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Abstract: Long time of data encoding with software encoding mechanisms might become a significant problem when
transferring digital data from cameras of mobile robots. At the same time, processor manufacturers claim that an encoding
process is significantly accelerated by using a hardware encoding. This work is dedicated to a hardware and a software
video encoding comparison of two state-of-the-art codecs, which were selected due to their high popularity in computer
vision and robotics fields - a hardware encoding with h264 vaapi and a software encoding with FFmpeg API libx265
codec. We encoded six video sequences of different resolutions and sizes with the two codecs and evaluated obtained
video quality using the Structural Similarity Index, the Peak Signal-to-Noise ratio, and the Video Multimethod Assessment
Fusion metrics. Software and hardware encoding processes were also compared by CPU and memory usage, and time
that was taken by the encoding process. Our results demonstrated that the hardware encoding with h264 vaapi was 5
times more memory efficient and 6 times more time-efficient relatively to the software encoding with libx265, with an
insignificant difference of an output video quality.

Keywords: Computer vision, Robot vision, Video stream, Hardware encoding, Software encoding, Intel QuickSync,
FFmpeg.

1. INTRODUCTION
Visual perception is one of the most important sources

of external information in mobile robotics. A typical
mobile robot, especially a UAV, has rather severe limita-
tions of an available on-board power source, while broad
variety of applications (e.g., Simultaneous Localization
and Mapping [1], convolutional neural network based vi-
sual localization [2], path planning [3]) require intensive
calculations. This issue is often approached by trans-
ferring data to a more powerful remote off-board com-
puter, which are traditionally more powerful than on-
board computers of mobile robots and thus could process
collected data more efficiently [4], [5].

Generally, a remote data transfer requires encoding of
original raw data, which is captured by on-board robot
sensors or input devices, since the data is typically ex-
ceedingly large and often contains excessive information.
Due to data redundancy, they could be compressed and
encoded almost (or even) without significant information
loss. An encoding is a process that translates data to some
space-efficient format using various codecs [6]. Video
codecs are employed in DVD players, Internet video,
video on demand (VOD), digital cable and terrestrial tele-
vision, videotelephony, and a variety of other applica-
tions, including mobile robots [7]. Mobile robots gather
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visual sensory data, encode them and transmit to remote
off-board computers for further decoding and processing.

Currently, most popular video formats are H.264 [8],
HEVC (High Efficiency Video Coding) [9], MPEG4, and
3GP. In our previous research [10] we developed a Real
Time Streaming Protocol (RTSP) video server for Ser-
vosila Engineer crawler robot [11] using only a software
encoding approach that was based on HEVC encoder and
Live555 RTSP framework. Our server was written in
C++. It uses Video4Linux API [12] to capture video
frames from the robot on-board cameras and libx265 en-
coding library to compress video data before transmit-
ting them via a network to a remote operator. A per-
formance analysis demonstrated that on-board video en-
coding demands a high computation power, i.e., CPU us-
age. Thus, in the current study, we modified our software
by using hardware resources of a computer, namely Intel
QuickSync technology.

A software encoders comparison [13], which included
x264 (H.264/AVC), x265 (HEVC) and libvpx (VP9) en-
coder implementations, demonstrated that not only x265
but libvpx could lead to significantly lower data rates
over x264. These experiments demonstrated a superi-
ority of x265 over x264 and libvpx, especially for low
video resolution cases. Software and hardware HEVC
encoders comparison [14] showed that the QuickSynk
Video (QSV) encoder had the lowest power consump-
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tion. Yet, it was impossible to directly compare QSV with
other encoders, as the authors used another computer for
QSV tests.

A hardware-accelerated H.264 implementation could
significantly reduce a generated stream bandwidth com-
paratively to JPEG compression [15]. According to
this study, Intel QuickSync showed significant improve-
ment in offloading a CPU, but lacked a performance
improvement in dropped frames number, bit-rate, and
encoding speed. If there would have been no frame
drops at measured frame rates, Intel QuickSync could be
stated as being superior to libjpeg-turbo. Another work
on video encoding standards, which covered MPEG-
2, H.263, MPEG-4, and a draft video coding standard
H.264/AVC, demonstrated that H.264/AVC compliant
encoders achieved essentially a same reproduction qual-
ity as encoders that are compliant with previous standards
while requiring 60% or less of their bit-rate [16].

The purpose of our research is to implement video en-
coding using hardware and software encoders, compare
them and select an effective way of encoding videos for
real-time video server implementation, which could be
further integrated into a mobile robot RTSP video server.
The main contribution of this work was Intel processor’s
capabilities evaluation in reducing a CPU usage of en-
coding process and increasing an encoding speed while
keeping a feasible video quality level.

