TRACE AND COMMUTATORS OF MEASURABLE OPERATORS AFFILIATED TO A VON NEUMANN ALGEBRA

A. M. Bikchentaev

UDC 517.983, 517.986

Abstract. In this paper, we present new properties of the space $L_1(\mathcal{M}, \tau)$ of integrable (with respect to the trace τ) operators affiliated to a semifinite von Neumann algebra \mathcal{M} . For self-adjoint τ -measurable operators A and B, we find sufficient conditions of the τ -integrability of the operator $\lambda I - AB$ and the real-valuedness of the trace $\tau(\lambda I - AB)$, where $\lambda \in \mathbb{R}$. Under these conditions, $[A, B] = AB - BA \in L_1(\mathcal{M}, \tau)$ and $\tau([A, B]) = 0$. For τ -measurable operators A and $B = B^2$, we find conditions that are sufficient for the validity of the relation $\tau([A, B]) = 0$. For an isometry $U \in \mathcal{M}$ and a nonnegative τ -measurable operator A, we prove that $U - A \in L_1(\mathcal{M}, \tau)$ if and only if $I - A, I - U \in L_1(\mathcal{M}, \tau)$. For a τ -measurable operator A, we present estimates of the trace of the autocommutator $[A^*, A]$. Let self-adjoint τ -measurable operators $X \ge 0$ and Y be such that $[X^{1/2}, YX^{1/2}] \in L_1(\mathcal{M}, \tau)$. Then $\tau([X^{1/2}, YX^{1/2}]) = it$, where $t \in \mathbb{R}$ and t = 0 for $XY \in L_1(\mathcal{M}, \tau)$.

Keywords and phrases: Hilbert space, linear operator, von Neumann algebra, normal semifinite trace, measurable operator, integrable operator, commutator, autocommutator.

AMS Subject Classification: 47C15, 46L51

CONTENTS

1. Introduction	8
2. Notation and Definitions	(
3. Lemmas and Examples	10
4. Basic Results	11
References	17

1. Introduction

Let a von Neumann algebra \mathcal{M} of operators act in a Hilbert space \mathcal{H} and τ be an exact, normal, semifinite trace on \mathcal{M} . We state new properties of the space $L_1(\mathcal{M}, \tau)$ of integrable operators affiliated to the algebra \mathcal{M} . For an operator $X \in L_1(\mathcal{M}, \tau)$, we examine conditions under which $\tau(X) \in \mathbb{R}$ or $\tau(X) = 0$. For self-adjoint τ -measurable operators A and B, we find sufficient conditions of the integrability of the operator $\lambda I - AB$ and the real-valuedness of the trace $\tau(\lambda I - AB)$, where $\lambda \in \mathbb{R}$. Under these conditions, the commutator [A, B] = AB - BA belongs to $L_1(\mathcal{M}, \tau)$ and $\tau([A, B]) = 0$ (see Theorems 4.1 and 4.2 and Propositions 4.1–4.4). For τ -measurable operators A and $B = B^2$, we find conditions sufficient for the validity of the relation $\tau([A, B]) = 0$ (Theorem 4.3). Item (ii) of Theorem 4.3 is a generalization of [6, Theorem 2.26].

For an isometry $U \in \mathcal{M}$ and a nonnegative τ -measurable operator A, we prove that $U - A \in L_1(\mathcal{M}, \tau)$ if and only if $I - A, I - U \in L_1(\mathcal{M}, \tau)$ (Theorem 4.5). For a τ -measurable operator A, we find estimates of the trace of autocommutator $[A^*, A]$ (Corollary 4.4 and Theorem 4.7).

Let self-adjoint, τ -measurable operators $X \ge 0$ and Y be such that $[X^{1/2}, YX^{1/2}] \in L_1(\mathcal{M}, \tau)$. Then

$$\tau([X^{1/2}, YX^{1/2}]) = it,$$

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 151, Quantum Probability, 2018.

where $t \in \mathbb{R}$ and t = 0 for $XY \in L_1(\mathcal{M}, \tau)$ (Theorem 4.8). Our results are new for the *-algebra $\mathcal{M} = \mathcal{B}(\mathcal{H})$ of all bounded linear operators in \mathcal{H} equipped with the canonical trace $\tau = \text{tr.}$

2. Notation and Definitions

Let \mathcal{M} be a von Neumann algebra of operators in a Hilbert space \mathcal{H} , \mathcal{M}^{pr} be the lattice of projectors in \mathcal{M} , I be the identity operator in \mathcal{M} , $P^{\perp} = I - P$ for $P \in \mathcal{M}^{\text{pr}}$, and \mathcal{M}^{+} be the cone of positive elements of \mathcal{M} .

A mapping $\varphi : \mathcal{M}^+ \to [0, +\infty]$ is called a *trace* if

$$\varphi(X+Y)=\varphi(X)+\varphi(Y),\quad \varphi(\lambda X)=\lambda\varphi(X)$$

for any $X, Y \in \mathcal{M}^+$ and $\lambda \ge 0$ (moreover, $0 \cdot (+\infty) \equiv 0$) and $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{M}$. A trace φ is said to be

- (i) exact if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+, X \neq 0$;
- (ii) semifinite if $\varphi(X) = \sup \{\varphi(Y) : Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty \}$ for all $X \in \mathcal{M}^+$;
- (iii) normal if for $X_i \nearrow X$ $(X_i, X \in \mathcal{M}^+)$ we have $\varphi(X) = \sup \varphi(X_i)$.

For a trace φ , we set

$$\mathfrak{M}_{\varphi}^{+} = \Big\{ X \in \mathcal{M}^{+} : \varphi(X) < +\infty \Big\}, \quad \mathfrak{M}_{\varphi} = \lim_{\mathbb{C}} \mathfrak{M}_{\varphi}^{+}$$

The restriction $\varphi|_{\mathfrak{M}^+_{\varphi}}$ can be continuously extended by linearity to a functional on \mathfrak{M}_{φ} , which will be denoted by the same symbol φ .

