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Abstract
The notion of simple-direct-injective modules which are a generalization of injective mod-
ules unifies C2 and C3-modules. In the present paper, we introduce the notion of the
semisimple-direct-injective module which gives a unified viewpoint of C2, C3, SSP prop-
erties and simple-direct-injective modules. It is proved that a ring R is Artinian serial with
the Jacobson radical square zero if and only if every semisimple-direct-injective right R-
module has the SSP and, for any family of simple injective right R-modules {Si}I, ⊕ISi is
injective. We also show that R is a right Noetherian right V-ring if and only if every right
R-module has a semisimple-direct-injective envelope if and only if every right R-module
has a semisimple-direct-injective cover.
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1. Introduction
Throughout this article, unless otherwise stated, all rings have unity and all modules

are unital. A right R-module M is called
a C1-module provided that every submodule of M is essential in a direct summand of

M ;
a C2-module (or direct-injective) provided that A is a direct summand in M whenever

A is a submodule of M such that A is isomorphic to a direct summand in M and
a C3-module if A and B are direct summands in M and A ∩ B = 0, then A + B is a

direct summand in M .
It is easy to see that each C2-module is also a C3-module. Conversely, for each module

M , if M ⊕M is a C3-module, then M is a C2-module (see also [1, Corollary 2.6]). However,
C3 is a weaker property in general: if R is any integral domain which is not a field, then
R is C3, but not C2. Recently, the classes of Ci-modules (i = 1, 2, 3) are studied and
generalizations of them are considered ([1, 5, 6, 12,14]).
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We recall also that a module M has the summand sum property (SSP) if the sum of
two direct summands is a direct summand of M ([10] and [17]). Clearly, modules having
(SSP) are C3.

Recently, Camillo, Ibrahim, Yousif and Zhou [5] obtained that every simple submodule
which is isomorphic to a direct summand is itself a direct summand if and only if the
sum of any two simple direct summands with zero intersection is again a direct summand
[5, Proposition 2.1]. Such modules are called simple-direct-injective (see also [12]). In
the present paper, we introduce the concept of semisimple-direct-injective modules. A
module is called semisimple-direct-injective if every semisimple submodule isomorphic to a
summand is itself a summand, or equivalently if the sum of any two semisimple summands
(with zero intersection) is again a summand (see Proposition 2.1). Theorem 3.4 in [5]
addressed the question of when every simple-direct-injective module is C3, and they proved
that every simple-direct-injective right R-module is C3 if and only if R is an Artinian serial
ring with Jacobson radical square zero. In Theorem 2.10, we prove that R is an Artinian
serial ring with Jacobson radical square zero if and only if every semisimple-direct-injective
right R-module has the SSP and ⊕ISi is injective for any family of simple injective modules
{Si}I.

Enochs [7] introduced the notation of injective cover as the dual notation of the injective
envelope, and proved that a ring R is right Noetherian if and only if every right R-module
has an injective cover. In Section 3, we are concerned with semisimple-direct-injective
envelopes and covers, namely sdi-envelopes and sdi-covers. In Theorem 3.4, it is shown that
the classes of semisimple-direct-injective modules over a ring R provide for sdi-envelopes
and sdi-covers only if R is a right Noetherian V-ring.

A ring is called a right V-ring if every simple right R-module is injective. In Section 4, we
study some natural connections between V-rings and semisimple-direct-injective modules
which are similar to simple-direct-injective modules. For instance, we obtain that a ring
is right Noetherian and a right V-ring if and only if every right R-module is semisimple-
direct-injective if and only if every direct sum of two semisimple-direct-injective modules
is semisimple-direct-injective (Theorem 2.11).

Throughout this article, a submodule N of an R-module M is called essential in M ,
denoted by N ≤e M , if for any nonzero submodule L of M , L∩M 6= 0. We write J(R) and
Soc(RR) for the Jacobson radical and the socle of R, respectively. We also write N ≤d M
and E(M) to indicate that N is a direct summand of M and the injective envelope of
M , respectively. For a nonempty subset X of a ring R, the left annihilator of X in R is
l(X) = {r ∈ R : rx = 0 for all x ∈ X}. For any a ∈ R, we write l(a) for l({a}). Right
annihilators are defined similarly. General background material can be found in [3], [6],
[13] and [18].

