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A B S T R A C T

Analytical solutions are obtained for water extinction from an axisymmetric crater, filled at t < 0 and depleted
by evaporation and transient infiltration into a Gardner or capillarity-free homogeneous soil during the time in-
terval 0 ≤ t ≤ Te. The extinction time Te is found for crater beds, the shapes of which are shallow cones, spherical,
spheroidal, and paraboloidal caps. An instantaneous seepage flow rate, Q(t), is approximated by truncated two-
term formulae of Wooding for a zero-depth disk in Gardner's soil or Hunt for paraboloidal craters (soils with no
capillarity). The instantaneous evaporation losses are the product of a constant A-pan evaporation rate and the
shrinking area of a flat horizontal disk of the free water, which dwindles in the crater. In HYDRUS simulations of
a van Genuchten soil, the Reservoir Boundary Condition is used for a falling water level in the ponded depres-
sions. Cones and paraboloids are selected as craters, initially fully or partially filled with free water at t = 0, and
infiltrating until extinction. The results are presented as drawdown curves and – for shallow craters - attest a
good match between analytical approximations and HYDRUS numerical simulations. Experiments with the ex-
tinction of water from small axisymmetric ponds in dune sand are also carried out. They allow blitz-evaluation of
hydraulic parameters of the subjacent sand. Hydrological implications for commingling surface-subsurface
(pore) water entities in terrestrial and Martian environments are discussed.

List of abbreviations and notations

Symbol Description Unit
GA Green-Ampt –
PK-62,

77
Polubarinova-Kochina, P.Ya., 1962, 1977. Theory of Ground
Water Movement.

–

VG Van Genuchten –
Β Ponded water depth in the crater cm
θ Volumetric soil water content [−]
θr Residual water content [−]
θs Saturated water content (porosity) [−]
Ks Saturated hydraulic conductivity cm/h
n, α VG soil parameters [−],

cm−1

αP Sorptive number cm−1

p Pressure head cm
h Total (piezometric) head cm
t Time h
r Radial coordinate cm
z Vertical coordinate cm

V Volume of free water in the pond cm3

“That last day does not bring extinction to us, but change of place.”
Marcus Tullius Cicero

1. Introduction

Water in all forms (surface water, groundwater, liquid soil moisture,
ice, and vapor in both atmosphere, on the land surface, and inside the
pore space) and all types of its transport in the hydrological cycle
(runoff, seepage, infiltration, deep percolation, groundwater motion,
evaporation, precipitation) is of paramount importance for all human
activities (agriculture, civil engineering, etc.). Recent irrefutable NASA
discoveries of water on the Moon and Mars and other planets and their
satellites in the Solar system determine the long-term strategies of con-
quering Space. The hydrology, hydrogeology, hydrogeochemistry, sedi-
mentology, soil physics-mechanics of hyperarid deserts on the Earth
serve as proving grounds to infer the physical properties of the liquid,
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solid, and gaseous phases of these planets. This will facilitate the forth-
coming space missions and elucidate the past geological epochs of, say,
Mars in backward modeling-reconstructions (see, e.g., Davila et al.,
2021, Groemer et al., 2020).

In this paper, we extend our analytical and numerical studies of
transient 2-D seepage from canals and “dry wells” (Al-Shukaili et al.,
2019, 2020; Kacimov et al., 2020, 2021; Sasidharan et al., 2018) to ax-
isymmetric flows from non-cylindrical reservoirs with water levels
falling due to seepage into terrestrial/Martian soils and evaporation
into the atmosphere. Interaction (exchange) between surface and sub-
surface waters has been thoroughly investigated in hydrology, limnol-
ogy, soil physics, geomorphology, and other Earth sciences (see, e.g.,
Sophocleous, 2002, Woessner, 2020). Paleodynamics of depletion of
the free water storage in Martian lakes/reservoirs came to space scien-
tists' attention upon NASA indagation and the dazzling, albeit so far by
remote sleuthing, discovery of deep groundwater (e.g., by a GPR tech-
nique). Mathematical modelers also started to portray the topology of
Darcian seepage in Martian aquifers. In the current purview of the sub-
discipline of Martian hydrology, a hypothesized dynamics of surface
water in lakes, channels, and other fluvial or lacustrine entities is com-
mingled with saturated Darcian flows (Baum and Wordsworth, 2020,
Bhardwaj et al., 2019, Boatwright and Head, 2019, Fukushi et al., 2019,
Goldspiel and Squyres, 2011, Grimm et al., 2014, 2017, Hobbs et al.,
2014, Kochel and Piper, 1986, Luo et al., 2011, Kereszturi et al., 2010,
Malin and Carr, 1999, Malin and Edgett, 2000, Marra et al., 2014,
2015, Michalski et al., 2013, Mukherjee et al., 2020, Salese et al.,
2019). The commonality of landforms on Mars and Earth, for instance,
gullies or catchments' drainage networks, and the terrestrial scrutiny of
the impact of Darcian flows on their evolution (see, e.g., Blank et al.,
2009, Conway et al., 2019 versus Petroff et al., 2013) stimulate further
studies of subsurface mechanics on the two planets.