An operator in \mathcal{H} (not necessarily bounded or densely definite) is said to be affiliated to a von Neumann algebra \mathcal{M} if it commutes with an arbitrary unitary operator from the commutator subalgebra \mathcal{M}' of the algebra \mathcal{M} . In the sequel, we denote by τ an exact, normal, semifinite trace on \mathcal{M} . A closed operator X affiliated to \mathcal{M} whose domain $\mathcal{D}(X)$ is everywhere dense in \mathcal{H} is said to be τ -measurable if for any $\varepsilon > 0$, there exists $P \in \mathcal{M}^{\mathrm{pr}}$ such that $P\mathcal{H} \subset \mathcal{D}(X)$ and $\tau(P^{\perp}) < \varepsilon$. The set $\widetilde{\mathcal{M}}$ of all τ -measurable operators is a *-algebra with respect to passing to adjoint operators, multiplication by scalars, and the operations of strong addition and multiplication obtained by the closure of ordinary operations (see [22, 23]). For a family $\mathcal{L} \subset \widetilde{\mathcal{M}}$, we denote by \mathcal{L}^+ and $\mathcal{L}^{\mathrm{sa}}$ its positive and Hermitian parts, respectively. The partial order in $\widetilde{\mathcal{M}}^{\mathrm{sa}}$ generated by the proper cone $\widetilde{\mathcal{M}}^+$ is denoted by \leq . Let $i \in \mathbb{C}$, $i^2 = -1$, and $X \in \widetilde{\mathcal{M}}$. For Re $X = (X + X^*)/2$ and Im $X = (X - X^*)/(2i)$, we have $X = \operatorname{Re} X + i \operatorname{Im} X$ and $\operatorname{Re} X$. Im $X \in \widetilde{\mathcal{M}}^{\mathrm{sa}}$.

If X is a closed, densely defined linear operator affiliated to \mathcal{M} and $|X| = (X^*X)^{1/2}$, then the spectral decomposition $P^{|X|}(\cdot)$ is contained in \mathcal{M} and $X \in \widetilde{\mathcal{M}}$ if and only if there exists $\lambda \in \mathbb{R}$ such that

$$\tau(P^{|X|}((\lambda, +\infty))) < +\infty.$$

If $X \in \widetilde{\mathcal{M}}$ and X = U|X| is the polar decomposition of X, then $U \in \mathcal{M}$ and $|X| \in \widetilde{\mathcal{M}}^+$. Moreover, if

$$|X| = \int_{0}^{\infty} \lambda P^{|X|}(d\lambda)$$

is the spectral decomposition, then

$$\tau(P^{|X|}((\lambda, +\infty))) \to 0 \text{ as } \lambda \to +\infty.$$

We denote by $\mu_t(X)$ a *permutation* of an operator $X \in \mathcal{M}$ (see [15, 27]), i.e., a nonincreasing right-continuous function $\mu(X) : (0, \infty) \to [0, \infty)$ defined by the formula

$$\mu_t(X) = \inf \left\{ \|XP\| : P \in \mathcal{M}^{\mathrm{pr}}, \ \tau(P^{\perp}) \le t \right\}, \quad t > 0.$$

Let *m* be a linear Lebesgue measure on \mathbb{R} . The noncommutative Lebesgue L_p -space $(0 associated with <math>(\mathcal{M}, \tau)$ can be defined as follows:

$$L_p(\mathcal{M},\tau) = \left\{ X \in \widetilde{\mathcal{M}} : \mu(X) \in L_p(\mathbb{R}^+,m) \right\}$$

with the F-norm (or the norm for $1 \leq p < \infty$) $||X||_p = ||\mu(X)||_p$, $X \in L_p(\mathcal{M}, \tau)$. The restriction $\tau|_{\mathfrak{M}_{\tau}^+}$ can be extended to a linear bounded functional on $L_1(\mathcal{M}, \tau)$, which will be denoted by the same symbol τ . We have

$$\mathfrak{M}_{\tau} = \mathcal{M} \cap L_1(\mathcal{M}, \tau), \quad \|X\|_p = \tau(|X|^p)^{1/p}, \quad 0$$

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$ is the *-algebra of all bounded linear operators in \mathcal{H} and $\tau = \text{tr}$ is the canonical trace, then $\widetilde{\mathcal{M}}$ coincides with $\mathcal{B}(\mathcal{H})$. We have

$$\mu_t(X) = \sum_{n=1}^{\infty} s_n(X) \chi_{[n-1,n)}(t), \quad t > 0,$$

where $\{s_n(X)\}_{n=1}^{\infty}$ is sequence of s-numbers of the operator X and χ_A is the indicator of a set $A \subset \mathbb{R}$ (see [17]). Then the space $L_p(\mathcal{M}, \tau)$ is a Schatten–von Neumann ideal \mathfrak{S}_p , 0 .

3. Lemmas and Examples

Let τ be an exact, normal, semifinite trace on a von Neumann algebra \mathcal{M} .

Lemma 3.1 (see [11, Theorem 17]). If $X, Y \in \widetilde{\mathcal{M}}$ and $XY, YX \in L_1(\mathcal{M}, \tau)$, then $\tau(XY) = \tau(YX)$.

Lemma 3.2 (see [1, Theorem 3] and [2, Theorem 1]). If $X, Y \in \widetilde{\mathcal{M}}^+$ and $XY \in L_1(\mathcal{M}, \tau)$, then $X^{1/2}YX^{1/2} \in L_1(\mathcal{M}, \tau)$ and $\tau(XY) = \tau(X^{1/2}YX^{1/2})$.

Lemma 3.3 (see [3, Theorem 3.1]). If $X, Y \in \widetilde{\mathcal{M}}^{sa}$ and $XY \in L_1(\mathcal{M}, \tau)$, then $YX \in L_1(\mathcal{M}, \tau)$ and $\tau(XY) = \tau(YX) \in \mathbb{R}$.

Lemma 3.4 (see [3, Theorem 2.3]). If $X \in L_1(\mathcal{M}, \tau)$, then $\tau(X^*) = \overline{\tau(X)}$.

