 1010  k  and, accordingly, 

(kr) << 1, then in order to satisfy condition (4), as a solution of eq. (2), one should choose the Hankel 

function for small values of the argument [2, 3 ]: 
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Equation (3) has solution ).(exp)()(exp)(   iBiAE  Parameter  is integer and, ac-

cording to (5), is positive. Taking into account that the general solution of eq. (1) is 
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The coefficients А, В can be easily found from the boundary condition on the surface of an ideally 

conducting cylinder 00 EEc  at r = а (where а is the radius of the cylinder), using the orthogonali-

ty property of  exp(im): 

).(/)(),(/)(
)1()1(

kaHkaJiBkaHkaJiA 





   

The total electric field is thus equal to 
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Component H  is found from the first Maxwell equation: 
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Component Hr at 0   is calculated analogously.  

The obtained relations (6) and (7) make it possible to estimate the contribution of the diffractive 

part to the total field received by the antenna: 

   ./),(,/),( 00 ccHxcxxcE HHHkrEEEkr
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
 

The estimates of the effect of diffraction on a cylindrical object for waves with frequencies of  

1010000 Hz at а = 1 cm, r = 130 m made it possible to obtain the following analytical dependences 

of the relative estimates on the spatial coordinates and k: 
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Formulas (8) make it easy to calculate the relative contribution of the diffraction component to the total 

EM field near a conducting cylindrical object. 

3. Diffraction on spherical object 

Let us now consider the contribution to the total EM field of the diffraction field on a spherical 

object. Let a homogeneous plane wave, the vectors of which have amplitudes 
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falls on a spherical body with the dielectric and magnetic constants  , ; the constants of the medium 

are 0  and 0  (see fig. 2).  

 

Fig. 2. Scheme for the statement of the  

diffraction problem on a spherical object,  

М is a point where the EM field is  

calculated. 

It is necessary to construct solutions for the ex-

ternal diffraction field (we are not interested in the 

internal diffraction field in the considered formula-

tion of the problem), which can be obtained by the 

same way as in the previous section, by expanding 

the incident wave into suitable functions and compil-

ing similar expansions with undefined coefficients 

for the diffraction field. The latter will be found 

when the corresponding boundary conditions are 

imposed. Note, however, that the implementation of 

such an approach in the case of spherical geometry 

turns out to be more complicated. 

We will use the spherical harmonics  ,, . 

The homogeneous Helmholtz equation describing the 

field in spherical coordinates has the form 
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Substitution )()()(),,(  rru  followed by multiplication of all terms of eq. (9) by 
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Equating the third term, which depends only on , to 2m , we obtain two equations, one of which is 

divided by 2sin  [3]. Further, the terms depending only on r, are equated to 2p . As a result, we ob-

tain three ordinary differential equations: 
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If  20 , then ),,()2,,(  ruru , so that m = 0, 1, 2, … . Making the change  cost  in 

the second equation of set (10) we obtain 
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The bounded solutions of the last equation are the adjoint Legendre functions )()( tP m
n  [in this case, the 

eigenvalues corresponding to these eigenfunctions are p2 = n ( n + 1)] [4]:  
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where )(tPn  are the Legendre polynomials [3]. Hence it follows that 
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First of the eqs. (10) after differentiating the expression in parentheses and performing substitu-

tions krrrnnp /)()(),1(  , it is reduced to the form  
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and this is nothing but the Bessel equation of order 2/1n  with respect to the functionа )(kr  [3]. 

Thus, the solution of the first equation of set (10) is the function  
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Finally, the solutions of eq. (9) have the form 
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Using the well-known recurrence relations for the spherical and modified spherical Bessel func-

tions of the first kind [3], we can now write down the solution for the external diffraction field [5]:  

  ;,
)1(

12
)(

1

RrNicMc
nn

n
iAE

n
en

N
non

M
n

n
m 




 





                            (11) 



 5 

  .,
)1(

12
)(

1

RrNbiMb
nn

n
i

W

A
H

n
on

M
nen

N
n

n
m 




 







                          (12) 


















 

cos

sin
)(cos

sin

cos
)(cos

sin

1
)(

2

)1(
0

)1(
02/1

0
nnn

n
e

o
P

d

d
PkrJ

rk
M , 

 

  .
sin

cos
)(cos)(

2sin

1

cos

sin
)(cos)(

2

sin

cos
)(cos)(

2
)1(

1

)1(
0

)2(
2/100

)1(
0

)2(
2/100

)1(
0

)2(
2/1

0
0

0





















 









nn

nn

nn
n

e

o

PrkHrk

P
d

d
rkHrk

PrkH
rk

nnr
rk

N

 

The indices o and e in the last formulas correspond to the choice, respectively, of the upper and lower 

variants of the double sign and the trigonometric function. The coefficients in parentheses of formulas 

(11), (12) are defined by the expressions given in [5]. Formulas (11), (12) allow to calculate the field 

outside the sphere of radius R for the ELF-VLF waves. 

4. Quantitative estimations 

To obtain quantitative estimates of the contribution of the diffraction field to the overall field, we 

numerically simulated the diffraction using the program DIFFRACT [5] specially developed on the ba-

sis of the algorithms proposed in [3]. The examples of results of simulation of diffraction on the con-

ductive cylinder for the incident EM waves with frequencies of 1030 Hz and 13 kHz are shown in 

figs. 3 and 4, respectively. The diffraction field for a spherical conducting object is qualitatively the 

same: the moduli of its components outside the sphere decrease exponentially with increasing r, and, as 

in the case of diffraction on a cylindrical object, the amplitudes of the components near the object de-

pend inversely with the frequency of the incident wave. However, in contrast to the case of diffraction 

on a cylinder, the contribution to the total field of the diffraction field on a spherical object under the 

same conditions is almost an order of magnitude larger. 

 

Fig. 3. Results of simulation of the contribution of the diffraction component  

to the total field in the frequency range f = 1030 Hz. 
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Fig. 4. The same as in fig. 3, for the frequency range  f = 13 kHz. 

 

The results obtained, despite some idealization of the problem, allow us to conclude about some 

distortion of the low-frequency field as a result of diffraction, which increases with decreasing frequen-

cy according to laws (8), (11), (12), but these distortions, due to their relative smallness, should be tak-

en into account only when constructing systems highly sensitive to external influences. An example of 

such a system is the mobile experimental complex developed by us for studying EM fields in a wide 

frequency range [6-8]. Using this complex, we measured EM fields near working electrical equipment 

at a number of energy and industrial enterprises, as well as near power lines of various voltages [9], at 

this the results of processing and analysis of experimental data generally confirmed our conclusions, 

the theoretical results and results presented in [10] for power lines with various design features. 

 

5. Conclusion 

In this paper, a theoretical analysis is carried out and quantitative estimates are given of the con-

tribution of the field of diffraction of electromagnetic waves by symmetric conducting objects of cylin-

drical and spheroidal shapes to the total field of ELF-VLF range near such sources as some EPS ele-

ments. The results obtained for objects with a high degree of symmetry can become the basis for study-

ing the structure and intensity of the EM field near objects of more complex configuration (buildings, 

pipelines, open cable lines, etc.), some parts of which are geometrically symmetric. In all cases, this re-

quires an analysis of the total field, which is a superposition of the source field and the field that is the 

result of diffraction on the corresponding object or the superposition of the diffraction fields of its indi-

vidual elements. The results are presented in the form of rather simple and convenient for calculations 

mathematical expressions and are of interest in solving problems related to various aspects of EMC prob-

lems, noise immunity and life safety in the electric power industry. 
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