Soil physics of infiltration, deep percolation, groundwater motion in
unconfined aquifers and the capillary fringe above the water tables,
evaporation, redistribution, root water uptake, runoff, phase changes of
pore water (including freezing-thawing and vapourization-
condensation), and heat and solute transport in unsaturated porous me-
dia have been thoroughly studied, including validation of models via
field and laboratory experiments, in terrestrial systems (Radcliffe and
Šimůnek, 2010; Šimůnek et al., 2018). Without claiming a comprehen-
sive review of the whole scope of reconnoitered extra-terrestrial Dari-
can flows, it seems that the unsaturated and tension-saturated water
(brine) flows on Mars (including the vadose zone and capillary fringe)
have been ignored in mathematical models, i.e., the porous Martian
media were posited capillarity-free. Only recently, qualitative state-
ments about the role of capillarity have emerged: “It is possible that a
change in soil permeability might affect the local capillary rise and thus the
surface visibility” (Lark et al., 2020). Neglecting capillarity is reasonable
for large Martian craters and mega-channels. However, for the forth-
coming human missions to Mars and the realization of Tsiolkovsky-
Mask's projects (populating Mars and other planets/satellites), a prodi-
gious interest to apposite models of infiltration and saturated-
unsaturated seepage from small-size man-made excavations, temporar-
ily filled with water, is emerging. For example, human colonies on Mars
may dispose of sewage in Martian lagoons. The astro-physio-hydro-
biological question will then arise: how fast do the impounded-trickled
liquids percolate-evaporate in the triad of Martian sediments-rocks-
atmosphere? Upon comparisons of the above referenced Darcian mod-
els, used by Martian hydrologists, with the legacy of terrestrial irriga-
tion-drainage sciences and engineering (Kacimov et al., 2020), we
deem that several aspects of transient seepage still deserve to be un-
earthed.

Let us introduce the pore pressure, P, P = ρ g p, where p [cm]1 is the
pressure head, ρ [g/cm3] is liquid's (water, brine, oil, etc.) density, and

1 The units are indicated solely for matching HYDRUS modeling below.

g [cm/s2] is gravity acceleration. Obviously, ρ is planet-invariant, and
g = 981 and 371 cm/s2 on Earth and Mars, respectively. We use the
terrestrial acceleration in all our computations below (rescaling to Mars
or other gravitating entities is straightforward, modulo g).

In this paper, we consider axisymmetric groundwater and vadose
zone motion, which obeys the Richards-Richardson equation:

(1)

where ∇ is the nabla operator in cylindrical coordinates, θ(t, r, z) is
a volumetric water content [−], K(p) [cm/h] is the hydraulic conductiv-
ity function, h(t, r, z) =p + z is the total (piezometric) head [cm], z is a
vertical coordinate oriented upward. It is well-known (Polubarinova-
Kochina, 1962, 1977, hereafter abbreviated as PK-62,77, Strack, 2017)
that the intrinsic permeability, κ = K μ/(ρ g) [cm2], where μ [cP] is
fluid's dynamic viscosity, as well as the capillary pressure function p(θ )
(modulo sign, equivalent to the water retention function), and relative
water permeability, κ(θ ), depend on the properties of the porous skele-
ton only (provided water and air, as two fluids occupying the pore
space, are fixed). The two functions are invariants in the whole Solar
System (modulo g-rescaling).

We present analytical and numerical solutions to boundary value
problems for eq. (1), which is coupled with the depletion of the storage
of hydrostatically modeled water in a surface pond (crater). This inter-
action of surface-subsurface water brings about a new (Reservoir)
boundary condition for axisymmetric flows, implemented recently in
HYDRUS (Šimůnek et al., 2018), which accounts for a falling head
problem for reservoirs of different shapes. This condition was analyti-
cally involved in 1-D seepage flows (Philip, 1992) and 2-D flows in a
vertical plane (Al-Shukaili et al., 2020).