Here and below, the bar – means conplex conjugation.

Lemma 3.5 (see [5, Theorem 4.8]). If $\tau(I) = 1$, then for $X \in L_1(\mathcal{M}, \tau)$, the following conditions are equivalent:

- (i) $\tau(X) = 0;$
- (ii) $||I + zX||_1 \ge 1$ for all $z \in \mathbb{C}$.

In particular, if $\tau(I) = 1$ and $A, B \in \mathcal{M}$, then $||I + z[A, B]||_1 \ge 1$ for all $z \in \mathbb{C}$. For a type-II₁ factor of the algebra \mathcal{M} , commutators of τ -measurable operators were examined in [13]; the problem on the representability of an arbitrary τ -measurable operator X possessing the property $\tau(X) = 0$ as the commutator X = [A, B] was studied in [14].

Lemma 3.6. Let operators $A, B, D \in \widetilde{\mathcal{M}}^{sa}$ be such that $T = D - AB \in L_1(\mathcal{M}, \tau)$. Then $[A, B] \in L_1(\mathcal{M}, \tau)$, and if $\tau(T) \in \mathbb{R}$, then $\tau([A, B]) = 0$.

Proof. Since

$$[A,B] = T^* - T \in L_1(\mathcal{M},\tau),\tag{1}$$

due to Lemma 3.4 for $\tau(T) \in \mathbb{R}$ we have

$$\tau([A,B]) = \tau(T^* - T) = \tau(T^*) - \tau(T) = \overline{\tau(T)} - \tau(T) = 0.$$
(2)

The lemma is proved.

Lemma 3.7. For $X \in L_1(\mathcal{M}, \tau)$, the following conditions are equivalent:

(i) $\tau(X) \in \mathbb{R};$ (ii) $\tau(\operatorname{Im} X) = 0.$

Lemmas 3.5 and 3.7 imply that if $\tau(I) = 1$ and $X \in L_1(\mathcal{M}, \tau)$, then the condition $\tau(X) \in \mathbb{R}$ is equivalent to the validity of the inequality $||I + z \operatorname{Im} X||_1 \ge 1$ for all $z \in \mathbb{C}$.

Example 3.1. Let $\mathcal{M} = \mathbb{M}_n(\mathbb{C})$ and $\tau = \text{tr be a trace on } \mathcal{M}$. The following Jacobi formula is well known:

$$\det e^X = e^{\tau(X)}, \quad X \in \mathcal{M}.$$

In particular, if det $e^X = 1$, then $\tau(X) = 0$. For $X \in \mathcal{M}$, the following conditions are equivalent:

(i) X is unitary equivalent to a matrix with zero diagonal;

(ii) $\tau(X) = 0;$

(iii) X is a commutator.

A proof of (i) \Leftrightarrow (ii) can be found in [16, Chap. II, problem 209]; the assertion (ii) \Leftrightarrow (iii) is proved in [18, problem 182]. Therefore, each matrix $A \in \mathbb{M}_n(\mathbb{C})$ is unitary equivalent to a matrix with "constant" diagonal and can be represented as the sum $A = \lambda I + X$, where $\tau(X) = 0$ and $\lambda = \operatorname{tr}(A)/n$.

Example 3.2 (see [7, Example 1]). Let $0 < p, q < \infty$ and $a_n = 2^{n+1}n^{-q}$, $n \in \mathbb{N}$. We endow the von Neumann algebra $\mathcal{M} = \bigoplus_{n=1}^{\infty} \mathbb{M}_2(\mathbb{C})$ with an exact normal finite trace $\tau = \bigoplus_{n=1}^{\infty} 2^{-n} \operatorname{tr}_2$ and set

$$A = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1 & a_n \\ 0 & 0 \end{pmatrix}$$

We have $A = A^2$ and $A \in L_p(\mathcal{M}, \tau)$ for pq > 1 and $A \notin L_p(\mathcal{M}, \tau)$ for $pq \leq 1$.

4. Basic Results

Let τ be an exact, normal, semifinite trace on a von Neumann algebra \mathcal{M} .

Theorem 4.1. Let $A, B \in \widetilde{\mathcal{M}}^{\mathrm{sa}}, \lambda \in \mathbb{R}, n \in \mathbb{N}$.

- (i) If $T = \lambda A^n AB \in L_1(\mathcal{M}, \tau)$, then $\tau(T) \in \mathbb{R}$.
- (ii) If $T = \lambda I AB \in L_1(\mathcal{M}, \tau)$ and $A = \sum_{k=1}^n a_k P_k$, where $a_k \in \mathbb{R}$ and $P_k \in \mathcal{M}^{\mathrm{pr}}$, $P_k P_j = 0$ for $k \neq j$ for all $k, j = 1, \dots, n$, then $\tau(T) \in \mathbb{R}$.

In both cases $[A, B] \in L_1(\mathcal{M}, \tau)$ and $\tau([A, B]) = 0$.

Proof. (i) Since

$$T = \begin{cases} A(\lambda I - B) & \text{for } n = 1, \\ A^{n-1}(\lambda A - B) & \text{for } n \ge 2, \end{cases}$$

we have $\tau(T) \in \mathbb{R}$ due to Lemma 3.3.

(ii) For each $k \in \{1, \ldots, n\}$ we have

$$T_k = P_k T = \lambda P_k - a_k P_k B = P_k (\lambda I - a_k B) \in L_1(\mathcal{M}, \tau)$$

and $\tau(T_k) \in \mathbb{R}$ due to Lemma 3.3. For the projector $P = (P_1 + \dots + P_n)^{\perp}$ we have

$$PT = \lambda P \in L_1(\mathcal{M}, \tau)^{\mathrm{sa}}, \quad \tau(PT) \in \mathbb{R}.$$

Therefore,

$$\tau(T) = \tau(PT) + \sum_{k=1}^{n} \tau(P_kT) \in \mathbb{R}.$$

In both cases, we can apply Lemma 3.6. The theorem is proved.

