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Abstract—The stability and dynamics of the interaction of soliton-like solutions of the generalized nonlinear
Schrödinger (NLS) equation describing the dynamics of the envelope of modulated nonlinear waves and
pulses (including the phenomenon of wave collapse and the self-focusing of wave beams) in plasma (includ-
ing space one), as well as in nonlinear optical systems, have been studied with allowance for the inhomoge-
neity and nonstationarity of the distribution environment. The equation is also used in other areas of physics,
such as the theory of superconductivity and low-temperature physics, small-amplitude gravitational waves on
the surface of a deep inviscid f luid, etc. It should be noted that the studied equation is not completely inte-
grable, and its analytical solutions are generally unknown (except, perhaps, for smooth solutions of the soli-
tary wave type). However, approaches that were developed earlier for other equations (the generalized
Kadomtsev–Petviashvili equation and the three-dimensional NLS equation with the derivative of the non-
linear term) of the Belashov–Karpman system makes it possible to analyze the stability of possible solutions
of the these equations and to conduct a numerical study of the dynamics of soliton interaction. This approach
is implemented in the study. Sufficient conditions for the stability of two- and three-dimensional soliton-like
solutions are obtained analytically, and the cases of stable and unstable (with the formation of breathers) evolution
of pulses of various shapes, as well as the interaction of two- and three-pulse structures, which leads to the forma-
tion of stable and unstable solutions, were studied numerically. The results can be useful in numerous applications
for the physics of ionospheric and magnetospheric plasma and in many other areas of physics.
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1. INTRODUCTION. BASIC EQUATIONS
If in the Belashov–Karpman (BK) system (Belas-

hov and Vladimirov, 2005; Belashov et al., 2018a)

(1)

the operator has the form ,
then we have a three-dimensional (3D) generalized
nonlinear Schrödinger equation (3-GNLS) (Belashov
et al., 2018b):

(2)

where  , and
 describes the dissipative effects, and u is the

envelope of the wave packet (pulse). The 3-GNLS

equation (2) describes the dynamics of the envelope of
modulated nonlinear waves and pulses (wave packets)
in dispersive media and has many important applica-
tions in plasma physics (e.g., it describes the propaga-
tion of the Langmuir waves in a hot plasma) and non-
linear optics (the propagation of light pulses in crys-
tals, optical fibers, and plane optical waveguides); it
describes, in particular, such phenomena as turbu-
lence, wave collapse, and optical self-focusing. Equa-
tion (2) is also used in other areas of physics, such as
the theory of superconductivity and low temperature
physics (in particular, the ordinary NLS equation is a
simplified 1D form of the Ginzburg–Landau equa-
tion (Ginzburg and Landau, 1950), which they first
introduced in 1950 when describing superconductiv-
ity), low-amplitude gravitational waves on the sur-
face of a deep inviscid f luid, etc. Note that 3D equa-
tion (2) is not completely integrable, and its analyti-
cal solutions are not known in general case (except,
perhaps, for smooth solutions of the solitary wave
type). However, under the previously developed
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approaches (Belashov, 1991, 1999) for other equa-
tions of the BK system (the generalized Kadomtsev–
Petviashvili (GKP) equation, when in system (1)

 and the 3D non-
linear Schrödinger equation with the derivative of the
nonlinear term (3-DNLS), if the operator in (1) is

), we can study the
stability of possible solutions of the 3-GNLS equation.
In this case, the dynamics of the interaction of soliton-
like structures of the GNLS equation can be studied
numerically with the methods developed by Belashov
and Vladimirov (2005). Solving of this problem is the
goal of this work.

2. STUDY OF SOLUTIONS’ STABILITY
Let us write equation (2) with α = 0 (the 3-NLS

equation) in the Hamiltonian form

(3)
where the Hamiltonian, which has a sense of the

energy of the system, is 

  .

Analyzing the Hamiltonian transformation proper-
ties as detailed for the equations of the BK system earlier
(Belashov, 1991, 1999; Belashov and Vladimirov, 2005)
and as first used for much simpler cases of the “classical”
Kadomtsev–Petviashvili equation (Kuznetsov and
Musher, 1986) and the NLS equation (Zakharov and
Kuznetsov, 2012), we studied the stability of 2D and
3D solutions of Eq. (2). In this case, the problem for
equation (3) is formulated as the variational equation

 , the sense of that is that
all finite solutions of Eq. (3) are stationary points of
the Hamiltonian H for the fixed value of the momen-
tum projection . According to the Lyapunov stability
theorem, points that correspond to the minimum or
maximum of the Hamiltonian H, are absolutely stable
in a dynamic system. If the extremum is local, locally
stable solutions will correspond to it.