The results of this paper will outreach to soil hydrologists and water
resources managers working in arid zones, where topographical depres-
sions on Earth's surface are temporarily filled by episodic rains or irriga-
tion events (e.g., sprinkling over crop fields). For example, the 2018
Mekunu cyclone caused torrential rains in the dune fields of the hyper-
arid Empty Quarter in Oman and Saudi Arabia, with large interdunal
valleys converted into ephemeral lakes. For local Bedouins confronting
exiguous water sources, a vital question was: How long can the pond be
utilized as an ephemeral oasis to provide drinking water for camels?
The longer, the better. At the instance when the extant surface water
vanishes, groundwater pumping has to start providing water supply to
the cattle. However, the infiltrated water may still percolate through a
vadose zone before reaching a deep aquifer from which pumping is fea-
sible. Environmentally opposite abject scenarios emerge in illegal-
clandestine dumping of toxic liquid waste in depressions of desert sand
or wadis. To detect and catch the dumping criminals, the slower infil-
tration of the waste into the desert sand, the better. In the ensuing liti-
gations, sampling of the extant liquid from a pond and comparing water
quality in it with one in remote contaminated groundwater wells is the
key evidence in forensic hydrology. For agronomists, ecohydrologists,
and irrigation engineers, depletion of temporary static surface water
bodies (owing to evaporation and infiltration) is also of utmost practi-
cal interest because a conjunctive use of water resources requires a
smart alteration of operation of surface pumps and well pumps (like
during the last 2011–2017 Big Drought in California). There is a fasci-
nating analogy between soils-sediments-landforms-hydrology on Mars
and in hot deserts of Earth (see, e.g., recent projects by space scientists
in Oman and Israel: https://oewf.org/en/portfolio/amadee-20/;
https://oewf.org/en/portfolio/amadee-18/ and Groemer et al., 2020).

2. Analytical solution for falling head Seepage from shallow
axisymmetric ponds into Gardner's and capillarity-free soils

In an axial cross-section (Fig. 1a), a shallow axisymmetric reservoir
is assumed to be filled with water. In an aerial view at t < 0, the
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Fig. 1. a) Axial cross-section of a crater; b) aerial view of crater's disk on the Earth/Martian surface.

ponded surface represents a disk (Fig. 1b) of a radius R0 [cm], which
shrinks with time, such that the radius of a free water surface DA de-
creases as 0 < R(t) < R0. The extinction time, Te, when surface water
ponding ceases, i.e., R(Te) = 0, is a part of the solution.

Without any loss of generality, we suppose that there is no freeboard
in the pond at t < 0, i.e., the initial water level OA0 is at the same hori-
zon as the soil surface. This Section deals with four geometries of the
pond's beds: conical, spherical, spheroidal, and paraboloidal. The soil of
the crater bed is putatively homogeneous, isotropic, and either Gard-
nerian or capillarity-free. For the former, a dyad of soil hydraulic para-
meters is (Ks, αP), where Ks [cm/day] is the saturated hydraulic conduc-
tivity, and αP [1/cm] is the Philip sorptive number (see, e.g., Angulo-
Jaramillo et al., 2016). Then in eq. (1), K=Ks exp.[αP p], − ∞ < p ≤ 0.
For the latter (a capillarity-free system), only Ks is needed to model
seepage from the reservoir.

We also surmise that the soil extends indefinitely deep at z < 0, i.e.,
we follow Wooding (1968), Weir (1986), and Hunt (1973) in dealing
with a porous half-space (without any confining substrata), into which
seepage flow propagates. Strictly speaking, an unbounded porous half-
space is a reasonable approximation for small-size reservoirs. Indeed, at
large scales (on Earth, as well as on other planets and their satellites in
the Solar System, e.g., Titan), the value of Ks decreases with depth (see,
e.g., Horvath and Andrews-Hanna, 2021, Horvath et al., 2016,
Rehbinder and Isaksson, 1998, Toller and Strack, 2019). Colmation of
the bed is ignored, i.e., the contour CA0 in Fig. 1a is a line along which
the piezometric head is spatially constant at any fixed instance t.

2.1. Conical pond

The initial cone's depth, B0 [cm] (Fig. 1a, solid line), obeys the in-
equality R0> > B0, i.e., a bank slope ω = arctan(B0/R0) is small. A
straight line CAA0 in Fig. 1a, which makes the cone by rotation around
Oz, is z = -B0 + r tan ω.

The origin, O, of a cylindrical coordinate system (z,r,γ) in Fig. 1a is
at the center of the disk r < R0, z = 0; the angular (azimuthal) coordi-
nate γ vanishes from the analysis.

At t < 0, seepage from the crater was steady-state, constant values
of R0 and B0 were maintained by a constant channel (runoff) inflow into
the crater from its tributaries (Fig. 1b). At t = 0, the pond started to
empty due to two draining factors: seepage and evaporation.

We note that Warren et al. (2021) studied a “reverse” process of ex-
travasation of groundwater through the bottom of a water-filled Mart-
ian crater, albeit taking into account dynamics of axisymmetric surface
water flow hydraulics downslope crater's rim. We ignore evaporation of
liquid pore water into soil-atmosphere vapor, albeit on the time scale of
post-extinction dynamics of a subsurface hydrological system, evapora-
tion-sublimation becomes an important component of the Martian hy-
drological cycle (see, e.g., Baum and Wordsworth, 2020, Fukushi et al.,
2019, Grimm et al., 2017, Lark et al., 2020).