The rest of the paper is organized as follows. Video
encoders, pixel formats, and video quality metrics used
in the study are described in Section 2. Software archi-
tecture and implementation details are presented in Sec-
tion 3. Experimental results are evaluated, compared and
discussed in Section 4. Finally, we conclude in Section 5.

2. VIDEO ENCODING
2.1. Pixel format

Pixel format describes a layout of each pixel in image
data of a picture or a video. YUV420p format is based on
the YUV color encoding system. The Y’UV model de-
fines a color space in terms of one luma component (Y’)
and two chrominance components: blue projection U and
red projection V. Y’UV420p is a planar format with Y’,
U, and V values being grouped together, which makes
an image more ”compressible”: the Y’UV420p format
stores image data as an array, where all Y’-values come
first, followed by all U-values and finally followed by all
V-values.

RGB is another popular color model of an additive
type where red R, green G, and blue B primary colors’
weighted combinations produce a broad variety of col-
ors. The RGB color model is employed in sensing, repre-
sentation, and displaying of images in electronic systems,
such as televisions and computers, though it is also used
in conventional photography.

2.2. Quality metrics
In order to compare encoders we use Peak Signal-to-

noise Ratio, Structural Similarity Index, and Video Mul-

timethod Assessment Fusion quality metrics.
Peak Signal-to-noise Ratio (PSNR) is a ratio be-

tween a maximum possible power of a signal and a
power of corrupting noise that affects its representation
fidelity [17, 18]. It is computed per-frame and aver-
aged across all frames [19] and could be defined via
mean squared error (MSE). Given a noise-free m ∗ n
monochrome image I and its noisy approximation K,
MSE is defined by Eq. 1 and PSNR if defined by
Eq. 2 [20].

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[
I(i, j)−K(i, j)

]2
(1)

PSNR = 10 · log10
(MAX2

I

MSE

)
(2)

where MAXI is a maximum possible pixel value, which
is 255 for 8-bit pixel representation.

Structural Similarity Index (SSIM) is a method for pre-
dicting a perceived quality of digital images and videos,
including digital television and cinematic pictures. SSIM
measures a similarity between two images and is calcu-
lated in different windows of an image. SSIM measure
between two square windows x and y of an equal size
N ×N is defined by Eq. 3 [21]:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where:
- µx is an average value of all pixels in window x,
- µy is an average value of all pixels in window y,
- σ2

x is a variance of all pixels in window x,
- σ2

y is a variance of all pixels in window y,
- σxy is a covariance of pixels in window x and y,
- c1 = (k1L)

2, c2 = (k2L)
2 are two variables that stabi-

lize a division with a weak denominator,
- L is a dynamic range of pixel-values (typically this is
2#bits per pixel − 1),
- coefficients k1 = 0.01 and k2 = 0.03.

Video Multimethod Assessment Fusion (VMAF) is an
objective full-reference video quality metric developed
by Netflix, The University of Southern California and
The University of Texas at Austin [22]. It predicts a sub-
jective video quality based on a reference and a distorted
video sequence. The metric can be used to evaluate qual-
ity of different video codecs, encoders, encoding settings,
and video data transfer. VMAF Development Kit is an
open-source package on Github.

2.3. Encoders overview
A hardware encoding uses a dedicated media proces-

sor, which yields a higher performance due to a lower
CPU load. The hardware is designed for a predefined
set of codecs. Intel QuickSync Video uses a media pro-
cessor to make a rapid video processing and conversion
with a sufficient quality level. If the II-IV generation
of Intel Core processors are utilized, it is possible to
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use the QSV H.264 encoder. The Intel Skylake proces-
sor allows using the QSV HEVC encoder. FFmpeg pro-
vides QSV codecs and Video Acceleration API (VA-API)
codecs for hardware-accelerated coding. In our research,
we used VA-API implementation (h264 vaapi by FFm-
peg), which allows applications to use hardware video
acceleration capabilities, usually provided by a graph-
ics processing unit (GPU). VA-API is implemented as
an open-source library (libva), which is combined with a
hardware-specific driver, and is usually provided together
with a GPU driver. VA-API is natively supported by Intel
QuickSync drivers for Linux.

The x264 codec is considered to be the leading open-
source implementation for H.264/AVC encoding [13]. It
is widely used by web services, television broadcasters,
and Internet service providers. The x265 codec is the
x264 codec adaptation for HEVC encoding, which at a
lower resolution of 360p appeared to be more efficient
than a software video codec library libvpx of Google
and the Alliance for Open Media. In [13] authors com-
pared x265, x264 and libvpx using PSNR-based BD-rate
metrics. The comparison demonstrated that x265 had
30.8% higher results than x264 with regard to this met-
rics, while libvpx outperformed x264 only by 22.6%. Yet,
at higher resolutions the gap between x265 and libvpx
performance decreased, e.g., at 1080p they increased the
performance relatively to x264 to 43.4% and 43.5% re-
spectively (while the mutual gap decreased to only 0.1%).
Considering vulnerable for data loss wireless environ-
ments, HEVC was more stable for different packet loss
rates than H.264/AVC [23]. Moreover, HEVC turned out
to be especially effective for low bitrates and low-delay
communication scenarios.

