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Abstract 

The results of numerical study of evolution of the solitons of gravity and gravity-ca-

pillary waves on surface of shallow fluid when the characteristic wavelength is essen-

tially greater then depth, H , are presented for the cases when dispersive param-

eter is a function of time and spatial coordinates, ),,( yxt . This corresponds to 

the problems when the relief of bottom is changed in time and space. We use both 

one-dimensional approach (the equations of the KdV-class) and also two-dimensional 

description (the equations of the KP-class) where it is necessary. 

 

1. Basic equations and general properties of solutions 

Let us consider the models of the Korteweg – de Vries (KdV) and Kadomtsev – Petvi-

ashvili (KP) equations in their application to hydrodynamics, namely, to description of 

the gravity waves on the surface of an ideal incompressible fluid of small (compared 

to wavelength) depth. In this case, the generalized density and velocity of “sound” in 

the general set of the hydrodynamic equations [1] acquire the sense of fluid depth, H, 

and velocity, gHc  , the term 2/2gH  plays the role of the pressure, this corre-

sponds to the effective adiabatic index 2  [2]. Then the Boussinesq equations take 

the form 
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(h=const is the depth of the fluid). It is easy to add into these equations the terms as-

sociated with the capillary effects. Assuming that the curvature of the surface is not too 

large and the additional pressure to the fluid caused by the surface tension is defined 

by the Laplace formula 
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where  is the surface tension coefficient, 1R  and 2R  are the main curvature radii, we 

can write p  where  tyx ,,  is the surface function (the value of   is suffi-

ciently small). Changing gh  in (1) by gH  (  is the fluid density) we obtain 
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Equations (2), (3) are the Boussinesq equations taking into accounting the capillary 

effects [2]. Change of the factor at the dispersive term in the dispersion relation in its 

standard form [2] leads to the change of the dispersion equation, and, instead of 
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where gHc 0 . In this case the dispersive factor  is defined by 
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Using furthermore the results of [1] we transform (1) and (2) to the form 
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i.e.  obtain the KP equation for the gravity-capillary waves on shallow fluid. Note that 

for sufficiently large 
2

3
1 gH  the dispersive parameter changes its sign that in-

volves the qualitative change of the character of the evolution and the form of the so-

lutions [3]. 

Consider now in more detail the following interesting case. Often there are the cases 

when the factor  is unusually small. As it follows from (5) =0 at   2/1
/3 gH 

 048. cm (for pure water). However =0 does not mean that there is no dispersion in 

medium. It simply means that in this case the next term in the Taylor expansion in k of 

the full dispersion relation must be taking into account. In this case, the corresponding 

additional term proportional to the next odd derivative appears in the equation. This 

generalization leads to the KP equation which can be written as 
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where the coefficients are 
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Numerical integration of (6) using the methods based on implicit and explicit differ-

ence schemes [1, 3] enables us to investigate the structure of the one-dimensional (1D) 



 

and two-dimensional (2D) solitons on shallow fluid in the case of anomalously weak 

dispersion. We have found that the qualitative form of the solutions depends signifi-

cantly on the value of parameter    /V  V /
/


1 2

<< 2 where V is the soliton’s 

velocity in the reference frame moving along the x-axis with the phase velocity c0 . In 

1D case at 0  the structure of propagating solitons does not differ qualitatively from 

the structure of solitons of the usual KdV equation (see [2]), and in 2D case – from the 

structure of the algebraic KP-solitons [1, 3]. Such solitons on the surface of fluid have 

negative polarity (the hollow solitons). When >0, for example, in the case of the in-

creasing fluid depth starting from the depth   2/1
/3 gH  , the structure of the soli-

tons radically changes: by remaining to decay from their maximum to zero in the trans-

verse direction as before, now their sign varies along the direction of their propagation 

(at this, the amplitude of the 2D solitons falls from maximum to zero in the transverse 

direction as before). At   2  the number of the oscillations in the tails increases and 

the solitons become similar to 1D and 2D high-frequency trains, respectively, i.e. en-

velope solitons1. Note that a similar structure is typical also for solitons of internal 

gravity waves, which were considered in detail in [1, 4, 5]. 

Let us consider now, separately for 1D and 2D cases, some our results of numerical 

simulation of the soliton dynamics on surface of shallow fluid which describes by the 

standard KdV and KP equations (equation (6) with 0 ) when factor   is a function 

of space coordinates and time. 

