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TRACE AND COMMUTATORS OF MEASURABLE OPERATORS
AFFILIATED TO A VON NEUMANN ALGEBRA

A. M. Bikchentaev UDC 517.983, 517.986

Abstract. In this paper, we present new properties of the space L1(M, τ ) of integrable (with respect to
the trace τ ) operators affiliated to a semifinite von Neumann algebra M. For self-adjoint τ -measurable
operators A and B, we find sufficient conditions of the τ -integrability of the operator λI−AB and the
real-valuedness of the trace τ (λI − AB), where λ ∈ R. Under these conditions, [A,B] = AB − BA ∈
L1(M, τ ) and τ ([A,B]) = 0. For τ -measurable operators A and B = B2, we find conditions that are
sufficient for the validity of the relation τ ([A,B]) = 0. For an isometry U ∈ M and a nonnegative
τ -measurable operator A, we prove that U − A ∈ L1(M, τ ) if and only if I − A, I − U ∈ L1(M, τ ).
For a τ -measurable operator A, we present estimates of the trace of the autocommutator [A∗, A].

Let self-adjoint τ -measurable operators X ≥ 0 and Y be such that [X1/2, Y X1/2] ∈ L1(M, τ ). Then

τ ([X1/2, Y X1/2]) = it, where t ∈ R and t = 0 for XY ∈ L1(M, τ ).
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1. Introduction

Let a von Neumann algebra M of operators act in a Hilbert space H and τ be an exact, normal,
semifinite trace on M. We state new properties of the space L1(M, τ) of integrable operators affiliated
to the algebra M. For an operator X ∈ L1(M, τ), we examine conditions under which τ(X) ∈ R or
τ(X) = 0. For self-adjoint τ -measurable operators A and B, we find sufficient conditions of the
integrability of the operator λI −AB and the real-valuedness of the trace τ(λI −AB), where λ ∈ R.
Under these conditions, the commutator [A,B] = AB − BA belongs to L1(M, τ) and τ([A,B]) = 0
(see Theorems 4.1 and 4.2 and Propositions 4.1–4.4). For τ -measurable operators A and B = B2,
we find conditions sufficient for the validity of the relation τ([A,B]) = 0 (Theorem 4.3). Item (ii) of
Theorem 4.3 is a generalization of [6, Theorem 2.26].

For an isometry U ∈ M and a nonnegative τ -measurable operator A, we prove that U − A ∈
L1(M, τ) if and only if I −A, I − U ∈ L1(M, τ) (Theorem 4.5). For a τ -measurable operator A, we
find estimates of the trace of autocommutator [A∗, A] (Corollary 4.4 and Theorem 4.7).

Let self-adjoint, τ -measurable operators X ≥ 0 and Y be such that [X1/2, Y X1/2] ∈ L1(M, τ).
Then

τ([X1/2, Y X1/2]) = it,
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where t ∈ R and t = 0 for XY ∈ L1(M, τ) (Theorem 4.8). Our results are new for the ∗-algebra
M = B(H) of all bounded linear operators in H equipped with the canonical trace τ = tr.

2. Notation and Definitions

Let M be a von Neumann algebra of operators in a Hilbert space H, Mpr be the lattice of projectors
in M, I be the identity operator in M, P⊥ = I − P for P ∈ Mpr, and M+ be the cone of positive
elements of M.

A mapping ϕ : M+ → [0,+∞] is called a trace if

ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X)

for any X,Y ∈ M+ and λ ≥ 0 (moreover, 0 · (+∞) ≡ 0) and ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A
trace ϕ is said to be

(i) exact if ϕ(X) > 0 for all X ∈ M+, X 	= 0;
(ii) semifinite if ϕ(X) = sup

{
ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞}

for all X ∈ M+;
(iii) normal if for Xi ↗ X (Xi,X ∈ M+) we have ϕ(X) = supϕ(Xi).