Theorem 4.2. Let operators $A, B \in \widetilde{\mathcal{M}}^{sa}$ and numbers $\lambda \in \mathbb{R}$ be such that $T = \lambda I - AB \in L_1(\mathcal{M}, \tau).$

If A is invertible in $\widetilde{\mathcal{M}}$ or $I - B \in L_1(\mathcal{M}, \tau)$, then $\tau(T) \in \mathbb{R}$. In both cases, $[A, B] \in L_1(\mathcal{M}, \tau), \quad \tau([A, B]) = 0.$

Proof. For an invertible operator A, we have

$$T = A(\lambda A^{-1} - B), \quad \lambda A^{-1} - B \in \widetilde{\mathcal{M}}^{\mathrm{sa}};$$

therefore, $\tau(T) \in \mathbb{R}$ due to Lemma 3.3.

Now let $I - B \in L_1(\mathcal{M}, \tau)$. Since

$$T = (\lambda I - A)B + \lambda (I - B),$$

we have

$$(\lambda I - A)B \in L_1(\mathcal{M}, \tau)$$

and due to Lemma 3.3 we obtain

$$\tau((\lambda I - A)B), \ \tau(I - B) \in \mathbb{R}$$

Therefore, $\tau(T) \in \mathbb{R}$. In both cases we can apply Lemma 3.6. The theorem is proved.

Proposition 4.1. Let operators $A, B \in \widetilde{\mathcal{M}}^{sa}$ and numbers $a_1, a_2, b_1, b_2 \in \mathbb{R}$ be such that

$$\lambda = a_1 b_2 + a_2 b_1 \neq 0, \quad T = (a_1 A + b_1 B)(a_2 A - b_2 B) \in L_1(\mathcal{M}, \tau).$$

Then

$$[A, B] \in L_1(\mathcal{M}, \tau), \quad \tau([A, B]) = 0.$$

If $\tau(I) = 1$, then $||I + z[A, B]||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proof. We have $\tau(T) \in \mathbb{R}$ due to Lemma 3.3. Since $T^* \in L_1(\mathcal{M}, \tau)$ and $T^* - T = \lambda[A, B]$, we have $[A, B] \in L_1(\mathcal{M}, \tau)$. Then due to Lemma 3.4 we have

$$\lambda \tau([A, B]) = \tau(T^* - T) = \tau(T^*) - \tau(T) = \overline{\tau(T)} - \tau(T) = 0.$$

For $\tau(I) = 1$ we apply Lemma 3.5. The assertion is proved.

Proposition 4.2. Let operators $X, Y, Z \in \widetilde{\mathcal{M}}^{sa}$ and numbers $n \in \mathbb{N}, \lambda \in \mathbb{R}$ be such that

$$XY + YZ, XY - \lambda Y^n \in L_1(\mathcal{M}, \tau).$$

Then

$$\tau(XY + YZ) \in \mathbb{R}, \quad \tau([X - Z, Y]) = 0$$

If $\tau(I) = 1$, then $||I + z[X - Z, Y]||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proof. Obviously, $\lambda Y^n + YZ \in L_1(\mathcal{M}, \tau)$. Due to Lemma 3.3 we have

$$\tau(XY+YZ) = \tau((XY-\lambda Y^n) + (\lambda Y^n + YZ)) = \tau((X-\lambda Y^{n-1})Y) + \tau(Y(\lambda Y^{n-1} + Z)) \in \mathbb{R}.$$

Therefore, by Lemma 3.4 we have

$$\tau([X - Z, Y]) = \tau(XY + YZ - (XY + YZ)^*) = \tau(XY + YZ) - \overline{\tau((XY + YZ))} = 0.$$

For $\tau(I) = 1$ we apply Lemma 3.5. The proposition is proved.

Proposition 4.3. Let operators $A \in \widetilde{\mathcal{M}}$, $B \in \mathcal{M}$ and a number $n \in \mathbb{N}$ be such that $A - B^n \in L_1(\mathcal{M}, \tau).$

Then

$$[A,B] \in L_1(\mathcal{M},\tau), \quad \tau([A,B]) = 0.$$

If $\tau(I) = 1$, then $||I + z[A, B]||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proof. We set $X = A - B^n$ and Y = B. Then

$$XY, YX \in L_1(\mathcal{M}, \tau), \quad [A, B] = [X, Y].$$

Now due to Lemma 3.1 we have

$$\tau([A,B]) = \tau([X,Y]) = \tau(XY) - \tau(YX) = 0$$

For $\tau(I) = 1$ we apply Lemma 3.5. The proposition is proved.

Proposition 4.4. Let numbers $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \{0\}$ and operators $A \in \mathcal{M}, B \in \widetilde{\mathcal{M}}$ be such that $\lambda_1 I - A, \lambda_2 I - B \in L_1(\mathcal{M}, \tau).$

Then

$$\lambda_1 \lambda_2 I - AB, [A, B] \in L_1(\mathcal{M}, \tau), \quad \tau([A, B]) = 0$$

Proof. The operator

$$\lambda_1 \lambda_2 I - AB = \lambda_1 \lambda_2 ((I - \lambda_1^{-1}A) + \lambda_1^{-1}A(I - \lambda_2^{-1}B))$$
(3)

belongs to $L_1(\mathcal{M}, \tau)$. The operators $(\lambda_1 I - A)(\lambda_2 I - B)$ and $(\lambda_2 I - B)(\lambda_1 I - A)$ belong to $L_1(\mathcal{M}, \tau)$; therefore

$$[A,B] = [\lambda_1 I - A, \lambda_2 I - B] \in L_1(\mathcal{M},\tau)$$

and $\tau([A,B]) = \tau([\lambda_1 I - A, \lambda_2 I - B]) = 0$ due to Lemma 3.1 with $X = \lambda_1 I - A$ and $Y = \lambda_2 I - B$. \Box

Corollary 4.1. Let the conditions of Proposition 4.4 be fulfilled and let $\lambda_1, \lambda_2 \in \mathbb{R}$ and $A, B \in \widetilde{\mathcal{M}}^{sa}$. Then $\tau(\lambda_1 \lambda_2 I - AB) \in \mathbb{R}$.