2. Semisimple-direct-injective modules
Proposition 2.1. The followings are equivalent for a right R-module M .

(1) For any semisimple submodules A, B of M with A ∼= B ≤d M , A is a summand
of M .

(2) For any semisimple summands A, B of M with A ∩ B = 0, the sum A ⊕ B is a
summand of M .

(3) For any semisimple summands A, B of M , A + B ≤d M .
(4) If M = A1 ⊕ A2 with A1 semisimple and f : A1 → A2 is a homomorphism, then

Im(f) ≤d A2.

Proof. (1) ⇒ (2) Assume M = A⊕A′ and let π : A⊕A′ → A′ be the canonical projection.
Then A ⊕ B = A ⊕ π(B) is a direct summand of M as π(B) ∼= B.

(2) ⇒ (3) Straightforward.
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(3) ⇒ (4) Let X := {a − f(a) : a ∈ A1}. Clearly, X ⊕ A2 = M . Furthermore,
A1 ⊕ Im(f) = A1 + X which is a direct summand of M by the hypothesis. Now, the
conclusion follows.

(4) ⇒ (1) Let B ⊕ B′ = M and θ : B → A be an isomorphism. Also set f := π|Aθ,
where π : B ⊕ B′ → B′ is the canonical projection. Then Im(f) = π(A) ≤d A2 by the
assumption, so that B + A = B ⊕ π(A) ≤d M . Since A ≤d A + B, we get A ≤d M as
well. �

A module M is called semisimple-direct-injective if M satisfies the equivalent conditions
of Proposition 2.1. A ring R is called right semisimple-direct-injective if RR is semisimple-
direct-injective.

Example 2.2. Every indecomposable module is semisimple-direct-injective. In particular,
ZZ is a semisimple-direct-injective module which is not direct-injective.

Example 2.3. Every semisimple-direct-injective module is simple-direct-injective. The
converse is true if the module is finitely generated or it has ACC on summands by [5,
Proposition 2.5] and [5, Corolllary 2.9], respectively.

Proposition 2.4. If any semisimple summand of a right R-module M is invariant under
all idempotents of End(M), then M is semisimple-direct-injective.

Proof. Let A, B be semisimple summands of the module M with A∩B = 0. Let M = A⊕
A′ for some submodule A′ of M . Consider the projections π1 : M → A and π2 : M → A′.
Since B is invariant under all idempotents of End(M), we obtain

B ≤ π1(B) ⊕ π2(B)
≤ [π1(M) ∩ B] ⊕ [π2(M) ∩ B]
= (A ∩ B) ⊕ (A′ ∩ B)
= A′ ∩ B ≤ A′

This follows that B is a direct summand of M and so A′ = B ⊕ B′ for some submodule
B′ of A′. Thus,

M = A ⊕ A′ = A ⊕ (B ⊕ B′) = (A ⊕ B) ⊕ B′.

�

Recall that R is called a right V-ring if every simple right R-module is injective. By
Theorem 2.11 below, a ring R is right Noetherian and a right V-ring if and only if every
right R-module is semisimple-direct-injective. On the other hand, a ring R is a right V-ring
if and only if every right R-module is simple-direct-injective by [5, Proposition 4.1].

Example 2.5. (i) Let Q :=
∞∏

i=1
Fi with Fi := Z2 and R be the subring of Q generated

by
∞⊕

i=1
Fi and 1Q. Then R is a commutative, non self-injective V-ring and Soc(R) is

essential in R. We deduce that R is not Noetherian. Thus one infers that there exists a
simple-direct-injective module over R which is not semisimple-direct-injective.

(ii) Let V be an infinite-dimensional vector space over F . Let Q := EndF (V ), J :=
{x ∈ Q : dimF (xV ) < +∞} and R := F + J . Then R is a right V-ring (see [9, Example
6.19]) and R is not right Noetherian. Similarly (i), there is a simple-direct-injective right
R-module which is not semisimple-direct-injective.

Example 2.6. If M is an indecomposable right R-module which is not simple, then
M ⊕E(M) is a semisimple-direct-injective module. Indeed, by [5, Lemma 3.3], M ⊕E(M)
has no simple summands.
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Example 2.7. Given a field F and an isomorphism F → F ⊆ F defined by a 7→ a, let R
be the right F -space on basis {1, t} with multiplication given by t2 = 0 and at = ta for
all a ∈ F . Assume that 1 < dimF (F ) < ∞. By Example 2.6, R ⊕ E(R) is a semisimple-
direct-injective module which is not C3 (has not the SSP) by [5, Example 3.6].