For a trace ϕ, we set

M+
ϕ =

{
X ∈ M+ : ϕ(X) < +∞

}
, Mϕ = linCM+

ϕ .

The restriction ϕ|M+
ϕ
can be continuously extended by linearity to a functional on Mϕ, which will be

denoted by the same symbol ϕ.
An operator in H (not necessarily bounded or densely definite) is said to be affiliated to a von Neu-

mann algebra M if it commutes with an arbitrary unitary operator from the commutator subalge-
bra M′ of the algebra M. In the sequel, we denote by τ an exact, normal, semifinite trace on M.
A closed operator X affiliated to M whose domain D(X) is everywhere dense in H is said to be
τ -measurable if for any ε > 0, there exists P ∈ Mpr such that PH ⊂ D(X) and τ(P⊥) < ε. The set

M̃ of all τ -measurable operators is a ∗-algebra with respect to passing to adjoint operators, multi-
plication by scalars, and the operations of strong addition and multiplication obtained by the closure

of ordinary operations (see [22, 23]). For a family L ⊂ M̃, we denote by L+ and Lsa its positive and

Hermitian parts, respectively. The partial order in M̃sa generated by the proper cone M̃+ is denoted

by ≤. Let i ∈ C, i2 = −1, and X ∈ M̃. For ReX = (X +X∗)/2 and ImX = (X −X∗)/(2i), we have

X = ReX + i ImX and ReX, ImX ∈ M̃sa.
If X is a closed, densely defined linear operator affiliated to M and |X| = (X∗X)1/2, then the

spectral decomposition P |X|(·) is contained in M and X ∈ M̃ if and only if there exists λ ∈ R such
that

τ(P |X|((λ,+∞))) < +∞.

If X ∈ M̃ and X = U |X| is the polar decomposition of X, then U ∈ M and |X| ∈ M̃+
. Moreover, if

|X| =
∞∫

0

λP |X|(dλ)

is the spectral decomposition, then

τ(P |X|((λ,+∞))) → 0 as λ → +∞.

We denote by μt(X) a permutation of an operator X ∈ M̃ (see [15, 27]), i.e., a nonincreasing
right-continuous function μ(X) : (0,∞) → [0,∞) defined by the formula

μt(X) = inf
{
‖XP‖ : P ∈ Mpr, τ(P⊥) ≤ t

}
, t > 0.
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Let m be a linear Lebesgue measure on R. The noncommutative Lebesgue Lp-space (0 < p < ∞)
associated with (M, τ) can be defined as follows:

Lp(M, τ) =
{
X ∈ M̃ : μ(X) ∈ Lp(R

+,m)
}

with the F -norm (or the norm for 1 ≤ p < ∞) ‖X‖p = ‖μ(X)‖p, X ∈ Lp(M, τ). The restriction
τ |M+

τ
can be extended to a linear bounded functional on L1(M, τ), which will be denoted by the same

symbol τ . We have

Mτ = M∩ L1(M, τ), ‖X‖p = τ(|X|p)1/p, 0 < p < ∞.

If M = B(H) is the ∗-algebra of all bounded linear operators in H and τ = tr is the canonical trace,

then M̃ coincides with B(H). We have

μt(X) =

∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is sequence of s-numbers of the operator X and χA is the indicator of a set A ⊂ R

(see [17]). Then the space Lp(M, τ) is a Schatten–von Neumann ideal Sp, 0 < p < ∞.

3. Lemmas and Examples

Let τ be an exact, normal, semifinite trace on a von Neumann algebra M.

Lemma 3.1 (see [11, Theorem 17]). If X,Y ∈ M̃ and XY, Y X ∈ L1(M, τ), then τ(XY ) = τ(Y X).

Lemma 3.2 (see [1, Theorem 3] and [2, Theorem 1]). If X,Y ∈ M̃+ and XY ∈ L1(M, τ), then

X1/2Y X1/2 ∈ L1(M, τ) and τ(XY ) = τ(X1/2Y X1/2).