During the time span 0 ≤ t ≤ Te, water is lost from a ponded surface
such that

i.e., R(Te) = 0, B(Te) = 0.
The surface water storage in the pond is characterized by the vol-

ume V (cm3) of the cone:

(2)

The principle of mass conservation yields:

(3)

In eq. (3), E(t) > 0 [cm3/h] are evaporation losses, which are pro-
portional to the open area of the pond. Consequently,

(4)

where e [cm/h] is the evaporation rate (which we assume to be con-
stant at t > 0). For assessment of seepage losses, Q(t) > 0 [cm3/h], we
adopt the Lembke method of successive steady states (PK-62,77), i.e.,
we assume that at any time t > 0 seepage from the pond attains a new
steady state determined by pond's radius R(t). Hydrological balances
equations, analogous with ours eqns. (3)–(4), were used in Horvath and
Andrews-Hanna (2021) and Warren et al. (2021).

In Subsections 2.1–2.3, we approximate Q for our dwindling reser-
voir (cone and spherical-spheroidal caps) by the Wooding (1968) for-
mula, which is widely used in infiltrometry (see, e.g., Angulo-Jaramillo
et al., 2016):

3
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(5)

In eq. (5), the pond's depth is assumed to be zero, and, therefore,
Wooding's purely unsaturated seepage is posited. Strictly speaking, for
real reservoirs, a saturated “bulb”, bounded by an “inverted water
table” under the bed of a non-zero depth B(t) should be taken into ac-
count (see, e.g., Sophocleous, 2002, Warrick and Zhang, 1987) and the
corresponding Q would be higher than that in eq. (5).2

We put eqns. (4) and (5) into eq. (3) and get an initial value problem
for a nonlinear 1st order ODE:

(6)

where Te is to be found.
We introduce dimensionless quantities:

(R∗, B∗, z∗, r∗) = (R, B, z, r)αP, t∗ = tKsαP, e∗ = e/Ks and drop “*” (for
the sake of brevity). Then eq. (6) becomes:

(7)

Eq. (7) resembles the Green-Ampt (GA) eq. (PK-62,77). ODE (7) sep-
arates and integrates:

(8)

Eq. (8) can not be resolved explicitly with respect to R. For GA infil-
tration, PK-62,77 elaborated asymptotics R(t), which she derived from
series expansions. We can apply a similar analysis to eq. (8).

Using the ParametricPlot routine of Wolfram's Mathematica
Wolfram (1991), in Fig. 2 (left panel) we plot the curves R(t) for tan
ω = 0.1, e = 0.1, and R0 = 1, 0.6, and 0.2 (curves 1, 2, 3, respec-
tively). The right panel demonstrates the extinction time Te as a func-
tion of R0 for tan ω = 0.1 and e = 1.

2.2. Spherical crater

In this subsection, we consider ponds, the beds of which are spheri-
cal caps. The generating contour is depicted in Fig. 1a by a dashed-line
CA0. A water-filled spherical cap (half of it at an instance t is shaded in-
side CA0OC in Fig. 1a) is made of a sphere of a radius Rs. We limit our
analysis with the case of a circular arc, rotated with respect to the Oz
axis, but centered at point O. The radius of the base of the cap at t > 0
is 0 ≤ R(t) ≤ R0 ≤ Rs. The case of the center of a generating circular arc,
positioned above or below the Or axis in Fig. 1a, is mathematically ac-
ceptable. Physically, natural reservoirs having R > Rs are hardly possi-
ble in loose unconsolidated Martian or terrestrial sediments/soils be-
cause the angles of repose of these media are never obtuse. For exam-
ple, in Fig. 1a, the case of ω > 90o would be physically extravagant.

The volume of the body of revolution of a quarter of a circular arc
CA (Fig. 1a) with respect to the Oz axis is:

2 Seepage from ponds of non-zero depth will be numerically modeled by HY-
DRUS in Section 3.

(9)

Similar to Subsection 2.1 and using eq. (9), the change of water stor-
age in the shrinking cap is:

(10)

To the dimensionless quantities introduced in Section 2.1 we add
Rs∗ = RsαP (and drop the asterisk).

Then, substituting eq. (10) in the LHS of eq. (3) and using eqns. (4)
and (5), we come to the Cauchy problem for the ODE, which governs
the extinction of surface water:

(11)

We integrate the initial value problem (11) and obtain:

where . The inequality πRs(1 + e) ≥ 4 must
hold as a necessary solvability condition of eq. (11). This is a purely
mathematical limitation, which pops up from the deficiency of our
model, which in eq. (5) simplifies a real crater (in the approximation of
its infiltration rate) to a flat disk.

