ПЕДАГОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

EDUCATIONAL AND PEDAGOGICAL STUDIES

УДК 378.147

ОБУЧЕНИЕ РАЗЛИЧНЫМ ПОДХОДАМ РЕШЕНИЯ ЭКОНОМИЧЕСКОЙ ЗАДАЧИ ПРИ ПРОГРАММИРОВАНИИ НА С++ В ВЫСШЕЙ ШКОЛЕ

Аглямзянова Г.Н., Гумерова Л.З.

В данной статье представлены два подхода к обучению решению одной экономической задачи: структурное программирование и объектно-ориентированное программирование.

Ключевые слова: объектно-ориентированное программирование; классы; объекты; методы.

TRAINING IN VARIOUS APPROACHES TO SOLVING ECONOMIC PROBLEMS IN C++PROGRAMMING IN HIGH SCHOOL

Aglyamzyanova G.N., Gumerova L.Z.

This article presents two approaches to learning to solve one economic problem: structural programming and object-oriented programming. **Keywords:** object-oriented programming; classes; objects; methods.

Ввеление

Объектно-ориентированное программирование – особый, специфический способ организации программного кода. Принципы ООП универсальны и не имеют отношения к какому-то определенному языку программирования. Чтобы проиллюстрировать объектно-ориентированный подход, рассмотрим небольшой пример. Рассмотрим постановку экономической задачи: вкладчик хочет положить определенную сумму на счет в банк под проценты. Необходимо определить сумму, которую он получит через указанный период времени. Нам для решения этой задачи необходимо написать программный код. Но вначале нужно определиться с алгоритмом расчетов. В их основе лежит формула, по которой вычисляется сумма (с учетом начисленных процентов) на банковском счету. Для конкретности предположим, что на депозит ложится сумма в М денежных единиц. Процентная ставка будет составлять величину в п процентов годовых, а денежный вклад размещается на период времени t, выражается в годах. Тогда, по истечении периода времени t, вкладчик

снимет с депозита сумму
$$M\left(1+\frac{n}{100}\right)^t$$
.

Для вычисления результата необходимо знать значение трех параметров: вносимую на депозит величину М, годовую ставку процента n и время размещения депозита t. Рассмотрим решение данной задачи без использования объектно-ориентированного программирования (ООП). Код представлен в листинге 1.

Листинг 1.

```
#include<iostream>
using namespace std;

// Функция для вычисления итоговой суммы депозита:
double result(double money, double time, double rate) {

// Локальная переменная для записи результата функции:
double res=money;

// Локальная переменная для оператора цикла:
int i;
for (i=1;i<=time;i++) {
res=res*(1+rate/100);
}

// Результат функции:
```

```
return res;
// Главная функция программы:
int main(){
// Значения переменных (первый вкладчик):
double sidorov money=100;// депозит
double sidorov rate=13; // процентная ставка
double sidorov time=3; // время
// Значения переменных (второй вкладчик):
double petrova money=90; // депозит
double petrova rate=18; // процентная ставка
double petrova time=4; // время
// Итоговая сумма депозита для первого вкладчика:
cout<<"Сидоров: "<<result(sidorov money, sidorov time, sidorov
rate)<<endl;
       // Итоговая сумма депозита для второго вкладчика:
cout<<"Петрова: "<<result(petrova money, petrova time, petrova
rate) << endl;
       // Завершение программы:
return 0;
```

Результат выполнения данного программного кода выглядит следующим образом:

Сидоров: 144.29 Петрова: 174.49

Далее рассмотрим решение данной задачи с использованием ООП. Создаются объекты фактически так же, как объявляются переменные, только вместо идентификатора типа указывается имя класса. Так, в рассматриваемом примере командами BankAccount sidorov и BankAccount petrova создаются два объекта класса BankAccount: один объект называется sidorov, а другой объект называется реtrova. Но создание объектов, как и в случае с переменными, означает лишь, что под них в памяти выделяется место. Это место нужно чем-то заполнить или, проще говоря, полям созданных объектов нужно присвоить значения. Значения полям

присваиваются так же просто, как и значения локальным переменным: слева от оператора присваивания указывается поле, а справа от оператора присваивания указывается присваиваемое полю значение. Правда, одно формальное отличие все же есть. Поскольку у разных объектов имеются поля с одинаковыми названиями, необходимо как-то различать поля разных объектов. Другими словами, если идет обращение к полю, то нужно указать к полю какого объекта направлено обращение. Для этого используется так называемым «точечный» синтаксис: сначала указывается имя объекта, и затем, через точку, имя поля, то есть в формате объект.поле. В таком же формате выполняется обращение к методам объекта: перед инструкцией вызова метода указывается имя объекта.

Имя объекта и имя метода разделяются точкой. Например, командой sidorov. money=100 полю money объекта sidorov присваивается значение 100, а командой petrova.money=90 полю money объекта petrova присваивается значение 90. Аналогично, для вызова метода result()из объекта sidorov используем инструкцию sidorov.result(), а для вызова метода result()из объекта petrova используем команду petrova.result().