Lemma 3.3 (see [3, Theorem 3.1]). If X,Y ∈ M̃sa and XY ∈ L1(M, τ), then Y X ∈ L1(M, τ) and
τ(XY ) = τ(Y X) ∈ R.

Lemma 3.4 (see [3, Theorem 2.3]). If X ∈ L1(M, τ), then τ(X∗) = τ(X).

Here and below, the bar means conplex conjugation.

Lemma 3.5 (see [5, Theorem 4.8]). If τ(I) = 1, then for X ∈ L1(M, τ), the following conditions are
equivalent :

(i) τ(X) = 0;
(ii) ‖I + zX‖1 ≥ 1 for all z ∈ C.

In particular, if τ(I) = 1 and A,B ∈ M, then ‖I + z[A,B]‖1 ≥ 1 for all z ∈ C. For a type-II1
factor of the algebra M, commutators of τ -measurable operators were examined in [13]; the problem
on the representability of an arbitrary τ -measurable operator X possessing the property τ(X) = 0 as
the commutator X = [A,B] was studied in [14].

Lemma 3.6. Let operators A,B,D ∈ M̃sa be such that T = D − AB ∈ L1(M, τ). Then [A,B] ∈
L1(M, τ), and if τ(T ) ∈ R, then τ([A,B]) = 0.

Proof. Since
[A,B] = T ∗ − T ∈ L1(M, τ), (1)

due to Lemma 3.4 for τ(T ) ∈ R we have

τ([A,B]) = τ(T ∗ − T ) = τ(T ∗)− τ(T ) = τ(T )− τ(T ) = 0. (2)

The lemma is proved. �

Lemma 3.7. For X ∈ L1(M, τ), the following conditions are equivalent :
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(i) τ(X) ∈ R;
(ii) τ(ImX) = 0.

Lemmas 3.5 and 3.7 imply that if τ(I) = 1 and X ∈ L1(M, τ), then the condition τ(X) ∈ R is
equivalent to the validity of the inequality ‖I + z ImX‖1 ≥ 1 for all z ∈ C.

Example 3.1. Let M = Mn(C) and τ = tr be a trace on M. The following Jacobi formula is well
known:

det eX = eτ(X), X ∈ M.

In particular, if det eX = 1, then τ(X) = 0. For X ∈ M, the following conditions are equivalent:

(i) X is unitary equivalent to a matrix with zero diagonal;
(ii) τ(X) = 0;
(iii) X is a commutator.

A proof of (i)⇔(ii) can be found in [16, Chap. II, problem 209]; the assertion (ii)⇔(iii) is proved
in [18, problem 182]. Therefore, each matrix A ∈ Mn(C) is unitary equivalent to a matrix with
“constant” diagonal and can be represented as the sum A = λI+X, where τ(X) = 0 and λ = tr(A)/n.

Example 3.2 (see [7, Example 1]). Let 0 < p, q < ∞ and an = 2n+1n−q, n ∈ N. We endow the

von Neumann algebra M =
∞⊕

n=1
M2(C) with an exact normal finite trace τ =

∞⊕

n=1
2−n tr2 and set

A =
∞⊕

n=1

(
1 an
0 0

)
.

We have A = A2 and A ∈ Lp(M, τ) for pq > 1 and A /∈ Lp(M, τ) for pq ≤ 1.

4. Basic Results

Let τ be an exact, normal, semifinite trace on a von Neumann algebra M.

Theorem 4.1. Let A,B ∈ M̃sa, λ ∈ R, n ∈ N.

(i) If T = λAn −AB ∈ L1(M, τ), then τ(T ) ∈ R.

(ii) If T = λI−AB ∈ L1(M, τ) and A =
n∑

k=1

akPk, where ak ∈ R and Pk ∈ Mpr, PkPj = 0 for k 	= j

for all k, j = 1, . . . , n, then τ(T ) ∈ R.

In both cases [A,B] ∈ L1(M, τ) and τ([A,B]) = 0.