The results of computation by eq. (12) are presented in Fig. 3 as R(t)
for e = 0.1 and Rs = 1.5, R0 = 1.5, 1, 0.5 (curves 1–3, respectively).
Obviously, the emptying of the hemispherical crater (curve 1) is the
longest. The shallowest spherical cap in Fig. 3 (curve 3) demonstrates
almost no relatively flat part of the R(t) curve. All three curves in Fig. 3
have an almost vertical segment at t close to Te. Graph on the right panel
presents Te (R0) for Rs = 1.5 and e = 1.

2.3. Spheroidal crater

A spheroidal crater is obtained by the revolution of an ellipse
r2/b2 + z2/c2 = 1 about the Oz-axis in Fig. 1a. As in the case of a spher-
ical cap in Section 2.2, the center of the generating ellipse coincides
with the origin of coordinates, and the slope of the bank of the crater at
t = 0 does not exceed 90o. The two semi-axes of this ellipse are b and c.
The shrinking radius DA in Fig. 1a is R(t) ≤ R0 ≤ b. Additional dimen-
sionless quantities are: (b∗, c∗) = (b, c)αP. Obviously, the case of a
spherical cap is a particular case of spheroidal caps.

Similarly to Subsections 2.1–2.2 (the algebra is omitted), we get the
following expression for the surface water storage in the pond:
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Fig. 2. Radius R(t) of the surface water disk for conical ponds having tan ω = 0.1, and R0 = 1, 0.6, and 0.2 (left panel curves 1, 2, 3, respectively), evaporation rate
e = 0.1 (left panel); extinction time Te (R0) for a conical crater with tan ω = 0.1 and e = 1 (right panel).

Fig. 3. Shrinking radius of the disk R(t) of a ponded spherical cap for Rs = 1.5, e = 0.1, and R0 =1.5, 1, 0.5 (curves 1, 2, 3, respectively, left panel); extinction time
Te (R0) for ponds made by a spherical cap having Rs = 1.5; surface water is subject to evaporation e =1 (right panel).

(13)

Its rate of change, expressed via the time derivative of Wooding's
disk, is:

(14)

The mass-balance (Cauchy's problem) is:

(15)

Analytical integration of ODE (15) yields:

(1

where . A necessary condition for the solv-
ability of eq. (15) is πb(1 + e) ≥ 4.

Using eq. (15), in Fig. 4 (left panel) we plotted R(t) for b = 2, c = 1,
e = 0.1, and R0 = 2, 1.5, 1 (curves 1, 2, 3, respectively). Similar to Fig.
3, the longest extinction and a pronounced relatively flat segment of the
R(t) curve in Fig. 4 is for the deepest crater, viz. a hemispheroid (curve
1). Fig. 4 (right panel) shows Te (R0) plotted for the same b, c, and e.

Fig. 4. Shrinking radius R(t) of a ponded spheroid for b = 2, c = 1, e = 0.1, and R0 = 2, 1.5, 1 (left panel, curves 1-3, respectively); extinction time for a spheroidal
pond at b = 2, c = 1, and e = 0.1 (right panel).
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2.4. Paraboloidal crater

Al-Shukaili et al. (2020) ignored the soil's capillarity in their analyt-
ical study of the extinction of ponded water from a triangular channel.
In this subsection, we consider an evanescing ponding in a shallow pa-
raboloid and also ignore capillarity. Thus, a generating curve CA0 in
Fig. 1a is a parabola:

(17)

where ε = Β0/R0 is Hunt's (1973) small parameter. The tip of the
parabola is z = -B0. For the freeboard f(t) > 0 in Fig. 1a, we have f
(0) = 0 and f(Te) = B0 .

The instantaneous volume of ponded water is

(18)

Eq. (30) from Hunt (1973) is used to calculate instantaneous seep-
age losses from a shrinking paraboloidal pond. In this equation, we se-
lect Hunt's (1973) parameters b = c = 0 and a = 1 that in our nota-
tions yields:

(19)

Note that at any instance 0 ≤ t ≤ Te, Hunt's seepage is bounded by a
phreatic line AHEH (Fig. 1a), above which soil is instantaneously
drained (no capillarity). In other words, the flow domain is a plume,
which is bounded by a shrinking line AHC where point AH “slides” to
point C as the time approaches Te. The difference between Hunt's and
Wooding's seepage models is discussed by Philip (1990).

We put eqns. (18) and (19) into eq. (3), keep the same eq. (4) in its
RHS (viz. counting evaporation from the shrinking disk of the free wa-
ter surface of our paraboloidal cap), and get:

(20)

The dimensionless quantities: (R∗, B∗, z∗, r∗) = (R, B, z, r)/R0,
Q∗ = Q/(KsR02), V∗ = V/R03, t∗ = tKs/R0, e∗ = e/Ks, ε = B0/R0 with
omitted superscripts “*”s are used below. Eq. (19) is valid for relatively
small ε.