Proposition 2.8. If M = ⊕i∈IEi is a direct sum of indecomposable injective right R-
modules Ei, then M is a semisimple-direct-injective module.

Proof. Let A be the sum of the simples Ei and B be the sum of the non-simple ones. If
S is isomorphic to a semisimple direct summand of M , then all simple summands of S are
clearly injective, so that S ∩ B = 0. Since (B ⊕ S) ∩ A is a direct summand of A, we get
the former is a direct summand of M , whence S is a direct summand of M . �
Corollary 2.9. Let {Si}I be a family of simple injective modules and {E(Sj)}K be a
family of injective envelopes of simple non-injective modules Sj. Then M = (⊕i∈ISi) ⊕
(⊕j∈KE(Sj)) is a semisimple-direct-injective module.

A module is uniserial if the lattice of its submodules is totally ordered under inclusion.
A ring R is called right uniserial if RR is a uniserial module. A ring R is called serial if
both modules RR and RR are direct sums of uniserial modules.

Now we investigate when semisimple-direct-injective modules have the SSP.

Theorem 2.10. The followings are equivalent for a ring R:
(1) R is an Artinian serial ring with J(R)2 = 0.
(2) (a) Every semisimple-direct-injective right R-module is a C3-module.

(b) For any family of simple injective modules {Si}I, ⊕ISi is injective .
(3) (a) The right socle of R is finitely generated.

(b) Every semisimple-direct-injective right R-module is quasi-injective.

Proof. (1) ⇒ (3) For any module M over an Artinian serial ring R with J(R)2 = 0, we
have a decomposition M = A ⊕ M , where A is semisimple and B is a sum of injective
serial modules of length 2 by [6, 13.5]. So, it is obvious that semisimple-direct-injective
right R-modules are precisely those with A orthogonal to B. In this case, B is injective
and A is injective relative to B. Thus, M is quasi-injective.

(3) ⇒ (2) As each quasi-injective module is a C3-module, one only needs to verify (b):
If every semisimple-direct-injective right R-module is quasi-injective and every module
having the zero socle is a semisimple-direct-injective module, then R is right semi-Artinian
(i.e., all nonzero modules have nonzero socle). So, E(RR) = E(T1) ⊕ E(T2) ⊕ · · · ⊕ E(Tn)
where each Ti is a minimal right ideal of R. Let {Si}N be a family of simple right R-
modules. Let M := (⊕NE(Si)) ⊕ (⊕n

j=1E(Tj)). By Lemma 2.8, M is a semisimple-direct-
injective module and so, by (3-b), M is a quasi-injective module. Now one infers that
⊕NE(Si) is E(RR)-injective and hence it is injective.

(2) ⇒ (1) We first prove R is right Noetherian. Let {Si}N be a family of simple right
R-modules. We claim that ⊕NE(Si) is an injective module. By [4, Theorem 1.3], one
infers that there exists an infinite subset I of N such that ⊕IE(Si) is injective. Write
N = I1 ∪ I2 such that Si is injective if i ∈ I1 and Sj is not injective if j ∈ I2. By
the assumption, ⊕I1Si is injective. Now we can assume that |I2| is infinite. Note that
M = (⊕I2E(Sj)) ⊕ E(⊕I2E(Sj)) has no simple summands. Hence M is a semisimple-
direct-injective module, and so it is a C3-module. So, ⊕I2E(Sj) is an injective module.
Thus R is right Noetherian. Now, by the same proof of (1) ⇒ (3) of Theorem 3.4 in [5],
one infers that R is an Artinian serial ring with J(R)2 = 0. �

The following observations give some connections between (right Noetherian) right V-
rings and semisimple-direct-injective modules.



520 A. Abyzov, T. Koşan, T.C. Quynh, D.Tapkin

Theorem 2.11. The following conditions are equivalent for a ring R:
(1) R is a right Noetherian and right V-ring.
(2) Every right R-module is semisimple-direct-injective.
(3) Direct sum of two semisimple-direct-injective right R-modules is semisimple-direct-

injective.