Table 1 Comparison of acceleration technologies for a
task of encoding a video source of 4 minutes length,

1080i Full HD quality and 449 MB size into 1024x768
H.264 on Core i7-2600K CPU. The table data are

reported in [24]

Encoding apps
GPU type CyberLink

MediaEspresso
Arcsoft

MediaConverter 7
Intel HD Graph-
ics 3000

22 sec 41 sec

Nvidia GeForce
GTX 570

83 sec 76 sec

AMD Radeon
HD 6870

86 sec 68 sec

No acceleration 172 sec 95 sec

In [24] authors reported a test with Acrsoft Media-
Converter 7 app demonstrating that the Intel Quick Sync
optimized encoding significantly outperformed Nvidia’s
card accelerated encoding and H.264 encoding with no
hardware acceleration. In experiments on Core i7-2600K
CPU with 449 MB source data of 1024x768 resolution,
the Intel Quick Sync accelerated encoding took 41 sec-

ond with a neglectfully low CPU load, while software
encoding took 95 seconds with 30% CPU load. Cyber-
Link’s MediaEspresso app with the Intel Quick Sync op-
timizations converted the same source into iPad playback
video within 22 seconds, while for H.264 encoding with
no acceleration it took 172 seconds. Table 1 structures
the results of different hardware acceleration technolo-
gies comparison from [24].

Filtering

EncodingVideo server

Images

Fig. 1 Images go through filtering and encoding stages,
and then are processed by the video server.

3. IMPLEMENTATION
Figure 1 presents stages of video frames’ (images) en-

coding. These include pre-processing (filtering), encod-
ing and transferring them to our RTSP server. The RTSP
server software encoding was implemented in our previ-
ous work [10], while in this work we implement a hard-
ware encoding.

Preprocessing

Create HW 
encoding 
interface

Transfer 
data to HW 

device

yuv420p nv12

Encoding

Fig. 2 The hardware encoding flow.

The hardware encoding workflow is demonstrated
in Fig. 2. At a preprocessing stage raw yuv420p
pixel format frame is converted into nv12 format us-
ing FFmpeg API. Next, we create a hardware en-
coding interface with all encoding parameters using
av hwdevice ctx create function. An encod-
ing codec is initialized using avcodec open2 FFm-
peg function, and raw data are transmitted from a
user space (application) to a hardware device us-
ing av hwframe transfer data function. Pre-
processed frames are issued to the h264 vaapi en-
coder by invoking avcodec send frame function.
Finally, the encoded packets are obtained using
avcodec receive packet function. In the software
encoding module of our server raw input frames are con-
verted from yuv420p into yuv420 format at a preprocess-
ing stage, followed by buffering the frames in order to
control a frame rate, filtering (or re-sampling) in order to
reduce an image size, and H.265 encoding (Fig. 3).
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Preprocessing

BufferingFiltering

yuv420p yuv422p

Encoding

Fig. 3 The software encoding flow.

4. EXPERIMENTS
In our experiments, we encoded raw videos using the

described in Section 3 software and hardware encoding
approaches, and compared results using video metrics
from Section 2.2. Each video was encoded 10 times with
the hardware (h264 vaapi) and the software (libx265) en-
coders. The experimental system properties are described
in Table 2. Three sample videos of 640x480 and three
videos of 1280x720 resolution, all of different sizes, were
selected for experiments (Table 3). All input videos had
yuv420p pixel format.

Table 2 The experimental system properties

Parameter Value
RAM 8GB
CPU Intel core m5-6Y54

CPU frequency 2.7 GHz
Number of cores 4

OS Ubuntu 16.04

After encoding, we compared the input and the output
videos using SSIM, PSNR, and VMAF metrics. SSIM
and PSNR metrics comparison was performed with FFm-
peg API. VMAF was evaluated using VMAF Python li-
brary by Netflix [25]. We calculated a duration, a CPU
and a RAM usage of each encoding process. The CPU
and the RAM usage were computed with ATOP tool, a
performance monitor for Linux [26].

Table 3 Input videos parameters.