This assertion follows from (3) and Lemma 3.3.

Theorem 4.3. Let $A, B \in \widetilde{\mathcal{M}}, B = B^2$, and $[AB, B] \in L_1(\mathcal{M}, \tau)$.

- (i) The relation $\tau([AB, B]) = 0$ holds.
- (ii) If $[A, B] \in L_1(\mathcal{M}, \tau)$, then $\tau([A, B]) = 0$.

Proof. (i) We set

$$X = [AB, B] = AB - BAB, \quad Y = B.$$

Then the operators XY = X and YX = 0 belong to $L_1(\mathcal{M}, \tau)$ and due to Lemma 3.1 we have

$$\tau(X) = \tau(XY) = \tau(YX) = \tau(0) = 0.$$

(ii) Since $BA - BAB = AB - BAB - [A, B] \in L_1(\mathcal{M}, \tau)$, the conditions of item (i) are fulfilled for the adjoint operators A^* and B^* :

$$\tau(BA - BAB) = \overline{\tau(A^*B^* - B^*A^*B^*)} = \overline{0} = 0$$

(see Lemma 3.3). Further,

$$\tau([A, B]) = \tau(AB - BAB - (BA - BAB)) = \tau(AB - BAB) - \tau(BA - BAB) = 0 - 0 = 0.$$

The theorem is proved

The theorem is proved.

Note that Theorem 4.3(ii) is a generalization of [6, Theorem 2.26]. From Theorem 4.3 and Lemma 3.5 we obtain the following assertion.

Corollary 4.2. Under the conditions of Theorem 4.3, let $\tau(I) = 1$. Then

- (i) $||I + z[AB, B]||_1 \ge 1$ for all $z \in \mathbb{C}$;
- (ii) if $[A, B] \in L_1(\mathcal{M}, \tau)$, then $||I + z[A, B]||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proposition 4.5. Let $A, B \in \widetilde{\mathcal{M}}$ and $B = B^2$. If $[B, BA] \in L_1(\mathcal{M}, \tau)$, then $\tau([B, BA]) = 0$. Moreover, if $\tau(I) = 1$, then $||I + z[B, BA]||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proof. We set X = [B, BA] and Y = B. Then the operators XY(= 0) and YX(= X) belong to $L_1(\mathcal{M}, \tau)$, and due to Lemma 3.1 we have

$$\tau(X) = \tau(YX) = \tau(XY) = \tau(0) = 0.$$

For $\tau(I) = 1$, we apply Lemma 3.5. The proposition is proved.

Theorem 4.4. Let $A \in \widetilde{\mathcal{M}}$,

$$B = \sum_{k=1}^{n} b_k P_k, \quad b_k \in \mathbb{C}, \quad P_k = P_k^2 \in \mathcal{M}, \quad b_k \neq b_j, \quad P_k P_j = 0 \text{ for } k \neq j \text{ and all } k, j = 1, \dots, n.$$

If $[A, B] \in L_1(\mathcal{M}, \tau)$, then $\tau([A, B]) = 0$.

Proof. Since

$$[A,B] = \sum_{k=1}^{n} b_k (AP_k - P_k A) \in L_1(\mathcal{M},\tau), \tag{4}$$

for all $k, j = 1, \ldots, n, k \neq j$, we have

$$P_j[A,B] = P_jAB - b_jP_jA \in L_1(\mathcal{M},\tau), \tag{5}$$

and also $P_j[A, B]P_k = (b_k - b_j)P_jAP_k \in L_1(\mathcal{M}, \tau)$; therefore, $P_jAP_k \in L_1(\mathcal{M}, \tau)$. Now from (5) we obtain

$$P_j A P_j - P_j A \in L_1(\mathcal{M}, \tau)$$
 for all $j = 1, \dots, n.$ (6)

Considering the operators $[A, B]P_i$ instead of (5), we similarly obtain

 $P_jAP_j - AP_j \in L_1(\mathcal{M}, \tau)$ for all $j = 1, \dots, n$.

This and (6) imply that $[A, P_j] \in L_1(\mathcal{M}, \tau)$ for all $j = 1, \ldots, n$. Due to [6, Theorem 2.26] we obtain $\tau([A, P_j]) = 0$ for all $j = 1, \ldots, n$ and from (4) we obtain $\tau([A, B]) = 0$.

Theorem 4.5. For an isometry $U \in \mathcal{M}$ and an operator $A \in \widetilde{\mathcal{M}}^+$, the following conditions are equivalent:

(i)
$$U - A \in L_1(\mathcal{M}, \tau);$$

(ii) $I - A, I - U \in L_1(\mathcal{M}, \tau).$

Proof. (i) \Rightarrow (ii) Let

$$A = \int_{0}^{\infty} \lambda P^{A}(d\lambda)$$

be the spectral decomposition of the operator $A \in \widetilde{\mathcal{M}}^+$. We represent A as the sum

$$A = AP^{A}([0;1]) + AP^{A}((1;\infty)) \equiv A_{1} + A_{2}.$$

Then

$$A_1 \in \mathcal{M}, \quad A_2 = (U - A_1) - (U - A) \in L_1(\mathcal{M}, \tau) + \mathcal{M}.$$

Therefore, there exists a number $k \in \mathbb{N}$ such that $\tau P^{A_2}((k;\infty)) < \infty$. Note that

$$P^{A_2}((n;\infty)) = P^A((n;\infty)) \quad \forall n \in \mathbb{N}.$$

Thus, the operator $B_2 = P^{A_2}((k;\infty))$ belongs to the class $L_1(\mathcal{M},\tau)^+$. For $B_1 = A - B_2 \in \mathcal{M}^+$, we have $U - B_1 \in \mathfrak{M}_{\tau}$ and the operator $I + B_1$ are invertible in \mathcal{M} . Due to [10, Theorem 2], the operators $I - B_1$ and I - U lie in \mathfrak{M}_{τ} . Therefore,

$$I - A = I - B_1 - B_2 \in L_1(\mathcal{M}, \tau).$$

(ii) \Rightarrow (i) We have $U - A = I - A - (I - U) \in L_1(\mathcal{M}, \tau).$

Corollary 4.3. Under the conditions of Theorem 4.5, we have

- (i) $[U, A] \in L_1(\mathcal{M}, \tau);$
- (ii) $\tau(U-A) \in \mathbb{R}$ if and only if $\tau(I-U) \in \mathbb{R}$;
- (iii) if, in addition, $U = U^*$, then $\tau([U, A]) = 0$.