Proof. (i) Since

T =

{
A(λI −B) for n = 1,

An−1(λA−B) for n ≥ 2,

we have τ(T ) ∈ R due to Lemma 3.3.
(ii) For each k ∈ {1, . . . , n} we have

Tk = PkT = λPk − akPkB = Pk(λI − akB) ∈ L1(M, τ)

and τ(Tk) ∈ R due to Lemma 3.3. For the projector P = (P1 + · · ·+ Pn)
⊥ we have

PT = λP ∈ L1(M, τ)sa, τ(PT ) ∈ R.

Therefore,

τ(T ) = τ(PT ) +

n∑

k=1

τ(PkT ) ∈ R.

In both cases, we can apply Lemma 3.6. The theorem is proved. �
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Theorem 4.2. Let operators A,B ∈ M̃sa and numbers λ ∈ R be such that

T = λI −AB ∈ L1(M, τ).

If A is invertible in M̃ or I −B ∈ L1(M, τ), then τ(T ) ∈ R. In both cases,

[A,B] ∈ L1(M, τ), τ([A,B]) = 0.

Proof. For an invertible operator A, we have

T = A(λA−1 −B), λA−1 −B ∈ M̃sa;

therefore, τ(T ) ∈ R due to Lemma 3.3.
Now let I −B ∈ L1(M, τ). Since

T = (λI −A)B + λ(I −B),

we have

(λI −A)B ∈ L1(M, τ)

and due to Lemma 3.3 we obtain

τ((λI −A)B), τ(I −B) ∈ R.

Therefore, τ(T ) ∈ R. In both cases we can apply Lemma 3.6. The theorem is proved. �

Proposition 4.1. Let operators A,B ∈ M̃sa and numbers a1, a2, b1, b2 ∈ R be such that

λ = a1b2 + a2b1 	= 0, T = (a1A+ b1B)(a2A− b2B) ∈ L1(M, τ).

Then

[A,B] ∈ L1(M, τ), τ([A,B]) = 0.

If τ(I) = 1, then ‖I + z[A,B]‖1 ≥ 1 for all z ∈ C.

Proof. We have τ(T ) ∈ R due to Lemma 3.3. Since T ∗ ∈ L1(M, τ) and T ∗ − T = λ[A,B], we have
[A,B] ∈ L1(M, τ). Then due to Lemma 3.4 we have

λτ([A,B]) = τ(T ∗ − T ) = τ(T ∗)− τ(T ) = τ(T )− τ(T ) = 0.

For τ(I) = 1 we apply Lemma 3.5. The assertion is proved. �

Proposition 4.2. Let operators X,Y,Z ∈ M̃sa and numbers n ∈ N, λ ∈ R be such that

XY + Y Z,XY − λY n ∈ L1(M, τ).

Then

τ(XY + Y Z) ∈ R, τ([X − Z, Y ]) = 0.

If τ(I) = 1, then ‖I + z[X − Z, Y ]‖1 ≥ 1 for all z ∈ C.

Proof. Obviously, λY n + Y Z ∈ L1(M, τ). Due to Lemma 3.3 we have

τ(XY + Y Z) = τ((XY − λY n) + (λY n + Y Z)) = τ((X − λY n−1)Y ) + τ(Y (λY n−1 + Z)) ∈ R.

Therefore, by Lemma 3.4 we have

τ([X − Z, Y ]) = τ(XY + Y Z − (XY + Y Z)∗) = τ(XY + Y Z)− τ((XY + Y Z) = 0.

For τ(I) = 1 we apply Lemma 3.5. The proposition is proved. �
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Proposition 4.3. Let operators A ∈ M̃, B ∈ M and a number n ∈ N be such that

A−Bn ∈ L1(M, τ).

Then
[A,B] ∈ L1(M, τ), τ([A,B]) = 0.

If τ(I) = 1, then ‖I + z[A,B]‖1 ≥ 1 for all z ∈ C.