 

2. Structure and evolution of 1D solitons of gravity and gravity-capillary waves 

with varying relief of bottom 

At first, let us consider the evolution of the 1D solitons in the framework of model (6) 

with 0  and right-hand side being equal to zero (the KdV equation): 

03  uuuu xxt                                           (7) 

on surface of a fluid with varying in time and space dispersive parameter ),( xt . 

Such situation can take place, for example, in the problems on propagation of the gravity 

and gravity-capillary waves on surface of shallow fluid [3] when   c H0
2 6/  and 

     c H g0
26 3/ / , respectively (see above). In these cases, if ),( xtHH  , the 

dispersive parameter becomes also the function of the x coordinate and time. 

In [1, 4] it was shown that the solutions of the KDV equation at =const in dependence 

on value of β are divided into two classes: at   u x l0 0 12( , ) /  (where l is the char-

acteristic wavelength of the initial disturbance) they have soliton character, in the op-

posite case the solutions are the wave packets with asymptotes being proportional to 

the derivative of the Airy function (see also [2]). In these cases, the KdV equation can 

be integrated analytically by the inverse scattering transform (IST) method. But, even 

                                                           
1 As to the structure of the 1D solitons of the generalized KdV equation see also [1, 3, 4]. 



 

in 1D case, if ),( xt , this approach is impossible principally, it is necessary to re-

sort to a numerical simulation in the conforming problems. 

Let us formulate the problem of numerical simulation of the KdV equation with 

),( xt  and consider some results of our numerical experiments on study of struc-

ture and evolution of the solitary waves on surface of shallow fluid. 

To solve the initial problem for the KdV equation (7) with variable dispersion we used 

an implicit difference scheme [1] with ),( 42 hO   approximation. Initial conditions 

were chosen in form of the solitary disturbance,  

)/(exp),0( 22
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and in form of a “smoothed step”: 
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with different values of parameters lu ,0  and с, which were defined by the convenience 

of numerical calculation for specific sizes of the numerical integration area. The zero 

conditions on boundaries of the computation region were imposed, and simulation has 

been conducted for a few types of model types of function  (see figs. 1 and 2) when 

for t < tcr  = 0 = const, and for  t  tcr 
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where a and c are constants. In terms of the problem of the wave propagation on surface 

of the shallow water that accordingly means that on reaching tcr we have: 1) sudden 

"breaking up of the bottom", 2) gradual "changing of height" of the bottom area, and 

3) "bottom oscillation" with time. 

 
 

Fig. 1. Dependence ),( xt  of type of “step”, models (10) and (11) 



 

 
 

Fig. 2. Dependence ),( xt  of type of “bottom oscillations”, model (12) 

 

Consider briefly some results of numerical simulation for two types initial conditions 

and different kinds of model function ),( xt . 

In the first series of numerical experiments we investigated of the evolution of the ini-

tial disturbance in form of the solitary soliton-like pulse (8) for the models with spas-

modic change of dispersion [models of bottom of type of “step” (10) and (11)] with 

values of parameter а corresponding (at 0t ) to the position of the “break” behind 

and ahead soliton, and values с< 0 (“negative" step) and с> 0 (“positive” step). The 

obtained results showed that in all cases the deformation of initial pulse occurs with 

time. If the step is located behind the soliton, that in both cases, c<0 and c>0, the wav-

ing tail which is not associated with the main maximum of the outgoing forward main 

pulse is formed, and its evolution is entirely determined by the value  in its location. 

In case when at 0t  the “step” is located ahead front of initial pulse, at с> 0 in the 

model (11) a steep front is formed quite quickly, that leads to the overturning of the 

wave with time. At с> 0, the destruction of the soliton can be observed (fig. 3), which 

occurs due to the fact that in the region of localization of its front, the relative role of 

nonlinear effects falls due to the increase of the dispersive parameter here, and disper-

sive effects prevail. 

  

Fig. 3. Evolution of the KdV soliton in the model (11) with с< 0. 

The second series of numerical experiments was devoted to study of the evolution of 

the initial disturbance of type (9) for the models of “bottom” (10), (11) at different 

values of parameters а and с. 



 

 

Fig. 4. Evolution of “step” (9) in the 

model (10) with с>0:  

a  t  0.25; b  t  0.5 

a 

 

b 

 

 

Fig. 4 shows the result of numerical simulation of the evolution of initial disturbance 

(9) for the model of “bottom” in the form of positive step in the case when “break” is 

located directly under the region of the disturbance front of the fluid surface. It is seen 

that due to the fact that the development of perturbations occurs mainly in the region 

where the value of the dispersion parameter corresponds to multisoliton solution of the 

KdV equation [1, 2], solitary disturbance propagates with the development of high-

frequency oscillatory structure behind the shock front, and in the region of the soliton 

"tail", where dispersive effects dominate over the nonlinear ones, the high-frequency 

train of oscillations decays rather quickly to zero and it is limited in the region 0x . 