Substitution of eqns. (20), (19), and (4) into eq. (3) leads to the
Cauchy problem for the following ODE:

(21)

Integration of a GA-type eq. (21) results in:

(22)

Obviously, in eq. (22), t(1) = 0 and t(0) = Te.
Fig. 5 illustrates the effect of evaporation: the left panel plots R(t)

according to eq. (22) for ε = 0.1 and e = 0.1, 0.4, and 0.7. The right
panel of Fig. 5 illustrates the effect of the paraboloid's depth on the ex-
tinction time Te(ε) for e = 0.1.

3. HYDRUS modeling

In this Section, we use HYDRUS (2D/3D) (Šimůnek et al., 2018) for
a numerical solution of an axisymmetric Richards' eq. (1) applied to the
following shapes of the craters: a cone and paraboloidal cap. Below we
present the details for the former body of revolution.

An axial cross-section is shown in Fig. 6. Due to symmetry, only half
of the flow domain is presented as a pentagon OCA0UEO. The origin of
cylindrical coordinates Orz is at the bottom left corner of the pentagon.
The sizes of the pentagon, Lh and Lv, are selected large enough for soil
water to percolate freely and not to be constrained laterally by an artifi-
cial cylindrical boundary (a line UE in Fig. 6). We selected Lh = 800 cm
and Lv = 1000 cm. The following sizes characterize the conical crater:
R0 = B0 = 1 m, i.e., the bank slope is 45o. The water table at t = 0 is at
the top of the transport domain (at the soil surface) (Fig. 1a), i.e., f
(0) = 0.

Soil is made of the van Genuchten's (VG) non-hysteretic loam (see,
e.g., Šimůnek et al., 2018), for which the soil hydraulic properties are
(θr, θs, α, n, Ks)= (0.078, 0.43, 0.036 1/cm, 1.56, 24.96 cm/day). In
HYDRUS, we selected the 2D-General type of geometry and 2D-
Axisymmetric Vertical Flow. The total simulation time was
TH = 60 days (i.e., large enough to be greater than Te). The initial con-
dition at t = 0 was p(0,r,z) = −1000 cm.

The transport domain was discretized into an unstructured finite el-
ement mesh (Fig. 6) with a targeted size of finite elements of 32 cm and
the mesh refinement of 5 cm on the CA0 boundary, which resulted in
2374 finite element nodes, 171 1D elements, and 4575 2D elements
(triangles). The default HYDRUS iteration criteria were used. The seg-
ments OC and UE were no-flow boundaries, and OD was a free drainage
boundary. We assumed that the segment A0U was also a no-flow bound-
ary, although evaporation from this moist segment can be modeled in
HYDRUS. Along the A0C segment, a new HYDRUS Reservoir Bound-
ary Condition (see Šimůnek et al., 2018; Sasidharan et al., 2018) with
a Furrow reservoir type was used. Evaporation from the open water
body AD was also neglected.

Fig. 7 (left panel) shows HYDRUS-computed water depth for the
conical project depicted in Fig. 6. All water infiltrated in 1.35 days.
Fig. 7 (right panel) presents a drawdown curve for R0 = 100 cm,

Fig. 5. The radius of the surface water disk R(t) in a paraboloidal reservoir for ε = 0.1 and e = 0.1, 0.4, and 0.7 (left panel, curves 1-3, respectively); extinction time
Te(ε) in a paraboloidal reservoir for e = 0.1.
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Fig. 6. The transport domain for a conical crater with its dimensions, initial and
boundary conditions, and finite element mesh.

B0 = 10 cm. The HYDRUS extinction time for this shallower cone is
0.25 days. To compare these results with analytical ones (i.e., eq.
(8)), we convert αP to α by the Ghezzehei et al. (2007) formula
αP = 1.3α n that gives for the VG loam αP = 0.076 1/cm. For the
crater in Fig. 7, eq. (8), converted to dimensional quantities, gives
Te = 2.7 days, while for the bank slope ω = 0.1 the analytical value
is Te = 0.27 days. Therefore, for a deep cone, the Wooding analytical
approximation (neglecting the reservoir depth) is inadequate. For
shallow cones, there is a good match between HYDRUS results and
eq. (8).

We notice a steep slope of the B(t) curves in Fig. 7 at t close to Te
when only a small quantity of surface water remains in the cone (Al-
Shukaili et al., 2020 got similar results for triangular channels). This is
caused mainly by the convex shape of the V(B) (water storage-water
depth) function for cones and a much smaller increase in the water vol-
ume versus water depth (dV/dB) when water depths go to zero, com-
pared to other geometrical shapes (spheroids, paraboloids). In our HY-
DRUS model, we placed an observation point C (Fig. 6) at the cone's tip

and got the post-extinction limb of the p(t) curve − ∞ < p(t) < 0. In
the range −pc < p(t) < 0, where pc is a soil-specific constant, capillar-
ity stabilizes the excavation, i.e., the marcescent sediments on the
slopes of the crater are temporarily upheld by moisture suction (too
parched and too wet soils are less stable against liquefaction, and Aeo-
lian and other types of erosion).

