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1. Introduction

In the seminal book of Gohberg and Krein, Theorem 4.2 [14, Ch. 3, p. 82] asserts 
that for any sequence {Pj}ωj=1(ω ≤ ∞) of mutually orthogonal projections and for any 
symmetrically-normed ideal SΦ in the algebra B(H) of all bounded operators on the 
infinite-dimensional Hilbert space H we have
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‖
ω∑

j=1
PjAPj‖Φ ≤ ‖A‖Φ (1)

for every A ∈ SΦ. Here, Φ is symmetrically-norming function in the sense of [14, Ch. 3, 
p. 71] and SΦ is the symmetrically-normed ideal generated by Φ. The extension of 
this fundamental inequality was presented in [10, Corollary 3.4] in the form of Hardy–
Littlewood–Pólya submajorization inequality (denoted below by ≺≺)

ω∑
j=1

PjAPj ≺≺ A. (2)

Equivalently, if (E , ‖ ·‖E) is a Banach ideal in B(H) equipped with fully symmetric norm, 
then

∥∥∥∥∥∥
ω∑

j=1
PjAPj

∥∥∥∥∥∥
E

≤ ‖A‖E , ∀A ∈ E . (3)

The estimate (3) properly extends (1) and suggests the following natural question, which 
we address here:

Does (3) hold for an arbitrary symmetrically (quasi-)normed ideal in B(H)?
Recall, that an ideal (E , ‖ · ‖E) of B(H) is said to be a symmetrically (quasi)-normed 

ideal if its (quasi)-norm ‖ · ‖E satisfies the following estimates

‖XY ‖E ≤ ‖X‖E‖Y ‖∞,

‖Y X‖E ≤ ‖X‖E‖Y ‖∞,

for all X ∈ E , and Y ∈ B(H). The ideals SΦ featured in [14] and fully symmetric ideals 
mentioned above are special subclasses of general symmetrically (quasi)-normed ideals 
in B(H). Our results in this article concern two main subclasses of quasi-normed ideals. 
For convenience, let us denote the classical trace-class ideal equipped with its natural 
norm as (S1, ‖ · ‖1).

(i) The class of symmetrically normed ideals (this class is properly larger than the 
class of all fully symmetric ideals). Every such ideal is an intermediate ideal between 
(S1, ‖ · ‖1) and B(H).

(ii) The class of quasi-normed ideals which do not admit a symmetric norm and which 
are proper subsets of the ideal S1.

We recall that the class of all fully symmetric ideals coincides with the class of all 
Banach ideals E which are exact interpolation spaces for the Banach pair (S1, B(H)). 
For examples of symmetrically normed ideals which fail to be interpolation spaces for 
the latter pair see [19] and [26]. The classical examples of quasi-normed ideals from (ii) 
are given by Schatten-von Neumann ideals Sp, 0 < p < 1.
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Our results here concern the question stated above and show dramatic difference be-
tween (i) and (ii). We present our main results in the more general setting of (semifinite) 
noncommutative integration theory and Δ-normed symmetric spaces.

For the class (i) our methods are based on the concept of uniform majorization intro-
duced in [19] (see also [24]). This concept is a generalization of Hardy–Littlewood–Pólya 
submajorization and is an important tool in the study of symmetric norms rather than 
merely fully symmetric norms. Our first main result establishes a uniform submajoriza-
tion version of inequality (2). As a consequence, inequality (3) holds for any symmetric 
norm.

Surprisingly, for the class (ii) the inequality (3) is reversed (and this is our second 
main result). Even in the setting of ideals of B(H), this is a completely new result, as 
before only normed ideals and Banach spaces have been considered.

Perhaps even more surprising, if we consider infinite sequences of projections, then 
there are examples where (2) and (3) completely fail for the class (i) of symmetric 
operator spaces. Furthermore, the reverse inequality in the quasi-normed setting also 
does not extends to infinite sums (see Section A where we present such a counterexample 
for the Δ-normed space of all τ -measurable operators).

We finish this short introduction by observing that (3) plays an important role in 
noncommutative analysis and has significant applications in the study of extreme points 
[10], sets of uniformly absolutely continuous norm [12, Section 6], derivation problem 
[4,5,20], isometries [16,28] and other topics.

The authors sincerely thank Peter Dodds, Jinghao Huang, Thomas Scheckter, and 
Dmitriy Zanin for useful discussions of the results presented in this paper. They also 
heartily thank the anonymous reviewer for a number of useful comments and suggestions.