Proof. Recall that R is a right Noetherian and right V-ring if and only if every semisimple
module is injective.

(1) ⇒ (2), (3) are obvious.
(2) ⇒ (1) If A is a semisimple right R-module, then, by the assumption, M = A⊕E(A)

is a semisimple-direct-injective module. By Proposition 2.1, A is a direct summand of
E(A) and hence A is injective. Thus R is a right Noetherian right V-ring.

(3) ⇒ (1) is similar to (2) ⇒ (1). �

Corollary 2.12. R is semisimple Artinian if and only if every semisimple-direct-injective
right R-module is injective.

Proof. Assume that every semisimple-direct-injective right R-module is injective. We
deduce that every semisimple right R-module is injective. So, R is a right Noetherian
right V-ring.

If R is not right semi-Artinian, there exists a non-zero right R-module M with Soc(M) =
0. Clearly, M and its submodules are injective, a contradiction. �

We recall Example 2.3 before the following corollary.

Corollary 2.13. Let R be a right V-ring. Then R is right Noetherian if and only if every
simple-direct-injective right R-module is semisimple-direct-injective.

In [5, Theorem 4.4], authors give a new answer to Fisher’s question [8]: When are
regular rings right V-rings?. They proved that a regular ring R is a right V-ring if and
only if every cyclic right R-module is simple-direct-injective. Recall that a ring R is called
(von Neumann) regular if for every a ∈ R, there exists some b ∈ R such that a = aba.

Theorem 2.14. Let R be a regular ring. The following conditions are equivalent:
(1) R is a right V-ring.
(2) Every cyclic right R-module is semisimple-direct-injective.
(3) Every cyclic right R-module is simple-direct-injective.

Proof. This follows from [5, Theorem 4.4] and Example 2.3. �

A right R-module M is called strongly soc-injective if for any right R-module N and
any semisimple submodule K of N , every R-homomorphism f : K → M extends to N
[2]. By [2, Proposition 16], a right R-module M is strongly soc-injective if and only if
M = E ⊕ T , where E is injective and Soc(T ) = 0. It is easy to see that every strongly
soc-injective module is semisimple-direct-injective.

Proposition 2.15. The following conditions are equivalent for a ring R:
(1) R is a right Noetherian right V-ring.
(2) Every semisimple-direct-injective module is strongly soc-injective.

Proof. (1) ⇒ (2). Let M be a semisimple-direct-injective module. Assume that Soc(M)
is non-zero. Hence, M has a decomposition M = Soc(M)⊕T such that Soc(M) is injective
and Soc(T ) = 0. Thus, M is a strongly soc-injective module.

(2) ⇒ (1) Let M be a semisimple module. Then, M is a strongly soc-injective module,
write M = E ⊕T , where E is injective and Soc(T ) = 0. Furthermore, we have T = Soc(T )
and so M = E is injective. �
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Recall that a right R-module M is called mininjective if, for every simple right ideal
K of R, each R-homomorphism f : K → M extends to g : R → M ; that is, f = m· is
multiplication by some m ∈ M ([14]).

Lemma 2.16 ([14, Theorem 2.36]). The following conditions are equivalent for a ring R:
(1) Every right R-module is mininjective.
(2) Every cyclic right R-module is mininjective.
(3) K2 6= 0 for every simple right ideal K of R.
(4) Soc(RR) ∩ J(R) = 0.
(5) R is right mininjective and Soc(RR) is projective as a right R-module.

A ring R is called right universally mininjective if it satisfies the conditions in Lemma
2.16.

Lemma 2.17. The following conditions are equivalent for a ring R:
(1) R is right universally mininjective.
(2) R is right semisimple-direct-injective and every minimal right ideal of R is projec-

tive as a right R-module.

Proof. (1) ⇒ (2). Assume that R is right universally mininjective. Then, every minimal
right ideal of R is a direct summand of RR by Lemma 2.16. It follows that R is a right
simple-direct-injective ring, and so it is semisimple-direct-injective.

(2) ⇒ (1). We show that R is right mininjective. Indeed, let K be a minimal right
ideal of R. Then, K is a projective module, and so K is isomorphic to a direct summand
of RR. We have that R is right semisimple-direct-injective and obtain that K is a direct
summand of RR. We deduce that R is right mininjective. Thus, R is right universally
mininjective by Lemma 2.16. �
Theorem 2.18. The following conditions are equivalent for a ring R:

(1) R is semisimple Artinian.
(2) R satisfies the following conditions:

(a) R is right semisimple-direct-injective with Soc(RR) ≤e RR and projective as
a right R-module.