Consider deformations H conserving the momen-
tum projection :

The Hamiltonian takes the form H(ζ, η) =
 with coefficients

(4)

From the necessary conditions for the extremum
, we immediately find its coordi-

nates
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2 2 2Â( , ) 3 ( )x xt u s p u i= ∂ − ∂ λ + ν

( H ),t xu u∂ = ∂ δ δ

∞

−∞

γ + β ∂ ϕ + 4H = *
2 xu uu

( )⊥
σ ∇ ∂ 

21 d ,
2 xw r 2 ,xw u∂ = arg( )uϕ =

(H ) 0,xPδ + υ = 21 d
2

P ux =  r

xP

xP
1 2 1( , ) ( , ), , C.u x r u x− −

⊥ ⊥→ ζ η ζ η ζ η ∈r

− − − −ζ η + ζ − ζ η1 2 1 2 2a b c
4

2

( 2) d , * d ,

( 2) ( ) d .

x

x

a u b uu

c w⊥

= γ = β ∂ ϕ

= σ ∇ ∂
 


r r

r

H 0, H 0ζ η∂ = ∂ =

where b <0 if η ∈ R ⊂ C, because a > 0, c > 0 by defi-
nition, and b > 0 if η ∈ C. The sufficient conditions for
a minimum at the point (ζi, ηj) are

Solving this set of inequalities, we find that

 for waves at b < 0 (posi-
tive nonlinearity). From this, it follows that

, i.e., the Hamiltonian is bounded
from below. At b > 0 (negative nonlinearity), the
replacement b → −b is equivalent to replacing y → −iy,
z → −iz and , i.e., the Hamiltonian
is not bounded from below (bounded from above).

Thus, we have proven the possibility of the exis-
tence of the stable 3D-solutions in the 3-NLS model
and obtained the conditions of their stability, i.e., we
determined the ranges of values of the equation coef-
ficients (variable in the time and space characteristics
of the environment) at which 3D solitons are stable.

3. NUMERICAL STUDY OF THE EVOLUTION 
AND DYNAMICS OF INTERACTION 

OF THE GNLS SOLITONS
We carried out a numerical study of the evolution

and dynamics of the interaction of soliton-like struc-
tures of the 3-GNLS equation using the methods
developed and described in detail earlier (Belashov
and Vladimirov, 2005). The simulation results for the
general case of a heterogeneous and nonstationary
medium confirm the conclusions made based on an
analytical consideration of the problem. By way of
illustration, Figs. 1 and 2 show the results obtained at
σ = 0 (1D case) for the initial conditions in the form of
a soliton-like envelope pulse:

respectively, in the simplest case of the equations NLS
with β, γ = const (stationary media); α, f' = 0; at neg-
ative nonlinearity, β > 0. In this case, b > 0 and the
Hamiltonian H > 3bd/(1 + 2d2); hence, the stability
condition for negative nonlinearity H < 3bd/(1 + 2d2)
does not hold, and, as can be seen from the figures, we
observe scattering of the envelope pulses with time.

Figures 3 and 4 give examples when the coefficient
γ ≠ 0 and the stability condition for positive nonlinearity
H > 3bd/(1 + 2d2) > 0 is not satisfied and when the con-
dition for negative nonlinearity H < 0 < −3bd/(1 + 2d2)
is satisfied, respectively.
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Fig. 1. Evolution of the Gaussian envelope pulse at A = 2, l = 2; β = 0.5, γ = 0.
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In the first case, we observe the scattering of the
envelope pulse with time. In the second, the solution
is stabilized and a soliton is formed from the initial
pulse.

Figure 5 shows the result for the same situation as
in Fig. 4, for the case of negative nonlinearity (β < 0,
γ < 0 and a, b < 0 in formulas (4)), but here we have a
case of strong negative nonlinearity when γ = −1 and
the appearance of quasi-stable powerful soliton-like
breather-type pulsations is observed.