Proof. We set X = A−Bn and Y = B. Then

XY, Y X ∈ L1(M, τ), [A,B] = [X,Y ].

Now due to Lemma 3.1 we have

τ([A,B]) = τ([X,Y ]) = τ(XY )− τ(Y X) = 0.

For τ(I) = 1 we apply Lemma 3.5. The proposition is proved. �

Proposition 4.4. Let numbers λ1, λ2 ∈ C \ {0} and operators A ∈ M, B ∈ M̃ be such that

λ1I −A,λ2I −B ∈ L1(M, τ).

Then
λ1λ2I −AB, [A,B] ∈ L1(M, τ), τ([A,B]) = 0.

Proof. The operator

λ1λ2I −AB = λ1λ2((I − λ−1
1 A) + λ−1

1 A(I − λ−1
2 B)) (3)

belongs to L1(M, τ). The operators (λ1I −A)(λ2I −B) and (λ2I −B)(λ1I −A) belong to L1(M, τ);
therefore

[A,B] = [λ1I −A,λ2I −B] ∈ L1(M, τ)

and τ([A,B]) = τ([λ1I −A,λ2I −B]) = 0 due to Lemma 3.1 with X = λ1I −A and Y = λ2I −B. �

Corollary 4.1. Let the conditions of Proposition 4.4 be fulfilled and let λ1, λ2 ∈ R and A,B ∈ M̃sa.
Then τ(λ1λ2I −AB) ∈ R.

This assertion follows from (3) and Lemma 3.3.

Theorem 4.3. Let A,B ∈ M̃, B = B2, and [AB,B] ∈ L1(M, τ).

(i) The relation τ([AB,B]) = 0 holds.
(ii) If [A,B] ∈ L1(M, τ), then τ([A,B]) = 0.

Proof. (i) We set
X = [AB,B] = AB −BAB, Y = B.

Then the operators XY = X and Y X = 0 belong to L1(M, τ) and due to Lemma 3.1 we have

τ(X) = τ(XY ) = τ(Y X) = τ(0) = 0.

(ii) Since BA−BAB = AB −BAB − [A,B] ∈ L1(M, τ), the conditions of item (i) are fulfilled for
the adjoint operators A∗ and B∗:

τ(BA−BAB) = τ(A∗B∗ −B∗A∗B∗) = 0 = 0

(see Lemma 3.3). Further,

τ([A,B]) = τ(AB −BAB − (BA−BAB)) = τ(AB −BAB)− τ(BA−BAB) = 0− 0 = 0.

The theorem is proved. �
Note that Theorem 4.3(ii) is a generalization of [6, Theorem 2.26]. From Theorem 4.3 and Lemma 3.5

we obtain the following assertion.
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Corollary 4.2. Under the conditions of Theorem 4.3, let τ(I) = 1. Then

(i) ‖I + z[AB,B]‖1 ≥ 1 for all z ∈ C;
(ii) if [A,B] ∈ L1(M, τ), then ‖I + z[A,B]‖1 ≥ 1 for all z ∈ C.

Proposition 4.5. Let A,B ∈ M̃ and B = B2. If [B,BA] ∈ L1(M, τ), then τ([B,BA]) = 0. More-
over, if τ(I) = 1, then ‖I + z[B,BA]‖1 ≥ 1 for all z ∈ C.

Proof. We set X = [B,BA] and Y = B. Then the operators XY (= 0) and Y X(= X) belong
to L1(M, τ), and due to Lemma 3.1 we have

τ(X) = τ(Y X) = τ(XY ) = τ(0) = 0.

For τ(I) = 1, we apply Lemma 3.5. The proposition is proved. �

Theorem 4.4. Let A ∈ M̃,

B =
n∑

k=1

bkPk, bk ∈ C, Pk = P 2
k ∈ M, bk 	= bj, PkPj = 0 for k 	= j and all k, j = 1, . . . , n.

If [A,B] ∈ L1(M, τ), then τ([A,B]) = 0.