(b) Every ascending chain
r(a1) ⊆ r(a2a1) ⊆ · · ·

terminates for every infinite sequence a1, a2, . . . of elements in R.

Proof. (1) ⇒ (2) This is obvious.
(2) ⇒ (1) By (2-a), R is a right universally mininjective ring and Soc(RR) ≤ Soc(RR)

by Lemma 2.17. Hence Soc(RR) is essential in RR. From [15, Theorem 2.2] we infer that
R is a right perfect ring. Furthermore, Soc(RR) ∩ J(R) = 0 and Soc(RR) ≤e RR, which
implies that J(R) = 0. Thus R is a semisimple Artinian ring. �

We denote the nil radical N(R) of R by N(R) =
∑

{I| I is nil right ideal of R}.

Corollary 2.19. If N(R) = 0, Soc(RR) ≤e RR and every ascending chain
r(a1) ⊆ r(a2a1) ⊆ · · ·

terminates for every infinite sequence a1, a2, . . . of elements in a ring R, then R is a
semisimple Artinian ring.

Proof. Let I be an arbitrary minimal right ideal of R. From the hypothesis N(R) = 0 it
immediately follows that I2 6= 0. Therefore, I is a direct summand of RR. It follows that
R is right semisimple-direct-injective and every minimal right ideal of R is projective as a
right R-module. Thus R is a semisimple Artinian ring. �
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Corollary 2.20 ([18, 4.3]). A right Artinian ring R with N(R) = 0 is semisimple Artinian.
We finish this section with the study of the following question:
" Does there exist a right semisimple-direct-injective ring that is not left semisimple-

direct-injective?"
Rings of formal triangular matrices also serve as a source of examples of rings with

non-symmetrical properties. Below we give an example of a formal triangular matrices
ring that answers positively the previous question.

Given the R-S-bimodule M we denote
l(M) = {r ∈ R | rM = 0}, r(M) = {s ∈ S | Ms = 0}

Theorem 2.21. The following conditions are equivalent for a formal triangular matrices

ring K =
(

R M
0 S

)
(1) K is a right semisimple-direct-injective ring;
(2) (a) For any semisimple submodules A, B of l(M) with A ∼= B ≤d RR, A is a

summand of RR.
(b) For any semisimple submodules A, B of SS with A ∼= B ≤d SS, A is a

summand of SS and A ≤ r(M).
Proof. (1) ⇒ (2) (a) Let A be a semisimple submodule of RR, A ∼= B ≤d RR and
A, B ≤ l(M). Then, there exists a submodule B′ of RR such that RR = B ⊕ B′. It

follows that there is a decomposition KK =
(

B 0
0 0

)
⊕

(
B′ M
0 S

)
. We have that

an K-isomorphism
(

A 0
0 0

)
∼=

(
B 0
0 0

)
of K-modules and obtain that there exists

a submodule L of KK such that we have a decomposition KK =
(

A 0
0 0

)
⊕ L. Let

A′ = {a ∈ R | ∃m ∈ M, ∃s ∈ S :
(

a m
0 s

)
∈ L}. One can check that RR = A ⊕ A′.

(b) Let A be a semisimple submodule of SS , A ∼= B ≤d SS . Using arguments similar to
those in the proof of (a), we can show that A ≤d SS . Assume that MA 6= 0. Then, there
exists a simple submodule A0 of A such that MA0 6= 0. One can check that there is an

isomorphism of K-modules
(

0 0
0 A0

)
∼=

(
0 MA0
0 0

)
. Since

(
0 0
0 A0

)
≤d KK , then

we get a contradiction with the condition of (1). It follows that MA = 0 or A ≤ r(M).
(2) ⇒ (1) Firstly, let A be a simple submodule of KK , A ∼= A′ ≤d KK . It follows, from

the condition of (2), that either A′ =
(

e 0
0 0

)
K =

(
eR 0
0 0

)
, or A′ =

(
0 0
0 e′

)
K =(

0 0
0 e′S

)
for some e2 = e ∈ R and e′2 = e′ ∈ S.