Proof. (i) We have

$$[U,A] = (I-A)U - U(I-A) \in L_1(\mathcal{M},\tau).$$

(iii) Due to Lemma 3.3, we obtain $\tau((I-A)U) \in \mathbb{R}$ and hence

$$\tau([U,A]) = \tau((I-A)U) - \tau(U(I-A)) = \tau((I-A)U) - \tau(((I-A)U)^*)$$

= $\tau((I-A)U) - \overline{\tau((I-A)U)} = 0.$
For $\tau(I) = 1$, due to Lemma 3.5, we have $||I + z[U,A]||_1 \ge 1$ for all $z \in \mathbb{C}$.

For $\tau(I) = 1$, due to Lemma 3.5, we have $||I + z[U, A]||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proposition 4.6. If $U \in \mathcal{M}$ is a unitary operator and $A \in \widetilde{\mathcal{M}}$, then $|[U, A]| = |A - U^*AU|$.

Proof. We have

$$|[U, A]|^{2} = A^{*}A - A^{*}U^{*}AU - U^{*}A^{*}UA + U^{*}A^{*}AU = |A - U^{*}AU|^{2},$$

and the assertion follows from the uniqueness of the square root of a nonnegative τ -measurable oper-ator.

Theorem 4.6. Let operators $A, B \in \mathcal{M}$ be such that $I - A, I - B \in \mathfrak{M}_{\tau}$. Then $[A, B] \in \mathfrak{M}_{\tau}$ and $|\tau([A, B])| \le (1 + ||B||) ||I - A||_1 + (1 + ||A||) ||I - B||_1.$

Proof. Recall that

$$|\tau(XY)| \le ||X||\tau(|Y|) \quad \text{for all} \quad X \in \mathcal{M}, \quad Y \in \mathfrak{M}_{\tau}$$
(7)
(see [26, Chap. V, Sec. 2, formula (2)]). We have

$$I - AB = A(I - B) + I - A \in \mathfrak{M}_{\tau}$$

and due to the triangle inequality for \mathbb{C} and (7), we obtain

$$\begin{aligned} |\tau([A,B])| &= |\tau(I - BA - (I - AB))| \le |\tau(I - BA)| + |\tau(I - AB)| \\ &= |\tau(B(I - A) + I - B)| + |\tau(A(I - B) + I - A)| \\ &\le |\tau(B(I - A))| + |\tau(I - B)| + |\tau(A(I - B))| + |\tau(I - A)| \\ &\le (1 + ||B||)||I - A||_1 + (1 + ||A||)||I - B||_1. \end{aligned}$$

The theorem is proved.

Corollary 4.4. Let an operator $A \in \mathcal{M}$ be such that $I - A \in \mathfrak{M}_{\tau}$. Then

$$[A^*, A] \in \mathfrak{M}_{\tau}, \quad |\tau([A^*, A])| \le 2(1 + ||A||)||I - A||_1.$$

Theorem 4.7. Let $A \in \widetilde{\mathcal{M}}$, $0 < p, q, r \leq \infty$, and 1/p + 1/q = 1/r. If

$$\operatorname{Re} A \in L_p(\mathcal{M}, \tau), \quad \operatorname{Im} A \in L_q(\mathcal{M}, \tau),$$

then

$$[A^*, A] \in L_r(\mathcal{M}, \tau), \quad \|[A^*, A]\|_r \le 2^{\max\{1+1/r, 2\}} \|\operatorname{Re} A\|_p \|\operatorname{Im} A\|_q.$$

15

Proof. We set $\|\cdot\|_{\infty} = \|\cdot\|$ and $L_{\infty}(\mathcal{M}, \tau) = \mathcal{M}$. Note that

$$\mathbb{P}[A^*, A] = [A + A^*, A - A^*] = 4i[\operatorname{Re} A, \operatorname{Im} A].$$
(8)

Due to [20, Proposition 6], we obtain for $0 < r \le 1$

$$||X + Y||_r \le 2^{1/r-1} (||X||_r + ||Y||_r) \quad \text{for all} \quad X, Y \in L_r(\mathcal{M}, \tau).$$
(9)

If $X \in L_p(\mathcal{M}, \tau)$ and $Y \in L_q(\mathcal{M}, \tau)$, then $XY \in L_r(\mathcal{M}, \tau)$ and, due to [20, Lemma 1], we have

$$\|XY\|_{r} \le \|X\|_{p} \|Y\|_{q}.$$
(10)

Using the triangle inequality (for $r \ge 1$) or (9) (for $0 < r \le 1$) and then applying the inequality (10), we obtain the required estimate from (8). The theorem is proved.

Remark 4.1. If operators $A \in \widetilde{\mathcal{M}}^+$ and $P \in \mathcal{M}^{\text{pr}}$ are such that $AP + PA \ge 0$, then [A, P] = 0 due to [8, Lemma 2]. In [4], sufficient conditions of the validity of the inclusions $XY, YX \in L_1(\mathcal{M}, \tau)$ for operators $X, Y \in \widetilde{\mathcal{M}}$ were obtained. For such operators, we have $\tau([X, Y]) = 0$ owing to Lemma 3.1. In [9], sufficient conditions of the τ -compactness of the product of τ -measurable operators were established. Sometimes, these conditions provide the τ -compactness of commutators of these operators.

Theorem 4.8. Let operators $X \in \widetilde{\mathcal{M}}^+$ and $Y \in \widetilde{\mathcal{M}}^{sa}$ be such that $[X^{1/2}, YX^{1/2}] \in L_1(\mathcal{M}, \tau)$. Then $\tau([X^{1/2}, YX^{1/2}]) = it$, where $t \in \mathbb{R}$ and t = 0 for $XY \in L_1(\mathcal{M}, \tau)$.