2. Preliminaries

2.1. Singular value functions

Let (I, m) denote the measure space I = (0, ∞) (resp. I = Z+), where (0, ∞) (resp. 
Z+) is the set of positive real (resp. of nonnegative integer) numbers, equipped with 
Lebesgue measure (resp. counting measure) m. Let L(I, m) be the space of all measur-
able real-valued functions (resp. sequences) on I equipped with Lebesgue measure (resp. 
counting measure) m i.e. functions which coincide almost everywhere are considered 
identical. Define S(I, m) to be the subset of L(I, m) which consists of all functions (resp. 
sequences) x such that m({t : |x(t)| > s}) is finite for some s > 0.

For x ∈ S(I, m) (where I = (0, ∞)), we denote by μ(x) the decreasing rearrangement 
of the function |x|. That is,

μ(t, x) = inf{s ≥ 0 : m({|x| > s}) ≤ t}, t > 0.
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On the other hand, if I = Z+, and m is the counting measure, then S(I) = �∞(I), 
where �∞(I) denotes the space of all bounded sequences on I. In this case, for a sequence 
x = {xn}n≥0 in �∞(Z+), we denote by μ(x) the decreasing rearrangement of the sequence 
|x| = {|xn|}n≥0.

For x, y ∈ S(I, m), we say that y is submajorized by x in the sense of Hardy–
Littlewood–Pólya (written y ≺≺head x) if

t∫
0

μ(s, y)ds ≤
t∫

0

μ(s, x)ds, t ≥ 0

(
or

n∑
k=0

μ(k, y) ≤
n∑

k=0

μ(k, x), n ≥ 0
)
.

A more standard notation for Hardy–Littlewood–Pólya submajorization (or weak sub-
majorization) is y ≺w x. We have chosen to use the notation y ≺≺head x to distinguish 
this submajorization from its reverse version introduced below in subsection 4.2.

Let M be a semifinite von Neumann algebra on a separable Hilbert space H equipped 
with a faithful normal semifinite trace τ .

Let Proj(M) denote the lattice of all projections in M, 1 be the unit of M. A 
linear operator X : D (X) → H, where the domain D (X) of X is a linear subspace of 
H, is said to be affiliated with M if Y X ⊆ XY for every Y ∈ M′, where M′ is the 
commutant of M (notation: XηM). For any self-adjoint operator A on H, its spectral 
measure is denoted by EA. A self-adjoint operator A is affiliated with M if and only if 
EA (B) ∈ Proj(M) for any Borel set B ⊆ R. A closed and densely defined operator AηM
is called τ -measurable if τ(E|A|(s, ∞)) < ∞ for sufficiently large s, where |A| =

√
A∗A. 

We denote the set of all τ -measurable operators by S(M, τ). For every A ∈ S(M, τ), we 
define its singular value function μ(A) by setting

μ(t, A) = inf
{
‖A(1 − P )‖L∞(M) : P ∈ Proj(M), τ(P ) ≤ t

}
, t > 0.

Equivalently, for positive self-adjoint operators A ∈ S(M, τ), we have

nA(s) = τ(EA(s,∞)), μ(t, A) = inf{s : nA(s) < t}, t > 0.

For more details on generalized singular value functions, we refer the reader to [13] and 
[24].

If A, B ∈ S(M, τ), then we say that B is submajorized by A (in the sense of Hardy–
Littlewood–Pólya), denoted by μ(B) ≺≺head μ(A), if

t∫
μ(s,B)ds ≤

t∫
μ(s,A)ds, t ≥ 0.
0 0
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If M = B(H) and τ is the standard trace Tr, then it is not difficult to see that S(M) =
S(M, τ) = M (see [24] for more details). In this case, for A ∈ S(M, τ), we have

μ(n,A) = μ(t, A), t ∈ [n, n + 1), n ∈ Z+.

The sequence {μ(n, A)}n∈Z+ is just the sequence of singular values of the operator 
A ∈ B(H). If we consider L∞(I, m) as an Abelian von Neumann algebra acting via 
multiplication on the Hilbert space L2(I, m), with the trace given by integration with 
respect to m, then S(I, m) consists of all measurable functions on I which are bounded 
except on a set of finite measure. In this case for f ∈ S(I, m), the generalized singular 
value function μ(f) is precisely the classical decreasing rearrangement of the function 
|f | defined above.