После того, как полям объектов sidorov и реtrova присвоены значения, для каждого из этих объектов вычисляется итоговая сумма депозита. Для этого достаточно вызвать из соответствующего объекта метод result().

```
Листинг 2.
```

```
#include <iostream>
using namespace std;
// Начало описания класса:
classBankAccount {
// Открытые члены класса:
public:
double money;
double rate;
int time;
// Метод для вычисления итоговой суммы депозита:
double result() {
// Локальная переменная для записи результата метода:
```

```
double res=money;
int i:
for (i=1;i \le time;i++)
res=res*(1+rate/100);
return res;
}; // Окончание описания класса
// Главная функция программы:
int main(){
BankAccount sidorov;
BankAccount petrova;
// Значения полей первого объекта:
sidorov.money=100;
sidorov.rate=13;
sidorov.time=3;
// Значения полей второго объекта:
petrova.money=90;
petrova.rate=18;
petrova.time=4;
// Итоговая сумма депозита для Сидорова:
cout<<"Сидоров: "<< sidorov.result()<<endl;
// Итоговая сумма депозита для Петровой:
cout<<"Петрова: "<<petrova.result()<<endl;
return 0;
}
   Результат выполнения программы будет таким:
   Сидоров: 144.29
   Петрова: 174.49
```

Результаты в обоих случаях совпадают. Однако программы принципиально разные. Во первом случае совершенно не используются классы и объекты. Вместо этого описана функция result () с тремя аргументами (начальный вклад, процентная ставка и время размещения вклада). Результатом функция возвращает значение итоговой суммы депозита.

В главной функции программы для каждого из вкладчиков определяется по три переменных. Эти переменные передаются аргументами функции result().

Может показаться, что программа без классов и объектов проще и понятней. Но тут важно осознать, что при усложнении задачи, например, при увеличении количества вкладчиков, проявится гибкость и эффективность методов ООП.

Список литературы

- 1. Царев Р.Ю. Программирование на языке Си: учебное пособие / Р.Ю. Царев. Красноярск: СФУ, 2014. 108 с. ISBN 978-5-7638-3006-4. URL: http://www.studentlibrary.ru/book/ISBN9785763830064.html (дата обращения: 14.07.2020). Текст: электронный.
- 2. Ашарина И.В. Язык С++ и объектно-ориентированное программирование в С++. Лабораторный практикум: учебное пособие для вузов / Ж.Ф. Крупская; И.В. Ашарина. Москва: Горячая линия. Телеком, 2016. 232 с. ISBN 978-5-9912-0464-4. URL: http://www.studentlibrary.ru/book/ISBN9785991204644.html (дата обращения: 14.07.2020). Текст: электронный.
- 3. Солдатенко И.С. Практическое введение в язык программирования Си: учебное пособие / И.С. Солдатенко, И.В. Попов. Санкт-Петербург: Лань, 2018. 132 с. ISBN 978-5-8114-3150-2. URL: https://e.lanbook.com/book/109619 (дата обращения: 14.07.2020).Текст: эл.

References

- 1. Carev R.Ju. Programmyrovanye na jazyyke Sy: uchebnoe posobye / R.Ju. Carev. Krasnojarsk: SFU, 2014. 108 s. ISBN 978-5-7638-3006-4. URL: http://www.studentlibrary.ru/book/ISBN 9785763830064.html
- 2. Asharyna Y.V. Jazyyk S++ y ob#ektno-oryentyrovannoe programmyrovanye v S++. Laboratornyyj praktykum: uchebnoe posobye dlja vuzov / Zh.F. Krupskaja; Y.V. Asharyna. Moskva: Gorjachaja lynyja. Telekom, 2016. 232 s. ISBN 978-5-9912-0464-4. URL: http://www.studentlibrary.ru/book/ISBN9785991204644.html
- 3. Soldatenko Y.S. Praktycheskoe vvedenye v jazyyk programmyrovanyja Sy: uchebnoe posobye / Y.S. Soldatenko, Y.V. Popov. Sankt-Peterburg:

Lan', 2018. 132 s. – ISBN 978-5-8114-3150-2. – URL: https://e.lanbook.com/book/109619

ДАННЫЕ ОБ АВТОРАХ

Аглямзянова Гульшат Накиповна, доцент кафедры информатики и вычислительной математики, кандидат физико-математических наук

Набережночелнинский государственный педагогический университет

ул. Низаметдинова, 28, г. Набережные Челны, 423806, Россия dina.airat@mail.ru

Гумерова Лилия Зуфаровна, доцент кафедры системного анализа и информатики, кандидат педагогических наук Казанский (Приволжский) федеральный университет ул. Кремлёвская, 18, г. Казань, 420008, Россия gum9370@mail.ru

DATA ABOUT THE AUTHORS

Aglyamzyanova Gulshat N., Associate Professor of the department of computer science and computational mathematics, PhD in Physics and Mathematics

Naberezhnye Chelny Pedagogical University

28, Nizametdinov str., Naberezhnye Chelny, 423806, Russia dina.airat@mail.ru

SPIN-code: 9891-7381

ORCID: 0000-0002-8003-5427

Gumerova Liliya Z., Associate Professor of the Department of System

Analysis and Informatics, PhD in Pedagogics

Kazan Federal University

18, Kremlevskaya Str., Kazan, 420008, Russia

gum9370@mail.ru SPIN-code: 4343-2445

ORCID: 0000-0002-8865-7589