The paraboloidal cap was simulated for a much larger domain
(Lh = 30 m and Lv = 25 m). The origin of cylindrical coordinates D0rz
is now at the top left corner of the transport domain. The paraboloidal
cap was generated using a function Z = br2 for b = 0.08 1/m and the
origin of the paraboloidal cap, i.e., point C in Fig. 6, shifted to z = Z –
8 m. In this example, the cap's initial water table was 3 m below the soil
surface (f(0) = 3 m), i.e., the initial water depth B0 = 5 m. The width
of the paraboloidal cap at the soil surface is R0 = 10 m.

Similarly, as above, the soil is made of the VG non-hysteretic loam.
The total simulation time was TH = 50 days (i.e., large enough to be
greater than Te). The initial condition at t = 0 was p(0,r,z) = −10 m.

The transport domain was discretized into an unstructured finite el-
ement mesh with a targeted size of finite elements of 0.1 m, a stretching
factor of 4 (larger elements in the horizontal direction), the mesh re-
finement of 0.025 m on the CA0 boundary, the mesh refinement of 0.2,
0.25, and 0.2 m in the corner nodes O, E, and U, respectively, which re-
sulted in 9190 finite element nodes, 376 1D elements, and 18,002 2D
elements (triangles). As above, evaporation from the soil surface or the
water table was neglected. The Reservoir Boundary Condition (see
Šimůnek et al., 2018, Sasidharan et al., 2018) with a Paraboloidal
reservoir type was used along the A0C segment.

Fig. 8 shows the HYDRUS-computed water depth for the parabo-
loidal cap. The extinction time is about 11 days. For comparisons, the
analytical solution, eq. (22), gives for this paraboloid Te = 14.16 days.
In this example, capillarity again increases Q(t) and decreases Te. What
are other factors affecting seepage? In analytical models of seepage
from channels and reservoirs (free boundary problems for the Laplace
equation, the Vedernikov-Bouwer model), the variational theorems
(see, e.g., Ilyinsky et al., 1998) guarantee that if an isobaric drainage
layer OE in Fig. 6 rises, then Q(t) increases. Therefore, we surmise that
the HYDRUS “free drainage” condition along OE in Fig. 6 also increases
Q(t) compared with Hunt's solution, for which this condition holds infi-
nitely deep under the reservoir. On the other hand, the variational the-
orems (see, e.g., Ilyinsky et al., 1998) also rigorously prove that any ar-
tificial confinement of free-boundary seepage by an external no-flow
surface, e.g., a cylindrical surface r = Lh, 0 < z < Lv in Fig. 6, reduces
Q(t) compared with both Hunt's laterally unbounded flow domains.
HYDRUS calculates Q(t) based on the Richards equation, and Wood-
ing's Q would decrease if any impermeable boundaries confine the
porous flow domain.

Fig. 7. The water depth B as a function of t in a conical crater simulated by HYDRUS: R0 = B0 = 100 cm (left panel) and R0 =100 cm, B0 = 10 cm (right panel).
Note different scales on axes in the left and right figures.
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Fig. 8. The water depth B as a function of t in a paraboloidal cap simulated by
HYDRUS.

Fig. 9 represents the results of HYDRUS computations for the same
paraboloidal crater as in Fig. 8. The panels show a sequence of coloured
maps of θ at five timeinstances: t = 1, 5, 10, 20, and 50 days. One can
track, for example, evolution of a fully-saturated zone (the darkest red
“bubble” bounded by an isohume θ = 0.43). Specifically, at
t = 20 days this zone separates from the bottom of an already empty
crater while at t = 50 days this zone does not exist because capillarity
has “devoured” the saturated “bubble”. That means that a piezometer
screened sufficiently deep under the crater will not detect any soil “wet-
ting” signal p > 0.

4. Quick field experiments for infiltrometry

In October–November 2020, a series of experiments were conducted
at the Agricultural Experimental Station (Sultan Qaboos University,
Oman; N: 23°35′ E: 58° 9′). Excavations were shoveled in dry homoge-
neous dune sand (see the attached photo-video gallery of the experi-
ments, Appendix 1). Several freshwater pulses of a temperature of
32–34o C were instantaneously poured into dug craters to stabilize their
shapes and wet the subjacent sand, which is relatively coarse and per-
meable. After that, three liters of water were poured into a crater, and
the radius R(t) and the extinction time, Tem, were measured.

We present here the results for an initially water-filled crater having
B0 = 6 cm and R0 = 17 cm. For this crater, Tem = 1 min 10 s. For such
a short period of extinction, evaporation from DA in Fig. 1a can be ne-
glected.