Assume that A′ =
(

e 0
0 0

)
K and f : A′ → A is an isomorphism of K-modules. Since

A′
(

0 0
0 1

)
= 0, then S =

(
A0 0
0 0

)
, where A0 is a simple submodule of RR.

Assume that A′ =
(

0 0
0 e′

)
K and f : A′ → A is an isomorphism of K-modules.

Since A′
(

1 0
0 0

)
= 0 then f(

(
0 0
0 e′

)
) =

(
0 m
0 s

)
with m ∈ M, s ∈ S. We have

f(
(

0 0
0 e′

)
)

(
0 0
0 e′

)
= f(

(
0 0
0 e′

)
) and get

(
0 m
0 s

)
=

(
0 me′

0 se′

)
=

(
0 0
0 se′

)
.

Thus A =
(

0 0
0 B

)
, where B is a simple submodule of SS .
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Now, we assume that A is a semisimple submodule of KK and A ∼= B ≤d KK . It follows,
from the above reasoning, that there are submodules C, C ′ of RR and D, D′ of SS such that

A =
(

C 0
0 D

)
and B =

(
C ′ 0
0 D′

)
. Since A ∼= B, it is easy to verify that CR

∼= C ′
R

and DR
∼= D′

R. We have that B ≤d KK and obtain that C ′ ≤d RR, and D′ ≤d SS . Then,
it follows, from the conditions of (2), that there are submodules E ≤ RR, F ≤ SS such
that we have a decomposition C ⊕ E = RR, D ⊕ F = SS . Thus, we have a decomposition

KK =
(

C 0
0 D

)
⊕

(
E M
0 F

)
= A ⊕

(
E M
0 F

)
. �

Example 2.22. Let Q :=
∞∏

i=1
Fi with Fi := Z2 and R be the subring of Q generated by

∞⊕
i=1

Fi and 1Q. Consider the right action R on T2(Z2) =
(

Z2 Z2
0 Z2

)
which are defined by

the relations (
a b
0 c

)
(α1Q + β) =

(
aα b
0 cα

)
,

where α ∈ Z2, β ∈
∞⊕

i=1
Fi. Then T2(Z2) is T2(Z2)-R-bimodule. Consider the formal tri-

angular matrices ring K =
(

T2(Z2) T2(Z2)T2(Z2)R

0 R

)
. Since the ring T2(Z2) is not left

(and right) semisimple-direct-injective, it follows, from the left-sided analogue of Theorem
2.21, that the ring K is not left semisimple-direct-injective. Since l(T2(Z2)T2(Z2)R) = 0
and r(T2(Z2)T2(Z2)R) = Soc(R), then conditions (2)(a) and (2)(b) of Theorem 2.21 hold.
Thus, the ring K is right semisimple-direct-injective.

3. Semisimple-direct-injective envelopes and covers
An R-homomorphism g : E → M is called a semisimple-direct-injective cover (a C3-

cover [1], respectively) for short an sdi-cover, of a right R-module M if E is a semisimple-
direct-injective module (a C3 module, respectively) such that:

(i) Any diagram
E M

E′

-g

6
g′

@
@

@@I
∃α

with E a semisimple-direct-injective module (a C3 module, respectively), can be commu-
tatively completed.

(ii) If any endomorphism α : E → E satisfies gα = g, then α must be an automorphism
of E.

Dually, the notion of the semisimple-direct-injective envelope can be defined.

Lemma 3.1. Assume that N is a non-injective semisimple module. Then the module
M = N ⊕ E(N) does not have an sdi-envelope and an sdi-cover.

Proof. Consider the inclusion map (note that, it is the semisimple-direct-injective enve-
lope monomorphism)

ι : N ⊕ E(N) → E,

where E is a semisimple-direct-injective module. Since the modules N and E(N) are
semisimple-direct-injective, there exist f1 : E → N and f2 : E → E(N) such that fiι = πi,
where π1 : M → N and π2 : M → E(N) are the projections. Now there exists f : E →
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N ⊕ E(N) such that πif = fi, which implies that (ιf)ι = ι. Since E is semisimple-direct-
injective envelope of M , we have ιf is an isomorphism. It follows that E ∼= N ⊕ E(N) is
a semisimple-direct-injective module. Thus N = E(N) is injective, a contradiction.