2.2. Symmetric (quasi-)Banach function and operator spaces

For the general theory of symmetric spaces, we refer the reader to [3,23,24].

Definition 2.1. Let E be a linear subspace in S(M, τ) equipped with a complete (quasi-
)norm ‖ · ‖E . We say that E is a symmetric operator space (on M, or in S(M, τ)) if for 
A ∈ E and for every B ∈ S(M, τ) with μ(B) ≤ μ(A), we have B ∈ E and ‖B‖E ≤ ‖A‖E .

A symmetric function (or sequence) space is the term reserved for a symmetric op-
erator space when M = L∞(I, m), where I = (0, ∞) (or M = �∞(I) with counting 
measure, where I = Z+).

Recall the construction of a symmetric (quasi-)Banach operator space (or non-
commutative symmetric (quasi-)Banach space) E(M, τ). The following fundamental 
theorem was proved in [19] (see also [24, Question 2.5.5, p. 58] and [27]).

Theorem 2.2. Let (E, ‖ · ‖E) be a symmetric function (or sequence) space on (0, ∞) (or 
Z+) and let M be a semifinite von Neumann algebra. Set

E(M, τ) =
{
A ∈ S(M, τ) : μ(A) ∈ E

}
, ‖A‖E(M,τ) := ‖μ(A)‖E .

So defined (E(M, τ), ‖ · ‖E(M,τ)) is a symmetric operator space.

The main result of [19] (see also [24, Section 3]) shows that the correspondence

(E, ‖ · ‖E) ←→ (E(M, τ), ‖ · ‖E(M,τ))

is a one-to-one correspondence between the set of all symmetric operator space in 
S(M, τ) and the set of all symmetric function spaces in S(I, m) whenever (M, τ) does 
not contain any minimal projections or is atomic and all minimal projections have equal 
trace. Of course, depending on (M, τ) the symmetric function space E ⊂ S(I, m) is 
considered either on (0, 1), or on (0, ∞) or on Z+.
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3. Inequalities for uniform submajorizations

Throughout the sequel, let M be an arbitrary semifinite von Neumann algebra, with 
some distinguished faithful normal semifinite trace τ . Let A, B ∈ S(M, τ). We say that 
B is uniformly submajorized by A (written B � A) if there exists λ ∈ N such that

b∫
λa

μ(s,B)ds ≤
b∫

a

μ(s,A)ds, λa < b.

The notion of uniform submajorization originally introduced in [19] (see also [24]). It has a 
wider area of applicability than Hardy–Littlewood–Pólya submajorization (in particular, 
it makes sense for arbitrary elements A, B ∈ S(M, τ), whereas the latter submajorization 
is meaningful only for A, B ∈ L1(M, τ) +M. On the other hand, uniform submajorization 
imposes stricter conditions on the behavior of singular numbers of operators A and B
than their classical counterpart. The next theorem, our first main result, extends (2) to 
uniform submajorization.

Theorem 3.1. If e1, e2, . . . , en ∈ M are projections with eiej = 0, i �= j, and if x ∈
S(M, τ), then

e1xe1 + e2xe2 + . . . + enxen � x.

Proof. Firstly, we note that for any A, B ∈ S(M, τ), the following inequality holds

A + B � μ(A) + μ(B).

Indeed, the case when A, B ≥ 0 is established in [19, Lemma 8.4]. For arbitrary operators 
A and B, it follows from the triangle inequality observed in [22] (see also [1] or [24, Lemma 
2.3.15]) that

|A + B| ≤ U |A|U∗ + V |B|V ∗

where U and V are partial isometries in M. Again appealing to [19, Lemma 8.4], we 
obtain

μ(A + B) ≤ μ(U |A|U∗ + V |B|V ∗) � μ(U |A|U∗) + μ(V |B|V ∗) ≤ μ(A) + μ(B).

By induction, we have

n∑
Ak � n∑

μ(Ak), ∀A1, . . . , Ak ∈ S(M, τ). (4)

k=1 k=1
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For every subset A ⊂ {1, . . . , n}, define a partial isometry uA ∈ M by setting

uA :=
n∑

k=1

(2χA (k) − 1)ek.