Using eq. (22) for this crater shape, we get dimensionless time
Te = 0.27. Therefore, Kse = R0Te/Tem = 3.9 cm/min. Obviously, ad-
justment of Ks to other temperature values is needed using, for instance,
the Hazen formula (PK-77).

Experimental errors are likely due to the crater's shape not being
constant during infiltration. The poured surface water gyrates in the
crater, scours the sand, and deposits it with small rills on the crater bed.
The crater's shape is not exactly paraboloidal, and it is not easy to re-
lease the whole volume V0 into the empty crater. Therefore, the in-
stances t = 0 and Tem were not precisely measured. The experimentally
found value of Kse is an overestimate of the real Ks because the used
Hunt solution ignores capillarity.

There are, unfortunately, no analytical formulae for Q, even for
steady-state flows, for axisymmetric seepage from ponds with free sur-
faces (capillary fringes or phreatic surfaces without capillarity). We can
use an analogy with capillarity-counting seepage from soil channels
(the Vedernikov-Bouwer model, see, e.g., Al-Shukaili et al., 2020, PK-
62,77, Mahato and Dey, 2020). Indeed, for a Riesenkampf zero-depth
channel with a width bR and sand having an absolute value of hc of the

pressure head on the capillary fringe, the curve Q/Q0 as a function of
hc/b is shown in Fig. 122 in PK-77. If we assume bR = 34 cm and
hc ∼ 10 − 20 cm, then Q/Q0 ∼ 1.5 − 2.5, i.e., if steady seepage losses
from this channel are used for evaluation of Ks, then Kse will be overesti-
mated by 50–150% for such a small crater. We surmise that for large
ephemeral ponds and Martian craters (see, e.g., Bam et al., 2020),
recorded emptying of these ponds will give Kse much closer to the actual
Ks, as compared with mini-ponds reported in this Section. For terrestrial
ponds, estimated Ks and Philip's sorptive number, αP, or the van
Genuchten dyad of (α, n), can be compared with HYDRUS simulations
(see, e.g., Reynolds, 2015). This is similarly done for standard disc infil-
trometers, which evaluate an allegedly steady-state unsaturated flow
from a vertical burette through an isobaric discharge disk, with calcula-
tions of the dyad of (Ks,αP) according to the Wooding formula. We also
note that if the geometry of the crater and the whole flow domain are
fixed, then for a constant value of Ks, capillary soils under steady-state
flow conditions always have higher Q(t) than soils without capillarity,
whatever capillarity model (Gardner, van Genuchten, or Vedernikov-
Bouwer with free boundaries) is selected. However, suppose soil's tex-
ture changes, i.e., both Ks and capillarity parameters vary. In that case,
the impact on Q(t) (and therefore Te) is opposite: coarser soils have
higher Ks but milder capillarity.

5. Concluding remarks

Wray (2021) wrote about the applicability of mathematical and
physical models developed for terrestrial conditions to other planets,
in particular, Mars: “…alternative models often prove relevant in other
planetary environments even if not in that for which they were first pro-
posed.” Cicero (see the epigraph) pointed out the link between the last
day of extinction and the ensued change of the locus of an entity,
which we interpret as a human soul or a finite initial volume of water
V0, stored hydrostatically at t = 0 in a reservoir. Such a pond can be
a miniature terrestrial dimple on the surface of a crop field where lo-
cal runoff is collected after an intense rainfall event (sprinkling irriga-
tion), or a large Martian crater/lake, which suddenly loses its tribu-
taries (Martian channels). Our analytical and HYDRUS modeling for
saturated-unsaturated seepage from axisymmetric reservoirs predicts
how fast water levels there drop with time. These results will serve to
further optimize the shapes of the reservoirs via the solution of
isoperimetric problems involving dynamics criteria, similar to
Касимов and Тартаковский (1993). Also, the analysis of stable iso-
tope enrichment of surface water and pore water recharging aquifers,
when seepage losses are conjugated with seasonal evaporation, can be
done for ephemeral ponds like those in Bam et al. (2020).

Our analytical and numerical models can be extended to the case of
heterogeneous porous beds. In large-scale Martian studies of seepage
(see, e.g., Horvath and Andrews-Hanna, 2021), the thickness of porous
aquifers subjacent to large craters was several kilometers, and the hy-
draulic properties of these aquifers varied at kilometer scales. PK-62
pointed out that seepage losses of small-size earth channels are signifi-
cantly reduced by colmation, which clogs few centimeters of the near-
bed soil. Colmated craters/ponds can be easily modeled by HYDRUS,
which can easily tackle two-component porous composites.
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Fig. 9. HYDRUS–computed snapshots of the volumetric moisture content in an axial cross section for a paraboloidal cap in Fig. 8; time instances in the panels are
t=1, 5, 10, 20, and 50 days (left->right, up->down).
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