Proof. We have $X^{1/2}YX^{1/2} - XY = ([X^{1/2}, YX^{1/2}])^* \in L_1(\mathcal{M}, \tau)$. We set $A = X^{1/2}, \quad B = [X^{1/2}, Y].$

Then the operators $XY - X^{1/2}YX^{1/2} = AB$ and $X^{1/2}YX^{1/2} - YX = BA = [X^{1/2}, YX^{1/2}]$ lie in $L_1(\mathcal{M}, \tau)$ and $\tau(AB) = \tau(BA)$ due to Lemma 3.1. Since $AB = -(BA)^*$, by Lemma 3.4 we have

$$\tau(AB) = \tau(-(BA)^*) = -\tau((BA)^*) = -\overline{\tau(BA)} = -\overline{\tau(AB)}$$

Therefore, $\tau(AB) = \tau([X^{1/2}, YX^{1/2}]) = it$ with some $t \in \mathbb{R}$. Therefore,

$$\tau(XY + YX - 2X^{1/2}YX^{1/2}) = 0.$$
(11)

Now let $XY \in L_1(\mathcal{M}, \tau)$ and $Y = Y_+ - Y_-$ be the Jordan decomposition, where $Y_+, Y_- \in \widetilde{\mathcal{M}}^+$ and $Y_+Y_- = 0$, and let $P_+, P_- \in \mathcal{M}^{\mathrm{pr}}$ be the supports of the operators Y_+ and Y_- , respectively. If $A \in \mathcal{M}$ and $B \in \widetilde{\mathcal{M}}$, then

$$\mu_t(AB) \le \|A\|\mu_t(B)$$

for all t > 0 (see [15, 27]). Therefore, the operators

$$XY_+ = XYP_+, \quad XY_- = XYP_-$$

lie in $L_1(\mathcal{M}, \tau)$. Owing to Lemma 3.2, we have

$$X^{1/2}Y_+X^{1/2}, X^{1/2}Y_-X^{1/2} \in L_1(\mathcal{M},\tau);$$

therefore, $X^{1/2}YX^{1/2} \in L_1(\mathcal{M}, \tau)$) and

$$\tau(XY) = \tau(XY_{+}) - \tau(XY_{-}) = \tau(X^{1/2}Y_{+}X^{1/2}) - \tau(X^{1/2}Y_{-}X^{1/2}) = \tau(X^{1/2}YX^{1/2}) \ge 0.$$

Hence

$$\tau(YX) = \tau((XY)^*) = \overline{\tau(XY)} = \overline{\tau(X^{1/2}YX^{1/2})} = \tau(X^{1/2}YX^{1/2})$$

due to Lemma 3.4. The theorem is proved.

Corollary 4.5. Let $\tau(I) = 1$ and operator $X \in \widetilde{\mathcal{M}}^+$ and $Y \in \widetilde{\mathcal{M}}^{sa}$ be such that $[X^{1/2}, YX^{1/2}] \in L_1(\mathcal{M}, \tau)$. Then $||I + z(XY + YX - 2X^{1/2}YX^{1/2})||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proof. This assertion follows from (11) and Lemma 3.5.

A vector subspace \mathcal{E} in \mathcal{M} is called an *ideal space* on (\mathcal{M}, τ) if

(1) $X \in \mathcal{E}$ implies $X^* \in \mathcal{E}$;

(2) the conditions $X \in \mathcal{E}, Y \in \mathcal{M}$, and $|Y| \leq |X|$ imply that $Y \in \mathcal{E}$.

As examples, we mention \mathcal{M} and the set of elementary operators $\mathcal{F}(\mathcal{M})$, $\widetilde{\mathcal{M}}_0$, $(L_1 + L_\infty)(\mathcal{M}, \tau)$ and $L_p(\mathcal{M}, \tau)$ for $0 . If <math>\mathcal{E}$ is an ideal space on (\mathcal{M}, τ) , $X \in \mathcal{E}$, and $Y, Z \in \mathcal{M}$, then $YXZ \in \mathcal{E}$.

The following hypothesis strengthens Theorem 3 from [1] and Theorem 1 from [2] (see Lemma 3.2).

Hypothesis. Let τ be an exact, normal, semifinite trace on the von Neumann algebra \mathcal{M} and \mathcal{E} be an ideal space on (\mathcal{M}, τ) . If $X, Y \in \widetilde{\mathcal{M}}^+$ and $XY + YX \in \mathcal{E}$, then $X^{1/2}YX^{1/2}$, $Y^{1/2}XY^{1/2} \in \mathcal{E}$.

We show that in the particular case where

$$Y = \sum_{k=1}^{n} \lambda_k P_k, \quad \lambda_k > 0, \qquad P_k \in \mathcal{M}^{\mathrm{pr}}, \qquad P_k P_j = 0 \quad \text{for } k \neq j, \, k, j = 1, \dots, n_j$$

the hypothesis is valid. We have

$$P = \sum_{k=1}^{n} P_k \in \mathcal{M}^{\mathrm{pr}}.$$

The operator

$$Z = P(XY + YX)P = 2\sum_{k=1}^{n} \lambda_k P_k X P_k + \sum_{\substack{k=1, \ j < k}}^{n} (\lambda_k + \lambda_j)(P_k X P_j + P_j X P_k)$$

lies in \mathcal{E} . Then $P_k X P_j = (\lambda_k + \lambda_j)^{-1} P_k Z P_j \in \mathcal{E}, k, j = 1, \dots, n$. We have

$$Y^{1/2}XY^{1/2} = \sum_{k=1}^{n} \lambda_k^{1/2} P_k \cdot X \cdot \sum_{k=1}^{n} \lambda_k^{1/2} P_k = \sum_{k=1}^{n} \lambda_k P_k X P_k + \sum_{\substack{k=1, \ j < k}}^{n} (\lambda_k \lambda_j)^{1/2} (P_k X P_j + P_j X P_k) \in \mathcal{E}.$$