Indeed, since eiej = 0, i �= j, it immediately follows that uA u∗
A = u∗

A uA = e1 + e2 +
. . . + en. We have

∑
A

uA xu∗
A =

∑
A

n∑
k1,k2=1

(2χA (k1) − 1)ek1x(2χA (k2) − 1)ek2

=
n∑

k1,k2=1

ek1xek2

∑
A

(2χA (k1) − 1)(2χA (k2) − 1).

A direct computation yields that

∑
A

(2χA (k1) − 1)(2χA (k2) − 1) =
{

0, k1 �= k2

2n, k1 = k2

Therefore, we have

e1xe1 + e2xe2 + . . . + enxen = 1
2n

∑
A

uA xu∗
A .

Hence, by (4), we have

e1xe1 + e2xe2 + . . . + enxen � 1
2n

∑
A

μ(uA xu∗
A ) ≤ 1

2n
∑
A

μ(x) = μ(x). �

The following corollary extends (3) to arbitrary symmetric operator spaces.

Corollary 3.2. Let (E(M, τ), ‖ ·‖E(M,τ)) be a symmetric operator space on (M, τ) defined 
in Theorem 2.2. If e1, e2, . . . , en ∈ M are projections with eiej = 0, i �= j, and if 
x ∈ E(M, τ), then

‖e1xe1 + e2xe2 + . . . + enxen‖E(M,τ) ≤ ‖x‖E(M,τ) .

Proof. The assertion of Corollary 3.2 follows from that of Theorem 3.1 combined with 
[24, Corollary 3.4.3] (see also [19, p. 84]). �

Now, we are ready to present the strengthened version of a triangle inequality for 
uniform submajorizations. This improves the main result in [25] and complements the 
result of [9, Lemma A.1].
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Theorem 3.3. Let T, S ∈ S(M, τ), S∗ = S, T ≥ 0. If −T ≤ S ≤ T , then S � T .

Proof. Set p = ES(0, ∞). We have S+ = pSp ≤ pTp and S− = −(1 − p)S(1 − p) ≤
(1 − p)T (1 − p). Thus, by Theorem 3.1

|S| = S+ + S− ≤ pTp + (1 − p)T (1− p) � T,

i.e., S � T . �
Corollary 3.4. If Ti ∈ S(M, τ), T ∗

i = Ti, i = 1, 2, then

|T1 + T2| � |T1| + |T2|.

Proof. We need only to observe that

−(|T1| + |T2|) ≤ T1 + T2 ≤ |T1| + |T2|

and apply Theorem 3.3. �
It is quite remarkable that the result of Theorem 3.1 fails for infinite sequences of 

pairwise orthogonal projections. That is, generally speaking, the implication

∞∑
j=1

ejxej � x, x ∈ S(M, τ)

fails for the situation when e1, e2, . . . ∈ M are projections with eiej = 0, i �= j, and the 
series on the left hand side is understood convergent in measure topology (see e.g. [13]
or [24]). We demonstrate this failure in Theorem 3.5 below. To make the presentation 
smoother, we recall a few notions and introduce some notations.

Following [19], a symmetric (function or sequence) space E is called relatively fully 
symmetric if and only if

f, g ∈ E, g ≺≺head f ⇒ ‖g‖E ≤ ‖f‖E .

The space E is relatively fully symmetric if and only if E is a closed subspace of a fully 
symmetric space [19]. For clarity, we shall also address to those spaces as those whose 
norm is monotone with respect to Hardy–Littlewood–Pólya submajorization. There exist 
symmetric sequence spaces E which do not admit an equivalent relatively fully symmetric 
norm (in particular, any such space is not a closed subspace of any fully symmetric 
sequence space). We refer to [26] for such examples and additional references.

Let E = E(Z+) be a symmetric sequence space, let H = �2 be a space of all square 
summable sequences with standard basis (en) and let E be the corresponding symmet-
rically normed ideal (see Theorem 2.2). We shall use a standard notation for elements 
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from E . The matrix (xi,j) representing the elements x ∈ E is defined by xi,j = (xej , ei), 
1 ≤ i, j < ∞. We shall use the matrix elements eij ∈ E defined by

eij(k, l) = δki δ
l
j , 1 ≤ i, j, k, l < ∞.

Clearly, the sequence (ekk)k≥0 is a sequence of pairwise orthogonal one-dimensional 
projections in B(�2).