Fig. 5 shows the example of the results of simulation of the evolution of initial disturb-

ance in the form of the “smoothed step” (9) in case when the break of the “bottom” is 

negative and located in front of the localization region of the fluid surface disturbance. 

It can be seen that in this case, the front of the disturbance becomes more gentle with 

time, the oscillatory soliton structure in the front region is not formed, but the devel-

opment of low-frequency oscillations behind the main maximum occurs. This result is 

easily explained within the framework of the similarity principle for the KdV equation 

[2]: the evolution of the "tail" of the initial disturbance occurs in the region of small 

values of the dispersive parameter, whereas in the front region, where the dispersion is 

relatively large, the formation of a shock wave does not occur. 



 

a 

 

b 

 

Fig. 5. Evolution of “step” (9) in the model (10) with с<0:  

a  t  0.25; b  t  0.75. 

 

As for the third law of change of  (harmonic oscillations of the parameter  with time 

on all x-axis), a series of numerical experiments for various const0 k  at variable fre-

quency  [see law of change (12)] showed that at some values of  the stationary 

(locally) standing waves can be formed, in other cases it is possible  formation of the 

stationary periodic wave structures, in intermediate cases a chaotic regime is usually 

realized. 

 

3. Structure and evolution of 2D solitons of gravity and gravity-capillary waves 

with varying relief of bottom 

Let us now consider the problem of evolution of the 2D solitons in the framework of 

the standard KP equation 
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with varying in time and space dispersive parameter   ( , , )t x y . This situation can 

take place in the problems on propagation of gravity and gravity-capillary waves on 

surface of shallow fluid [1] when the fluid depth is the function of the spatial coordinates 

and time H H t x y ( , , ) .  

Here, situation is the same as for 1D model of the KdV equation described above take 

place: if the analytical solutions of the KP equation are known that in case ),( rt   

the dispersion term of equation becomes quasi-linear that the model being not exactly 

integrable (the IST method is not applicable) [1]. 

The problem of numerical simulation of the KP equation with ),,( yxt  is formu-

lated analogously the problem for the KdV equation (see previous section). To solve 

the initial problem for the KP equation (13) with variable dispersion (varying relief of 

the bottom) we used an implicit difference scheme [3] with ),( 42 hO   approximation. 

Initial conditions was chosen in form of the exact 2D one-soliton solution of the KP 



 

equation [1], the complete absorption conditions on boundaries of the computation re-

gion [1, 3] were imposed, and simulation has been conducted for the same types of 

model function  as for the KdV equation [see formulae (10)-(12)].  

Consider basic results of the numerical experiments on the investigation of the struc-

ture and the evolution of 2D solitary waves on the fluid surface with variable disper-

sion. 

The first series of numerical experiments have been aimed at study of the soliton dy-

namics under spasmodic character of the dispersion change (function ),,( yxt  has 

form of the "step"). At first, we investigated the evolution of initial pulse in case when 

at tcr  the spasmodic change of  has a place behind soliton ["negative" step when с< 0 

in formulae (10), (11)]. At this, the dependence of the spatial structure of solution on 

the parameter a value in models (10) and (11) was studied. The obtained results (see 

an example in fig. 6) showed that in all cases the evolution leads to the formation of 

waving tail which is not connected with soliton going away and caused only by local 

influence of sudden change of the “relief” ),( xt . Consequently, the formation of 

oscillatory structure is connected not so much with decreasing of a role of the disper-

sion effects behind soliton as with the spasmodic changing of   in space.  

 
 

Fig. 6. Solution of eq. (13) for the dispersion law (10)  

with a=5.0, c=0.0038 at t=0.6. 