Video Resolution Size Bitrate Duration
ID (MB) (Kbps) (seconds)
1 640x480 168 92160 15
2 640x480 341 92160 30
3 640x480 728 92160 66
4 1280x720 175 276480 5
5 1280x720 445 276480 15
6 1280x720 975 276480 30

We used FFmpeg h264 vaapi encoder for hardware en-
coding and FFmpeg libx265 for software encoding ex-
periments [10]. For libx265 we used an ultra-fast preset,
which performs faster encoding and produces a smaller
output file size comparatively to a medium preset. The
output video quality of the medium preset is obviously

superior to the ultra-fast preset. But since we target
for real-time streaming applications (e.g., a mobile robot
teleoperation task), optimizing encoding time and speed
is more important than obtaining a higher quality of a re-
sulting video. Moreover, slower presets are featured with
a higher memory usage.

Fig. 4 Average PSNR values for six hardware (red) and
software (blue) encoded video sequences. The Y-axis
of PSNR is non-dimensional.

Figure 4 displays average PSNR values that were com-
puted for the six videos. The X-axis shows a video
ID, from 1 to 6. The Y-axis shows the average PSNR
value (Eq. 2) corresponding to each video ID and is non-
dimensional. In all cases PSNR values of hardware en-
coded videos were higher than of the software encoded
ones. The higher PSNR value denotes a better quality.

Figure 5 displays the average SSIM values that were
computed for the six videos. The X-axis shows a video
ID, from 1 to 6. The Y-axis shows the average SSIM
value (Eq. 3) corresponding to each video ID and is non-
dimensional. In all cases SSIM values of hardware en-
coded videos were higher than of the software encoded
ones. If the SSIM equals to 1 this would denote an
absolute similarity between a reference and an encoded
videos, i.e., the higher SSIM value denotes a better result-
ing video quality. It should be noted that as videos’ res-
olution increases (videos 1-3 vs 4-6, Table 3), the SSIM
difference between the hardware and the software encod-
ing increases as well.

Fig. 5 Average SSIM values for 6 hardware (red) and
software (blue) encoded video sequences. The Y-axis
of SSIM is non-dimensional.

Figure 6 displays the average VMAF values that were
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computed for the six videos. The X-axis shows a video
ID, from 1 to 6. The Y-axis shows the average VMAF
value (calculated with the Netflix library) corresponding
to each video ID and is non-dimensional. In contrary to
the PSNR and the SSIM, the VMAF also takes into an
account temporal characteristics of an input video (Ta-
ble 3, last column).VMAF values for software encoding
were slightly higher than for hardware encoding, while
the higher values should be preferred.

Fig. 6 Average VMAF values for 6 hardware (red) and
software (blue) encoded video sequences. The Y-axis
of VMAF is non-dimensional.

Figures 7, 8, and 9 demonstrate an average CPU, RAM
and time usage accordingly, for each video with the soft-
ware and the hardware encoding. In each case the soft-
ware encoding used 3-4 times more CPU than the hard-
ware encoding. Moreover, the hardware encoding used
about 5 times less RAM in average, each time having sta-
ble and relatively small values, while the software encod-
ing demonstrated different RAM usage for every input
video. In addition, in each case the software encoding
consumed about 6 times more time than the hardware en-
coding.

Fig. 7 Average 4 cores CPU usage of the hardware and
the software encoding for 6 input videos.

5. CONCLUSION AND FUTURE WORK
This paper presented a comparison of video encoding

for the hardware encoding with FFmpeg h264 vaapi and
the software encoding with libx265 encoders. We imple-
mented encoding in C++ using FFmpeg libraries and en-
coded 6 different videos with the hardware and the soft-
ware approaches, 10 times for each video. The resulting

Fig. 8 Average RAM usage of the hardware and the soft-
ware encoding for 6 input videos.

Fig. 9 Average time of the hardware and the software
encoding for 6 input videos.

quality of encoding was compared using PSNR, SSIM
and VMAF metrics. The hardware encoding showed bet-
ter results with regard to PSNR and SSIM metrics, but
was slightly outperformed by the software encoding for
VMAF metrics. The comparison demonstrated that the
hardware encoding with h264 vaapi consumed about 6
times less encoding time and about 5 times less RAM
than the software encoding with libx265. Moreover, CPU
load of the hardware encoding was 3-4 times less than of
the software encoding. At the same time, the resulting
video quality of the hardware and the software encod-
ing did not differ significantly. Therefore, if an encod-
ing application is applied for mobile robotics tasks where
the importance of real-time streaming ultimately domi-
nates over insignificant differences in video frame (im-
age) quality, the hardware encoding should be preferred
over the software encoding.

As a part of our future work, we plan to add a hardware
encoding module to our RTSP server for Servosila Engi-
neer mobile robot [27]. Next, the new hardware encoding
module performance will be compared with the existing
software encoding module in order to confirm the find-
ings of the current study using the target hardware and
real world environment setup.
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