Let $X^{1/2}Y^{1/2} = U[X^{1/2}Y^{1/2}]$ be the polar decomposition of the operator $X^{1/2}Y^{1/2}$. Then

$$X^{1/2}YX^{1/2} = (Y^{1/2}X^{1/2})^*(Y^{1/2}X^{1/2}) = UY^{1/2}X^{1/2}(Y^{1/2}X^{1/2})^*U^* = UY^{1/2}XY^{1/2}U^* \in \mathcal{E}.$$

Remark 4.2. The hypotheses is valid for $X \in \mathcal{E} \cap \mathcal{M}^+$ and $Y \in \mathcal{M}^+$ (see [21, Proposition 14]; for $\mathcal{M} = \mathcal{B}(\mathcal{H})$ and $\tau = \text{tr see [19]}$). In [12], commutator inequalities related to the polar decompositions of τ -measurable operators are stated. In [24, 25], [1, Theorem 3] and [2, Theorem 1] were strengthened.

Acknowledgments. This work was partially supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (project No. 15-41-02433) and by subsidies of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University (project Nos. 1.1515.2017/4.6 and 1.9773.2017/8.9).

REFERENCES

- A. M. Bikchentaev, "On a certain property of L_p-spaces on semifinite von Neumann algebras," Mat. Zametki, 64, No. 2, 185–190 (1998).
- A. M. Bikchentaev, "Majorization for products of measurable operators," Int. J. Theor. Phys., 37, No. 1, 571–576 (1998).

- A. M. Bikchentaev, "On the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra," Mat. Zametki, 98, No. 3, 337–348 (2015).
- A. M. Bikchentaev, "Integrable products of measurable operators," Lobachevskii J. Math., 37, No. 4, 397–403 (2016).
- 5. A. M. Bikchentaev, "On the convergence of integrable operators affiliated to a finite von Neumann algebra," Tr. Mat. Inst. Steklova, **293**, 73–82 (2016).
- A. M. Bikchentaev, "On idempotent τ-measurable operators affiliated to a von Neumann algebra," Mat. Zametki, 100, No. 4, 492–503 (2016).
- A. M. Bikchentaev, "Trace and integrable operators affiliated to a semifinite von Neumann algebra," Dokl. Ross. Akad. Nauk, 466, No. 2, 137–140 (2016).
- 8. A. M. Bikchentaev, "On operator-monotonic and operator-convex functions," *Izv. Vyssh. Ucheb. Zaved. Mat.*, No. 5, 70–74 (2016).
- A. M. Bikchentaev, "On the τ-compactness of products of τ-measurable operators affiliated to a semifinite von Neumann algebra," *Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory*, 140, 78–87 (2017).
- A. M. Bikchentaev, "Differences of idempotents in C*-algebras and quantum Hall effect," Teor. Mat. Fiz., 195, No. 1, 75–80 (2018).
- L. G. Brown and H. Kosaki, "Jensen's inequality in semifinite von Neumann algebras," J. Operator Theory, 23, No. 1, 3–19 (1990).
- 12. D. Dauitbek, N. E. Tokmagambetov, and K. S. Tulenov, "Commutator inequalities related to polar decompositions of τ -measurable operators," *Izv. Vyssh. Ucheb. Zaved. Mat.*, No. 7, 56–62 (2014).
- K. J. Dykema and N. J. Kalton, "Sums of commutators in ideals and modules of type II factors," Ann. Inst. Fourier (Grenoble), 55, No. 3, 931–971 (2005).
- K. Dykema and A. Skripka, "On single commutators in II₁-factors," Proc. Am. Math. Soc., 140, No. 3, 931–940 (2012).
- T. Fack and H. Kosaki, "Generalized s-numbers of τ-measurable operators," Pac. J. Math., 123, No. 2, 269–300 (1986).
- I. M. Glazman and Yu. I. Lyubich, *Finite-Dimensional Linear Analysis*, The M.I.T. Press, Cambridge–London (1974).
- 17. I. C. Gohberg and M. G. Krein, *Introduction to the Theory of Linear Nonselfadjoint Operators*, Trans. Math. Monogr., **18**, Am. Math. Soc., Providence, Rhode Island, (1969).
- P. R. Halmos, A Hilbert Space Problem Book, Grad. Texts Math., 19, Springer-Verlag, New York– Heidelberg–Berlin (1982).
- F. Hiai and H. Kosaki, Means of Hilbert Space Operators, Lect. Notes Math., 1820, Springer-Verlag, Berlin (2003).
- 20. H. Kosaki, "On the continuity of the map $\varphi \mapsto |\varphi|$ from the predual of a W^{*}-algebra," J. Funct. Anal., **59**, No. 1, 123–131 (1984).
- G. Larotonda, "Norm inequalities in operator ideals," J. Funct. Anal., 255, No. 11, 3208–3228 (2008).
- 22. E. Nelson, "Notes on noncommutative integration," J. Funct. Anal., 15, No. 2, 103–116 (1974).
- I. E. Segal, "A noncommutative extension of abstract integration," Ann. Math., 57, No. 3, 401–457 (1953).
- F. A. Sukochev, "On a hypothesis of A. M. Bikchentaev," Izv. Vyssh. Ucheb. Zaved. Mat., No. 6, 67–70 (2012).

- F. A. Sukochev, "On a conjecture of A. Bikchentaev," in: Spectral Analysis, Differential Equations, and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday, Proc. Symp. Pure Math., 87, Am. Math. Soc., Providence, Rhode Island (2013), pp. 327–339.
- 26. M. Takesaki, Theory of Operator Algebras, Vol. I, Springer-Verlag, Berlin (1979).
- F. J. Yeadon, "Noncommutative L^p-spaces," Math. Proc. Cambridge Phil. Soc., 77, No. 1, 91–102 (1975).

A. M. Bikchentaev

Kazan (Volga Region) Federal University, Kazan, Russia E-mail: Airat.Bikchentaev@kpfu.ru