In the next series of numerical simulation, we considered the evolution of a 2D soliton 

in case when the sudden change of the dispersion parameter has a place directly under 

or in front of an initial pulse ("negative" step). An example of the results of that series 

is shown in fig. 7. From the analysis of the results of whole of the series one can see 

that for such character of the relief of function   the disturbance caused by sudden 

change of the dispersive parameter has also a local character, i.e. it doesn't propagate 

together with the going away soliton. But, unlike the cases considered in the first 

series of simulation, the asymptotes of leaving soliton become oscillating (in any 

case in the time limits of numerical experiment), besides, against a background of the 

long-wave oscillations of the waving tail we can also see the appearance of the wave 

fluctuations. The effects noted may be interpreted as a result of those that for the areas 

of the wave surface with different values of local wave number kx the value of the 



 

dispersive effects is different. As a result, the intensity of the phase mixing of the Fou-

rier-harmonics within (x, y)-region varies with the coordinates and, therefore, it reacts 

differently to the nonlinear generation of the harmonics with various (in particular, 

large) wavenumbers kx. 
 

 
 

Fig. 7. Solution of eq. (13) for the dispersion law (11)  

with a=4.0, c=0.0038 at t=0.6. 

In the third series of the experiments with dispersive parameter changing 

with the laws (10) and (11) we considered the cases of "positive" step [ 0c  

in formulae (10) and (11)] being both in front of and behind of initial pulse 

for the wide diapason of values of parameter а. The examples of the most 

interesting results are shown in fig. 8. One can see that when "positive" step 

is far in front of maximum of the function ),,0( yxu  the soliton evolution on 

the initial stage does not practically differ qualitatively from that for 

const  (fig. 8,a), but in the future the evolution character is defined by 

presence of the step, namely the processes, caused by the same causes which 

have been noted for the results of the second series of numerical simulation, 

begin to be developed (fig. 8,b). As we can see in the figure, the appreciable 

change of the soliton structure which can lead to wave falling is observed 

owing to intensive generation of the harmonics with big kx in the soliton front 

region, even for rather small height of the step (i.e. even if the value of pa-

rameter c in formulae (10), (11) is rather small). Thus, as it follows from the 

results of this series, the disturbance of the propagating 2D soliton caused by 

sudden change in time and space of the dispersive parameter with с> 0 has 

also local character. 

As to the second law of the  change (model (12)  harmonic oscillation of 

the parameter β with time on the whole ),( yx -plane) , the series of numerical 

simulation for different const0 k  and variable frequency  [see law (12)] 

showed that for some values of  the stationary (locally) standing waves can 

be formed, in other cases the formation of the stationary periodical wave 



 

structures is possible, and in the intermediate cases a chaotic regime is usu-

ally realized. 

 
 

Fig. 8. Evolution of soliton of eq. (13) for the dispersion law  

(11) with a=5.0, c=0.0038: (a) t=0.6, (b) t=0.8. 

In the experiments made for different values of the parameter 0k  and const , we 

found that the stable (in any case in the limits of the numerical computation time) so-

lutions can be formed only for 00 k  in formula (12), and the solutions are unstable 

in another cases. An example of evolution of the 2D soliton when its structure along 

the x and y axes acquires the wave character and the amplitude of its maximum de-

creases with time is shown in fig. 9. 

Summing up the above, one can note that the numerical simulation of evolution 

of the 2D solitons describing by the model of the KP equation with ),,( yxt  ena-

bled us to found different types stable and unstable solutions including the solution of 

the mixed "soliton  non-soliton" type for various character of the dispersion change 

in time and space. 



 

Obtained results open the new 

perspectives in the investigation 

of a number applied problems of 

the dynamics of the non-one-di-

mensional nonlinear waves in the 

specific physical media, includ-

ing upper atmosphere (iono-

sphere), magnetosphere and in a 

plasma [1, 3-5].  
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4. Conclusion 

In the paper the results of numer-

ical study of evolution of the sol-

itons of gravity and gravity-ca-

pillary waves on surface of shal-

low fluid when the characteristic 

wavelength is essentially greater 

then depth, H , were pre-

sented for the cases when disper-

sive parameter is a function of time and spatial coordinates, ),,( yxt . This corre-

sponds to the problems when the relief of bottom is changed in time and space. We 

have considered three cases of variable dispersion when the sudden "breaking up of the 

bottom", the gradual "changing of height" of the bottom area, and the "bottom oscilla-

tion" with time take place. To solve the problem, we used both 1D approach (the equa-

tions of the KdV-class) and also 2D description (the equations of the KP-class). For all 

cases the numerical solutions of the problem in 1D and 2D geometry were presented. 

It was noted that the approach realized can be useful also in other applications of non-

linear wave theory such as dynamics of 1D and multidimensional solitary waves in 

other specific physical media, including upper atmosphere (ionosphere), magneto-

sphere and in a plasma (see, for example, the papers [6-8]). 
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