Theorem 3.5. Let (E, ‖ · ‖E) be a symmetric Banach sequence space whose norm is not 
monotone with respect to the Hardy–Littlewood submajorization. There exists a positive 
operator A ∈ E such that

‖
∑
k≥0

ekkAekk‖E > ‖A‖E .

Proof. Let us consider a closed subspace F of E generated by the closure in E of all 
finitely supported sequences from E. It is well-known that (F, ‖ · ‖E) is a separable 
symmetric sequence space and hence it is fully symmetric (see e.g. [23, Theorem II.4.10]). 
Taking into account that the space �1 is a subset of any symmetric sequence space (see 
e.g. [24, Example 2.6.7(c)]), in particular �1 ⊂ F , we infer that for any elements x, y ∈ �1, 
the assumption y ≺≺head x implies ‖y‖E ≤ ‖x‖E .

By the assumption there exist elements x = μ(x), y = μ(y) ∈ E such that y ≺≺head x

and ‖y‖E > ‖x‖E . The preceding argument shows, that it is not possible that both 
elements x and y belong to �1; in particular, taking into account that �1 is fully symmetric, 
we must have x /∈ �1. Let us show that, there exists z = μ(z) /∈ �1 such that z ≺≺head x

and ‖z‖E > ‖x‖E . To this end, assume that y ∈ �1, y ≺≺head x and ‖y‖E > ‖x‖E and 
set

f(λ) = λx + (1 − λ)y, λ ∈ (0, 1).

Obviously, the mapping λ → f(λ) is continuous from (0, 1) into (E, ‖ · ‖E) and therefore, 
there exists λ0 ∈ (0, 1) such that

‖f(λ0)‖E > ‖x‖E .

Let us set z = f(λ0) and observe that, by the definition, z = μ(z) and that for every 
n ≥ 0, we have

n∑
k=0

μ(k, z) = λ

n∑
k=0

μ(k, x) + (1 − λ)
n∑

k=0

μ(k, y) ≤
n∑

k=0

μ(k, x),

that is z ≺≺head x. Since x /∈ �1, we conclude that z /∈ �1. Thus, until the end of 
the proof, we may assume that x = μ(x), y = μ(y) ∈ E such that y ≺≺head x, that 
‖y‖E > ‖x‖E and that x, y /∈ �1.
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By the fundamental Kaftal–Weiss theorem (see [21] and also [24, Theorem 7.5.2]), 
there exists a positive compact operator A ∈ B(�2) such that μ(A) = x and such that

ekkAekk = y(k)ekk, k ≥ 0.

In particular,

μ
(∑

k≥0

ekkAekk

)
= y.

Since ‖y‖E > ‖x‖E , we obtain ‖ 
∑

k≥0 ekkAekk‖E > ‖A‖E . �
4. Reverse inequality for the block projection operator

4.1. Δ-normed spaces

For convenience of the reader, we recall the definition of Δ-norm, which extends and 
generalizes the notion of quasi-norm. Let Ω be a linear space over the field C. A function 
‖·‖ from Ω to R is a Δ-norm [18], if for all x, y ∈ Ω the following properties hold:

(1) ‖x‖ � 0, ‖x‖ = 0 ⇔ x = 0;
(2) ‖αx‖ � ‖x‖ for all |α| ≤ 1;
(3) limα→0 ‖αx‖ = 0;
(4) ‖x + y‖ ≤ CΩ · (‖x‖ + ‖y‖) for a constant CΩ ≥ 1 independent of x, y.

The couple (Ω, ‖·‖) is called a Δ-normed space.

Definition 4.1. [15,17] Let a semifinite von Neumann algebra M be equipped with a 
faithful normal semifinite trace τ . Let E be a linear subspace in S(M, τ) equipped with 
a Δ-norm ‖·‖E . We say that E is a symmetrically Δ-normed operator space if X ∈ E and 
every Y ∈ S(M, τ) the assumption μ(Y ) ≤ μ(X) implies that Y ∈ E and ‖Y ‖E ≤ ‖X‖E .

More information concerning symmetrically Δ-normed operator spaces may be found 
in [7, pp. 1427–1429].