Proof. Since

[A,B] =
n∑

k=1

bk(APk − PkA) ∈ L1(M, τ), (4)

for all k, j = 1, . . . , n, k 	= j, we have

Pj[A,B] = PjAB − bjPjA ∈ L1(M, τ), (5)

and also Pj [A,B]Pk = (bk − bj)PjAPk ∈ L1(M, τ); therefore, PjAPk ∈ L1(M, τ). Now from (5) we
obtain

PjAPj − PjA ∈ L1(M, τ) for all j = 1, . . . , n. (6)

Considering the operators [A,B]Pj instead of (5), we similarly obtain

PjAPj −APj ∈ L1(M, τ) for all j = 1, . . . , n.

This and (6) imply that [A,Pj ] ∈ L1(M, τ) for all j = 1, . . . , n. Due to [6, Theorem 2.26] we obtain
τ([A,Pj ]) = 0 for all j = 1, . . . , n and from (4) we obtain τ([A,B]) = 0. �

Theorem 4.5. For an isometry U∈M and an operator A ∈ M̃+, the following conditions are equiv-
alent :

(i) U −A ∈ L1(M, τ);
(ii) I −A, I − U ∈ L1(M, τ).

Proof. (i)⇒(ii) Let

A =

∞∫

0

λPA(dλ)

be the spectral decomposition of the operator A ∈ M̃+. We represent A as the sum

A = APA([0; 1]) + APA((1;∞)) ≡ A1 +A2.

Then
A1 ∈ M, A2 = (U −A1)− (U −A) ∈ L1(M, τ) +M.

Therefore, there exists a number k ∈ N such that τPA2((k;∞)) < ∞. Note that

PA2((n;∞)) = PA((n;∞)) ∀n ∈ N.

14



Thus, the operator B2 = PA2((k;∞)) belongs to the class L1(M, τ)+. For B1 = A − B2 ∈ M+, we
have U−B1 ∈ Mτ and the operator I +B1 are invertible in M. Due to [10, Theorem 2], the operators
I −B1 and I − U lie in Mτ . Therefore,

I −A = I −B1 −B2 ∈ L1(M, τ).

(ii)⇒(i) We have U −A = I −A− (I − U) ∈ L1(M, τ). �

Corollary 4.3. Under the conditions of Theorem 4.5, we have

(i) [U,A] ∈ L1(M, τ);
(ii) τ(U −A) ∈ R if and only if τ(I − U) ∈ R;
(iii) if, in addition, U = U∗, then τ([U,A]) = 0.

Proof. (i) We have
[U,A] = (I −A)U − U(I −A) ∈ L1(M, τ).

(iii) Due to Lemma 3.3, we obtain τ((I −A)U) ∈ R and hence

τ([U,A]) = τ((I −A)U)− τ(U(I −A)) = τ((I −A)U)− τ(((I −A)U)∗)

= τ((I −A)U)− τ((I −A)U) = 0.

For τ(I) = 1, due to Lemma 3.5, we have ‖I + z[U,A]‖1 ≥ 1 for all z ∈ C. �

Proposition 4.6. If U ∈ M is a unitary operator and A ∈ M̃, then |[U,A]| = |A− U∗AU |.
Proof. We have

|[U,A]|2 = A∗A−A∗U∗AU − U∗A∗UA+ U∗A∗AU = |A− U∗AU |2,
and the assertion follows from the uniqueness of the square root of a nonnegative τ -measurable oper-
ator. �

Theorem 4.6. Let operators A,B ∈ M be such that I −A, I −B ∈ Mτ . Then [A,B] ∈ Mτ and

|τ([A,B])| ≤ (1 + ‖B‖)‖I −A‖1 + (1 + ‖A‖)‖I −B‖1.
Proof. Recall that

|τ(XY )| ≤ ‖X‖τ(|Y |) for all X ∈ M, Y ∈ Mτ (7)

