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Abstract. An isobar generated by a line or point sink draining a confined semi-infinite aquifer is an 12 

analytic curve, to which a steady 2-D plane or axisymmetric Darcian flow converges. This sink may 13 

represent an excavation, ditch, or wadi on Earth, or a channel on Mars. The strength of the sink 14 

controls the form of the ditch depression: for 2-D flow, the shape of the isobar varies from a zero-15 

depth channel to a semicircle; for axisymmetric flow, depressions as flat as a disk or as deep as a 16 

hemisphere are reconstructed. In the model of axisymmetric flow, a fictitious J.R. Philip’s point 17 

sink is mirrored by an infinite array of sinks and sources placed along a vertical line perpendicular 18 

to a horizontal water table. A topographic depression is kept at constant capillary pressure (water 19 

content, Kirchhoff potential). None of these singularities belongs to the real flow domain, 20 

evaporating unsaturated Gardnerian soil. Saturated flow towards a triangular, empty or partially-21 

filled ditch is tackled by conformal mappings and the solution of Riemann’s problem in a reference 22 

plane. The obtained seepage flow rate is used as a right-hand side in an ODE of a Cauchy problem, 23 

the solution of which gives the draw-up curves, i.e., the rise of the water level in an initially empty 24 
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trench. HYDRUS-2D computations for flows in saturated and unsaturated soils match well the 25 

analytical solutions. The modeling results are applied to assessments of real hydrological fluxes on 26 

Earth and paleo-reconstructions of Martian hydrology-geomorphology. 27 

 28 
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Evaporation and seepage exfiltration from shallow groundwater; 32 

Complex potential and conformal mappings;  33 

Method of images with sinks and sources for the Laplace equation and ADE;  34 

Boundary value problems involving seepage faces on Earth and Mars; 35 
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 37 

“I had to live in the desert before I could understand the full value of grass in a green ditch.” 38 

Ella Maillart 39 

1. Introduction 40 

Analytical models of 2-D seepage towards drainage ditches and trenches, constructed by 41 

civil, geotechnical, and agricultural engineers, used the machinery of complex variables (Anderson, 42 

2013, Aravin and Numerov, 1953, Bear, 1972,  Kirkham and Powers, 1972,  Polubarinova-Kochina, 43 

1962,1977, hereafter abbreviated as PK-62,77, Skaggs et al., 1999, Strack, 1989, Vedernikov, 44 

1939), in particular, by tackling free boundaries of Darcian flows, the so-called phreatic surfaces.  45 

We recall (see, e.g., Radcliffe and Šimůnek, 2010) that transient, 3-D, saturated-unsaturated 46 

flows in porous media (when both water and soil are incompressible) obey the Richards equation:    47 

( )( )K p h
t
θ∂

= ∇ ∇
∂

                                                                               (0) 48 
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where ( , , , )t x y Zθ is the volumetric moisture content, ∇  is the nubla operator (in Cartesian or 49 

cylindrical coordinates), ( , , , )K p x y Z  is the hydraulic conductivity  function, ( , , , )h t x y Z p Z= +  50 

is the total head, p is the pressure head, Z is a vertical coordinate, and ( )p θ  is a capillary pressure 51 

(water retention) function, fixed for each soil. Eq. (0) involves the Darsy law =- ( )V K p h
→

∇ , where 52 

V
→

is the Darcian flux vector, and the principal of mass conservation. 53 

Boundary value problems (hereafter abbreviated as BVPs) are solved for eq. (0) by 54 

specifying initial conditions, e.g., (0, , , )x y Zθ ,  as well as imposing physically meaningful 55 

boundary conditions (e.g., Dirichlet’s, Neuman’s). Only numerical codes like HYDRUS-3D 56 

(Šimůnek et al., 2016) tackle such problems for arbitrary 3D transient flows. Eq. (0) is a highly 57 

nonlinear parabolic PDE. For steady flows, its LHS vanishes, and the equation becomes elliptic. If 58 

the flow is purely saturated and the porous medium is homogeneous, then K(p)=Ks, where Ks is 59 

saturated hydraulic conductivity, and eq. (0) is reduced to a linear Laplace one. For a special class 60 

of soils with an exponential K(p) function (Gardner, 1958), the Kirchhoff transform makes possible 61 

a linearization such that eq. (0) is reduced to a linear advective dispersion equation (ADE) with 62 

respect to a Kirchhoff potential. The ADE can be analytically solved for solitary or systematically 63 

placed singularities (Kacimov, 2007, Philip, 1968, 1971, Pullan, 1990, Raats, 1971, 1972). More 64 

details on  BVPs for the Laplace equation and the ADE are given in Sections 2-5 of the MS. 65 

The total head for saturated seepage in undeformable porous media obeys the Laplace 66 

equation and, therefore, the mathematical commonality between flows of ideal fluids (Zhukovskii, 67 

1948) and pore water motion has been widely explored (PK-62,77, Strack,1989). The method of 68 

images and the theory of BVPs (Henrici, 1993) have been engaged. In this paper, we combine these 69 

traditional analytical and new numerical (HYDRUS-2D,  Šimůnek et al., 2016) methods to 70 

problems of groundwater and soil water movement from shallow confined and unconfined aquifers 71 
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towards ditches and topographic depressions, common in desert landforms of arid-hyperarid 72 

climates of Oman and Mars. 73 

A practical motivation of our work stems from a daunting problem of groundwater 74 

inundation caused by a rapid rise of the water table in perched unconfined and shallow confined 75 

aquifers, detected in many urban areas of the world (see, e.g., Attard et al., 2016, Barron et al., 76 