Remark 4.2. By defining that

‖x‖S = inf
t>0

{t + μ(t;x)} , x ∈ S(M),

we obtain a symmetric Δ-norm ‖·‖S on S(M, τ), [17, Remark 3.4]. Moreover, the topol-
ogy induced by ‖·‖S is equivalent to the measure topology [17, Proposition 4.1].
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We end this subsection by discussing interpolation between L1(M, τ) and L0(M, τ), 
where L0(M, τ) consists of elements in S(M, τ) whose supports have finite trace [8,17]. 
We denote ‖x‖L0

= τ(supp(x)), x ∈ L0(M, τ). For T : L0(M, τ) → L0(M, τ), we write

‖T‖L0→L0
= sup

f∈L0

τ(supp(Tf))
τ(supp(f)) .

For the interpolation couple (L0(M, τ), L1(M, τ)) of Δ-normed spaces, the space 
(L0 ∩ L1)(M, τ) is equipped with a group-norm by setting

‖x‖L0∩L1
= max{‖x‖L0

, ‖x‖L1
}, x ∈ L0(M, τ) ∩ L1(M, τ),

and the space (L0 + L1)(M, τ) is equipped with a Δ-norm by setting

‖x‖L0+L1
= inf

x=x0+x1,x0∈L0,x1∈L1
‖x0‖L0

+ ‖x1‖L1
, x ∈ (L0 + L1)(M, τ).

A space E(M, τ) is said to be intermediate for L0(M, τ) and L1(M, τ) if the contin-
uous embeddings

L0(M, τ) ∩ L1(M, τ) ⊂ E(M, τ) ⊂ L0(M, τ) + L1(M, τ)

hold. Let E(M, τ) be a symmetrically Δ-normed space intermediate between L0(M, τ)
and L1(M, τ).

Definition 4.3. If every linear operator on L0(M, τ) + L1(M, τ) whose reductions on 
L0(M, τ) and L1(M, τ) are both contractions is also a bounded operator from E(M, τ)
to E(M, τ) and if

‖T‖E→E ≤ CE ,

for some positive constant CE, which depends only on E, then E(M, τ) is called an 
interpolation space between the spaces L0(M, τ) and L1(M, τ).

4.2. Reverse submajorization

We need below another partial orderings, which is defined for functions from (L0 +
L1)(0, ∞), where L0 ⊂ S(0, ∞) is the collection of all functions whose support has finite 
measure. For f, g ∈ (L0 + L1)(0, ∞), we write g ≺≺tail f if and only if

∞∫
μ(s, g)ds ≤

∞∫
μ(s, f)ds, t > 0.
t t
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For the case f, g ∈ L1(0, ∞), ‖f‖1 = ‖g‖1, the notion of reverse submajorization is 
equivalent to that of supermajorization. In other words, we have g ≺≺tail f is equivalent 
(under the above conditions) to f ≺≺head g. A classical notation for supermajorization 
is g ≺w f .

Proposition 4.4. Let E be a symmetrically Δ-normed space which is an interpolation 
space between L0 and L1. If x ∈ E and y ≺≺tail x, then y ∈ E and ‖y‖E ≤ cE‖x‖E.

Proof. Let us fix such x and y. Setting q = 1 in [8, Lemma 3.9] yields an operator 
T : L0 + L1 → L0 + L1 such that Tx = y and

‖T‖L0→L0 ≤ 4, ‖T‖L1→L1 ≤ 6.

Let s → σs, s > 0, be the action of multiplicative group R+ by dilations, that is,

(σsf)(t) = f( t
s
), t > 0.

Define an operator S : L0 + L1 → L0 + L1 by setting

Sf = 2
3σ

1
4
f, f ∈ L0 + L1,

so that

S−1f = 3
2σ4f, f ∈ L0 + L1.

It is immediate that

‖S ◦ T‖L0→L0 ≤ 1, ‖S ◦ T‖L1→L1 ≤ 1.

Since E is an interpolation space between L0 and L1, it follows that ‖S ◦T‖E→E ≤ CE , 
where CE is an interpolation constant from Definition 4.3. Since S−1 : E → E is a 
bounded mapping, it follows that

‖y‖E = ‖(S−1 ◦ S ◦ T )(x)‖E ≤ ‖S−1‖E→E‖S ◦ T‖E→E · ‖x‖E . �
Let I be either finite or infinite interval equipped with Lebesgue measure. If f, g ∈

L1(I), then we say g ≺head f if g ≺≺head f and also ‖g‖1 = ‖f‖1.

Example 4.5. If 0 ≤ x, y ∈ Lp(I) and y ≺≺tail x, 0 < p ≤ 1, then y ∈ Lp(I) and 
‖y‖p ≤ ‖x‖p.