(see [26, Chap. V, Sec. 2, formula (2)]). We have

I −AB = A(I −B) + I −A ∈ Mτ

and due to the triangle inequality for C and (7), we obtain

|τ([A,B])| = |τ(I −BA− (I −AB))| ≤ |τ(I −BA)|+ |τ(I −AB)|
= |τ(B(I −A) + I −B)|+ |τ(A(I −B) + I −A)|
≤ |τ(B(I −A))| + |τ(I −B)|+ |τ(A(I −B))|+ |τ(I −A)|
≤ (1 + ‖B‖)‖I −A‖1 + (1 + ‖A‖)‖I −B‖1.

The theorem is proved. �

Corollary 4.4. Let an operator A ∈ M be such that I −A ∈ Mτ . Then

[A∗, A] ∈ Mτ , |τ([A∗, A])| ≤ 2(1 + ‖A‖)‖I −A‖1.
Theorem 4.7. Let A ∈ M̃, 0 < p, q, r ≤ ∞, and 1/p+ 1/q = 1/r. If

ReA ∈ Lp(M, τ), ImA ∈ Lq(M, τ),

then
[A∗, A] ∈ Lr(M, τ), ‖[A∗, A]‖r ≤ 2max{1+1/r,2}‖ReA‖p ‖ ImA‖q.
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Proof. We set ‖ · ‖∞ = ‖ · ‖ and L∞(M, τ) = M. Note that

2[A∗, A] = [A+A∗, A−A∗] = 4i[ReA, ImA]. (8)

Due to [20, Proposition 6], we obtain for 0 < r ≤ 1

‖X + Y ‖r ≤ 21/r−1(‖X‖r + ‖Y ‖r) for all X,Y ∈ Lr(M, τ). (9)

If X ∈ Lp(M, τ) and Y ∈ Lq(M, τ), then XY ∈ Lr(M, τ) and, due to [20, Lemma 1], we have

‖XY ‖r ≤ ‖X‖p‖Y ‖q. (10)

Using the triangle inequality (for r ≥ 1) or (9) (for 0 < r ≤ 1) and then applying the inequality (10),
we obtain the required estimate from (8). The theorem is proved. �

Remark 4.1. If operators A ∈ M̃+ and P ∈ Mpr are such that AP + PA ≥ 0, then [A,P ] = 0 due
to [8, Lemma 2]. In [4], sufficient conditions of the validity of the inclusions XY, Y X ∈ L1(M, τ) for

operators X,Y ∈ M̃ were obtained. For such operators, we have τ([X,Y ]) = 0 owing to Lemma 3.1.
In [9], sufficient conditions of the τ -compactness of the product of τ -measurable operators were estab-
lished. Sometimes, these conditions provide the τ -compactness of commutators of these operators.

Theorem 4.8. Let operators X ∈ M̃+ and Y ∈ M̃sa be such that [X1/2, Y X1/2] ∈ L1(M, τ). Then

τ([X1/2, Y X1/2]) = it, where t ∈ R and t = 0 for XY ∈ L1(M, τ).

Proof. We have X1/2Y X1/2 −XY = ([X1/2, Y X1/2])∗ ∈ L1(M, τ). We set

A = X1/2, B = [X1/2, Y ].

Then the operators XY − X1/2Y X1/2 = AB and X1/2Y X1/2 − Y X = BA = [X1/2, Y X1/2] lie
in L1(M, τ) and τ(AB) = τ(BA) due to Lemma 3.1. Since AB = −(BA)∗, by Lemma 3.4 we have

τ(AB) = τ(−(BA)∗) = −τ((BA)∗) = −τ(BA) = −τ(AB).