The rest is similar. �
Lemma 3.2. If A is a C3-module and A ⊕ E(A) has a C3-cover, then A is injective.
Proof. This similar to Lemma 3.1. �
Theorem 3.3. The followings are equivalent for a ring R:

(1) R is an Artinian serial ring with J(R)2 = 0.
(2) Every simple-direct-injective right R-module has a C3-cover.
(3) (a) Every semisimple-direct-injective right R-module has a C3-cover.

(b) The module ⊕ISi is injective for any family of simple injective modules {Si}I.
Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (1) Consider the family {Ei}i∈I of injective right R-modules Ei, i ∈ I. By the
assumption, M = E ⊕ (⊕i∈IEi) with E = E(⊕i∈IEi) has a C3-cover, say α : C → M . Let
Ei0 := E and ιi : Ei → M be the inclusion maps for all i ∈ I ∪ {i0}. Since Ei is injective
(hence simple-direct-injective), there exists a linear map βi : Ei → C such that αβi = ιi.
Hence id = ⊕ιi = α(⊕βi) which implies that M is a direct summand of C. So M is a
C3-module. By [5, Lemma 3.2], ⊕i∈IEi is injective. Thus R is right Noetherian.

We next prove that R is right semi-Artinian. Without loss of generality, we can assume
that M is a non-zero indecomposable right R-module with Soc(M) = 0 (since R is right
Noetherian). Then M is a C3-module. Since Soc(M ⊕ E(M)) = 0, we get M ⊕ E(M) is a
simple-direct-injective module. By the assumption, M ⊕E(M) has a C3-cover. By Lemma
3.2, M is injective. Hence M is uniform and every submodule of M is C3. Let N be a
non-zero arbitrary submodule of M . By the same argument, we have N is injective. So,
N is a direct summand of M . This shows that M is a semisimple module, a contradiction.
Thus, every non-zero indecomposable right R-module has non-zero socle. It follows that
R is right semi-Artinian and hence R is right Artinian.

By the same technique of [5, Theorem 3.4 (1) ⇒ (3)], we can obtain that every right R-
module is a direct sum of a semisimple module and a family of injective uniserial modules
of length 2. Thus R is an Artinian serial ring with J(R)2 = 0.

(1) ⇔ (3) This is similar to (1) ⇔ (2). �
Now, we can prove that the classes of semisimple-direct-injective modules over a ring

R provide for sdi-envelopes and sdi-covers only if R is a right Noetherian right V-ring:
Theorem 3.4. The following conditions are equivalent:

(1) R is a right Noetherian right V-ring.
(2) Every right R-module has an sdi-cover.
(3) Direct sums of semisimple-direct-injective modules have sdi-covers.
(4) Every right R-module has an sdi-envelope.
(5) Direct sums of semisimple-direct-injective modules has an sdi-envelope.

Proof. (1) ⇒ (2), (3) are obvious.
(2) ⇒ (1) For any semisimple right R-module S, then by the assumption, M = S⊕E(S)

has an sdi-cover, say α : C → M . Let ι1 : S → M and ι2 : E(S) → M be the inclusion
maps for all i = 1, 2. Note that S and E(S) are semisimple-direct-injective modules,
and there are homomorphisms β1 : S → C, β2 : E(S) → C such that αβi = ιi. Clearly,
idM = ι1 ⊕ ι2 = α(ι1 ⊕ ι2). This shows that M is isomorphic to a direct summand of C,
which implies that M is a semisimple-direct-injective module. Hence S is injective.

(3) ⇒ (1) is similar to (2) ⇒ (1).
(4) ⇒ (1) Let N be an arbitrary semisimple module. Assume that ι : M = N ⊕E(N) →

E is the sdi-envelope, where E is a simple-direct-injective module. Since N and E(N)
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are semisimple-direct-injective modules, there exist f1 : E → N, f2 : E → E(N) such
that fiι = πi, where π1 : M → Ni and π2 : M → E(N) are the projections. There exists
ϕ : E → M such that πiϕ = fi for all i = 1, 2. It follows that ϕι = idM , and so the
monomorphism ι splits. Thus N ⊕ E(N) is isomorphic to a direct summand of E. It
follows that N ⊕ E(N) is also a semisimple-direct-injective module. Hence N is injective.

(5) ⇒ (1) is similar to (4) ⇒ (1). �
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