Proof. Step 1: Suppose first that 0 ≤ x, y ∈ (L1 ∩ Lp)(I) are such that x ≺head y, or 
equivalently, that y ≺tail x.
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If I = (0, 1), then the inequality ‖y‖p ≤ ‖x‖p is established in Lemma 25 in [2]. 
Alternatively, one can infer this inequality from Theorem 2.5 in [11] (applied to the 
convex function t → −tp).

Suppose that I = (0, α), 0 < α < ∞. Let σα−1 be the dilation action on S(R+, m)
given by (σα−1f)(s) = f(αs). It is immediate that σα−1x ≺head σα−1y. Functions σα−1x

and σα−1y live on the interval (0, 1). By the preceding paragraph, we have

‖y‖p = α
1
p ‖σα−1y‖p ≤ α

1
p ‖σα−1x‖p = ‖x‖p.

This proves the inequality ‖y‖p ≤ ‖x‖p for the functions on finite interval.
Consider now the case of the semiaxis. We may assume without loss of generality that 

x = μ(x) and y = μ(y).
Let n be a positive integer. We have xχ(0,n) ≺≺head yχ(0,n). Let t(n) ≤ n be selected 

so that

n∫
0

xdm =
t(n)∫
0

ydm.

By the preceding paragraph, we have

‖xχ(0,n)‖p ≥ ‖yχ(0,t(n))‖p.

Let us denote

t = lim inf
n→∞

t(n).

We have

‖x‖p = lim
n→∞

‖xχ(0,n)‖p ≥ lim
n→∞

‖yχ(0,t(n))‖p = ‖yχ(0,t)‖p.

Choosing a sequence nk ↑ ∞ such that t(nk) → t as k → ∞. We have

t∫
0

ydm = lim
k→∞

t(nk)∫
0

ydm = lim
k→∞

nk∫
0

xdm =
∞∫
0

xdm.

However, by the assumption, we have x ≺head y and, in particular,

∞∫
0

ydm =
∞∫
0

xdm.

This implies, y|(t,∞) = 0. So, the inequality above yields the assertion.
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Step 2: Consider now the general case. Without loss of generality, x = μ(x) and 
y = μ(y). By Lemma 3.5 in [8], there exists a collection (Δk)k≥0 of pairwise disjoint sets 
such that

(1) x|Δk
≺head y|Δk

for all k ≥ 0;
(2) y ≤ x on the complement of ∪k≥0Δk.

It follows from Step 1 that

‖yχΔk
‖p ≤ ‖xχΔk

‖p.

Obviously,

‖yχ(∪k≥0Δk)c‖p ≤ ‖xχ(∪k≥0Δk)c‖p.

Thus,

‖y‖pp =
∑
k≥0

‖yχΔk
‖pp + ‖yχ(∪k≥0Δk)c‖pp

≤
∑
k≥0

‖xχΔk
‖pp + ‖xχ(∪k≥0Δk)c‖pp = ‖x‖pp. �

4.3. Reverse inequality for Δ-normed spaces

Lemma 4.6. Let e1, e2, . . . , en ∈ M be projections with eiej = 0, i �= j, and such that 
∨n
i=1ei = 1. If 0 ≤ x ∈ (L0 + L1)(M, τ), then

x ≺≺tail e1xe1 + e2xe2 + . . . + enxen.

Proof. For x ∈ L1(M, τ), it is proved in [10, Corollary 3.4] (see also [12, Lemma 6.1]
and [6]) that

e1xe1 + e2xe2 + . . . + enxen ≺≺head x.

In fact, for a positive x, we obviously have

e1xe1 + e2xe2 + . . . + enxen ≺head x.

Thus,

x ≺tail e1xe1 + e2xe2 + . . . + enxen.

This proves the assertion for x ∈ L1(M, τ).
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Consider now the general case. We have min{x, m} ∈ L1(M, τ) for all m ∈ Z+. By 
the preceding paragraph, we have

min{x,m} ≺tail e1 min{x,m}e1 + e2 min{x,m}e2 + . . . + en min{x,m}en
≤ e1xe1 + e2xe2 + . . . + enxen.