Therefore, τ(AB) = τ([X1/2, Y X1/2]) = it with some t ∈ R. Therefore,

τ(XY + Y X − 2X1/2Y X1/2) = 0. (11)

Now let XY ∈ L1(M, τ) and Y = Y+ − Y− be the Jordan decomposition, where Y+, Y− ∈ M̃+
and

Y+Y− = 0, and let P+, P− ∈ Mpr be the supports of the operators Y+ and Y−, respectively. If A ∈ M
and B ∈ M̃, then

μt(AB) ≤ ‖A‖μt(B)

for all t > 0 (see [15, 27]). Therefore, the operators

XY+ = XY P+, XY− = XY P−
lie in L1(M, τ). Owing to Lemma 3.2, we have

X1/2Y+X
1/2, X1/2Y−X1/2 ∈ L1(M, τ);

therefore, X1/2Y X1/2 ∈ L1(M, τ)) and

τ(XY ) = τ(XY+)− τ(XY−) = τ(X1/2Y+X
1/2)− τ(X1/2Y−X1/2) = τ(X1/2Y X1/2) ≥ 0.

Hence

τ(Y X) = τ((XY )∗) = τ(XY ) = τ(X1/2Y X1/2) = τ(X1/2Y X1/2)

due to Lemma 3.4. The theorem is proved. �

Corollary 4.5. Let τ(I) = 1 and operator X ∈ M̃+ and Y ∈ M̃sa be such that [X1/2, Y X1/2] ∈
L1(M, τ). Then ‖I + z(XY + Y X − 2X1/2Y X1/2)‖1 ≥ 1 for all z ∈ C.
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Proof. This assertion follows from (11) and Lemma 3.5. �
A vector subspace E in M̃ is called an ideal space on (M, τ) if

(1) X ∈ E implies X∗ ∈ E ;
(2) the conditions X ∈ E , Y ∈ M̃, and |Y | ≤ |X| imply that Y ∈ E .
As examples, we mention M and the set of elementary operators F(M), M̃0, (L1 + L∞)(M, τ)
and Lp(M, τ) for 0 < p < +∞. If E is an ideal space on (M, τ), X ∈ E , and Y,Z ∈ M, then
Y XZ ∈ E .

The following hypothesis strengthens Theorem 3 from [1] and Theorem 1 from [2] (see Lemma 3.2).

Hypothesis. Let τ be an exact, normal, semifinite trace on the von Neumann algebra M and E be

an ideal space on (M, τ). If X,Y ∈ M̃+
and XY + Y X ∈ E , then X1/2Y X1/2, Y 1/2XY 1/2 ∈ E .

We show that in the particular case where

Y =

n∑

k=1

λkPk, λk > 0, Pk ∈ Mpr, PkPj = 0 for k 	= j, k, j = 1, . . . , n,

the hypothesis is valid. We have

P =

n∑

k=1

Pk ∈ Mpr.

The operator

Z = P (XY + Y X)P = 2

n∑

k=1

λkPkXPk +

n∑

k=1,
j<k

(λk + λj)(PkXPj + PjXPk)

lies in E . Then PkXPj = (λk + λj)
−1PkZPj ∈ E , k, j = 1, . . . , n. We have

Y 1/2XY 1/2 =
n∑

k=1

λ
1/2
k Pk ·X ·

n∑

k=1

λ
1/2
k Pk =

n∑

k=1

λkPkXPk +
n∑

k=1,
j<k

(λkλj)
1/2(PkXPj + PjXPk) ∈ E .

Let X1/2Y 1/2 = U |X1/2Y 1/2| be the polar decomposition of the operator X1/2Y 1/2. Then

X1/2Y X1/2 = (Y 1/2X1/2)∗(Y 1/2X1/2) = U Y 1/2X1/2(Y 1/2X1/2)∗ U∗ = U Y 1/2XY 1/2 U∗ ∈ E .
Remark 4.2. The hypotheses is valid for X ∈ E ∩M+ and Y ∈ M+ (see [21, Proposition 14]; for
M = B(H) and τ = tr see [19]). In [12], commutator inequalities related to the polar decompositions
of τ -measurable operators are stated. In [24, 25], [1, Theorem 3] and [2, Theorem 1] were strengthened.
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