In numerical experiments for the GNLS equa-
tion (2) with σ = 0 for β, γ = ϕ(t); α, f' = 0, we found
that the quasi-stable evolution of the initial Gauss-
ian pulse can be observed when in a nonstationary
medium with negative nonlinearity the stability
condition H < −3bd/(1 + 2d2) is satisfied. In this
case, one can observe pulsations with a shift of the
pulse during its evolution in the x direction (fig. 6).

Figure 7 shows two examples of the results of the
evolution of a Gaussian pulse in a nonstationary
medium with negative nonlinearity when the stability
condition H < −3bd/(1 + 2d2) is fulfilled. As a result
of the evolution, in this case, the occurrence of power-
ful stable pulsations of the breather type from the ini-
tial solitary pulse is observed.

Figures 8 and 9 show examples of the interaction of
soliton-like initial pulses of the forms

(5)

at negative nonlinearity within the GNLS model,
respectively. In the first case, the stability condition is
not satisfied; at the first stage, we observe the occur-
rence of one powerful pulse from a three-pulse initial
disturbance and, then its decay into two pulses of
small amplitude with time. In the second case, the sta-
bility condition is satisfied, and a stable evolution of
the two-pulse disturbance takes place.

It is interesting to note that when at a particular
moment of time the field becomes non-stationary, the
stability of the multipulse disturbance may be violated,
and the evolution process becomes unstable with small
pulsations. Such a case can be seen in Figure 10 (com-
pare to the case shown in Figure 9).

Numerical experiments also showed that at weak
negative nonlinearity when the stability condition is
satisfied, a transition from stable evolution to regime
of stable pulsations (breathers) is observed at decreas-
ing the initial distance s between pulses in (5) (Belas-
hov et al., 2019a; Belashov et al., 2019).

Detailed numerical studies of the evolution and
interaction problems for the 2D and 3D pulses in the
3-GNLS model were discussed earlier (Belashov
et al., 2018b, 2019a, b; Belashov and Kharshiladze,
2019; Belashov et al., 2019, 2020).

( )
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Fig. 2. Evolution of a Gaussian two-pulse envelope disturbance at A = 1, l = 4; β = 0.5, γ = 0.
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Fig. 3. Evolution of the Gaussian envelope pulse at A = 1, l = 4; β < 0, γ > 0 (positive nonlinearity).
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Fig. 4. Evolution of the Gaussian envelope pulse at A = 1, l = 4; β < 0, γ = −0.5 < 0 (negative nonlinearity).
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Fig. 5. Evolution of the Gaussian envelope pulse at A = 1, l = 4; β < 0, γ = −1.
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4. CONCLUSIONS

Summarizing the results, we note the following.

1. We discussed the problem of the evolution and
dynamics of multidimensional solutions of the gener-
alized NLS (GNLS) equation as a particular case of

the BK system, namely, the stability of 3D solutions of
the 3-GNLS equation and the dynamics of stable and
unstable solutions of the NLS equation in stationary
and nonstationary media.

2. In this paper, conditions dividing the classes of
stable and unstable soliton-like solutions of the GNLS

Fig. 6. Evolution of the Gaussian envelope pulse at A = 1, l = 4; β(t) = −0.5 (1 + sin0.1πt), γ = −1.
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Fig. 7. Evolution of the Gaussian envelope pulse in a nonstationary medium at α, f' = 0: (a) β = 0.5, γ = −1 + 0.01sin2πt; (b) γ = −1,
β(t) = − 0.5 at t ≤ 5 and β(t) = 0.5 (1 + 0.2sin2πt) at t > 5; cases of negative nonlinearity.
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Fig. 8. Interaction of three GNLS pulses (stationary medium) at γ = −1, β = 0.25; case of weak negative nonlinearity.
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Fig. 9. Lack of the GNLS pulses interaction (stationary medium) at γ = −1, β = 0.05; the case of negative nonlinearity.
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equation were obtained analytically, and sufficient
conditions of stability of multidimensional solutions
were found.

3. It was shown that, even in the simplest 1D case,
the GNLS equation has a wide class of stable or quasi-
stable solutions of types of solitons and breathers, and
also unstable pulsing solutions that dissipate with
time.

4. The obtained analytical results were confirmed
by a numerical study of cases of the stable and unstable
(with the formation of breathers) evolution of pulses of
various shapes, as well as the interaction of two- and
three-pulse structures leading to formation of stable
and unstable solutions.
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