Thus,

∞∫
t

μ(s, x)ds = lim
m→∞

∞∫
t

μ(s,min{m,x})ds

≤ lim
m→∞

∞∫
t

μ(s, e1xe1 + e2xe2 + . . . + enxen)ds

=
∞∫
t

μ(s, e1xe1 + e2xe2 + . . . + enxen)ds. �

Theorem 4.7. Let e1, e2, . . . , en ∈ M be projections with eiej = 0, 1 ≤ i �= j ≤ n, and 
such that ∨n

i=1ei = 1. Let E be an interpolation space between L0 and L1. If 0 ≤ x ∈
E(M, τ), then

‖
n∑

i=1
eixei‖E ≥ cE‖x‖E .

Proof. The assertion follows from Lemma 4.6 and Proposition 4.4. �
Example 4.8. Let e1, e2, . . . , en ∈ M be projections with eiej = 0, 1 ≤ i �= j ≤ n, and 
such that ∨n

i=1ei = 1. If 0 ≤ x ∈ Lp(M, τ), 0 < p ≤ 1, then

‖
n∑

i=1
eixei‖p ≥ ‖x‖p.

Proof. The assertion follows from Lemma 4.6 and Example 4.5. �
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Appendix A

Let {Hn = �n2}∞n=1 be a sequence of finite dimensional Hilbert spaces and consider 
their Hilbertian direct sum

H =
2
⊕n≥1Hn.

Let {An}∞n=1 be a sequence of self-adjoint operators, with An ∈ B(Hn). Let A denote 
their direct sum (notation A = ⊕∞

n=1An). Namely A is defined on the domain

D(A) =
{
{ξn}∞n=1 ∈ H :

∞∑
n=1

‖An(ξn)‖2 < ∞
}
,

by setting A(ξ) = {An(ξn)}∞n=1 for any ξ = {ξn}∞n=1 in D(A). Then A is a self-adjoint 
(possibly unbounded) operator on H.

Consider the von Neumann algebra

N = ⊕n≥1B(Hn)

equipped with the trace

τ = ⊕n≥1αnTrn, where αn = 1
n log2(1 + n)

,

and where Trn is the standard trace on the algebra B(Hn), which we shall below view as 
the algebra of all complex n ×n matrices (xij)ni,j=1. Observe that 

∑∞
n=1 αn < ∞ whereas ∑∞

n=1 nαn diverges. We shall define an unbounded operator

A = ⊕∞
n=1An, An = (nxij)ni,j=1, where xij = 1, 1 ≤ i, j ≤ n.

Observe that we may also view the operator A as ⊕∞
n=1n

2qn where qn is a self-adjoint 
one dimensional projection from B(Hn) given by the matrix (q(n)

ij )ni,j=1 where q(n)
ij = 1

n

for all 1 ≤ i, j ≤ n, n ≥ 1. Obviously, we have that A is a self-adjoint positive operator 
such that AηN . Let us show that A ∈ S(N , τ). Indeed, let λ = 1. Estimating the value 
of distribution function nA(1), we have

nA(1) = τ(EA(1,∞)) =
∑
k≥2

αkTrk(qk) =
∑
k≥2

αk < ∞.

Now, let us consider the element

B = ⊕∞
n=1Bn Bn = (yij)ni,j=1, where yij = n, 1 ≤ i = j ≤ n, and yij = 0, i �= j.
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Again, we obviously have that B is a self-adjoint positive operator such that BηN . Let 
us show that B /∈ S(N , τ). Indeed, take λ equal to an arbitrary positive integer say N . 
Denoting 1n the unit element of B(Hn), we have

nB(N) = τ(EB(N,∞)) =
∑
k≥2

αkTrk(1k) =
∑
k≥N

kαk = ∞.

Observing that for every n ≥ 1, we have Bn =
∑n

k=1 e
n
kAne

n
k , where the sequence (enk)nk=1

is a sequence of one dimensional projections from B(Hn) given by

enk = (δkij)ni,j=1, where δkij = 1, when i = j = k, and δkij = 0, otherwise,

we arrive at the situation when for a τ -measurable operator A there exists a sequence of 
pairwise orthogonal projections (en)n≥1 ⊂ N such that 

∑
n≥1 enAen is not τ -measurable.

An argument above shows that the inequality established in Theorem 4.7 makes no 
sense for infinite sequences of pairwise orthogonal projections. Indeed, in the setting of 
that theorem, if for example E = Lp, 0 < p < 1, and x ∈ Lp(M, τ), one simply cannot 
speak about ‖ 

∑
n≥1 enxen‖p when the operator 

∑
n≥1 enxen fails to be τ -measurable.
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