2013, Chaudhary, 2012, Coda et al., 2019, Howard and Israfilov, 2012, Jha et al., 2012, Kazemi, 77 

2011, Lerner, 2003, Lerner and Harris, 2008, Medovar et al., 2018, Naik et al., 2008, Porse et al., 78 

2016, Preene and Fisher,  2015, Quan et al., 2010, Schirmer et al., 2013, Vázquez-Suñé et al., 2005, 79 

Vogwill, 2016). Surprisingly, the arid countries of Arabia – despite the hydrological mantra on 80 

water deficit and groundwater depletion – encounter the same problem of waterlogging of urban 81 

structures by shallow groundwater as the cities in humid zones (e.g., Abu-Rizaiza et al., 1989,  Abu-82 

Rizaiza, 2006, Al-Rawas and Qamaruddin, 1998, Al-Sefry and Şen, 2006, Al-Senafy, 2011, Al-83 

Senafy et al., 2015, Bob et al., 2016, Kreibich and Thieken, 2008). It is noteworthy that 84 

urbanization in the Southwest of the USA caused similar negative hydrological impacts 85 

(amplification of flash flood intensities due to reduced evapotranspiration, see, e.g., Goudie, 2013). 86 

In the metropolitan area of Muscat, at the campus of Sultan Qaboos University (SQU), the 87 

groundwater inundation has become evident even without any piezometry. In recent years, 88 

subsurface water seeped out in natural topographic depressions, man-made excavations, ditches, 89 

and drainage channels called wadis. Large wet spots or ponded areas at SQU are bio-marked by 90 

adjacent lush, wild vegetation. In the desert climate of Oman, this vegetation in some places pops 91 

up virtually as Maillart’s “grass in green ditches” (see the epigraph). The studied SQU field is 92 

located in a hyperarid zone of the Batinah Coast, Oman, Arabia (e.g., Alsharhan et al., 2001). The 93 

investigated wadi section was about 1 km long, with several excavated pits-trenches and natural 94 

depressions. For instance, one of the excavations has the following coordinates: Northing: 619721, 95 

Easting: 2608729, 47.5 m above the level in the Sea of Oman. Urbanization of the field started in 96 
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the mid-1980s, before which the site was a desert with scattered shrubs and trees. Currently, a 97 

significant part of the campus area is paved, which reduced natural evapotranspiration. 98 

Waterlogging and associated lush vegetaiton is, geotechnically deleterious, putting  footings of the 99 

SQU buildings, roads, subsurface cables, etc., in jeopardy, even when the salinity of the rising 100 

groundwater is small. Secondary salinization of the topsoil is also widespread in Oman when the 101 

draw-up of the water table is from an aquifer of poor groundwater quality. Fieldwork has been 102 

carried out in November-June 2020 at the SQU campus: auger holes,  ditches, and excavations have 103 

been constructed, and groundwater monitored, to assess soil moisture oozing fluxes above shallow 104 

perched and confined aquifers detected in the study area. 105 

The motivation of this work also stems from our intention to attract the attention of Planet 106 

Mars hydrologists, who model seepage of Martian groundwater into remotely scanned relief 107 

features of the Red Planet, to the legacy of experts in irrigation and drainage engineering, who – 108 

during the 20th century -  assembled a good arsenal of analytical and numerical methods for 109 

investigations of the motion of pore water towards drains (Bear, 1972, Kirkham and Powers, 1972, 110 

Skaggs et al., 1999, 2012, Strack, 1989, Vedernikov, 1939, Zhukovskii, 1948).  111 

Mars is a hyperarid planet where the remotely analyzed landforms (craters, dunes, endorheic 112 

lakes and playas, pits, alcoves, gullies, recurring slope lineae, fluvio-lacustrine basins, fans, shallow 113 

dust horizons, streaks, amphitheater‐headed valleys, sapping valleys, etc.) and hydrological 114 

elements (springs, outseeps, deep fracture conduits, seepage spots), which convey liquid water, 115 

brine, and Martian gases are studied. The alleged paleo and current dynamics of Martian pore fluids 116 

are elaborated, for example, in Abotalib and Heggy (2019), Bhardwaj et al. (2019), Boatwright and 117 

Head  (2019), Edwards and Piqueux (2016), Goldspiel and Squyres (2011), Grimm et al. (2014), 118 

Hobbs et al. (2014), Kereszturi et al. (2011), Kochel and Piper (1986), Luo et al. (2011), Malin and 119 

Carr  (1999) Malin and Edgett (2000), Marra et al. (2014, 2015), Michalski et al. (2013), Mukherjee 120 

et al. (2020), and Salese et al. (2019).  121 
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For hypothetical Martian aquifers (both unconfined and artesian), Ks is assessed from proxy 122 

data (see, e.g., the posited “nominal” value in Goldspiel and Squyres (2011);  Luo et al. (2011) 123 

evaluated the hydraulic conductivity from the solution of inverse problems of the hydrological cycle 124 

on Mars; Boatwright and Head (2019) assumed that the conductivity exponentially decreases with 125 

the Martian depth). We note that even the Darcy law is sometimes not correctly formulated by 126 

Martian hydrologists (see, e.g., an erroneous eq. (1) in Abotalib and  Heggy, 2019).  On Mars, 127 

purely unsaturated flows are also hypothesized (Edwards and Piqueux, 2016, Grimm et al., 2014), 128 

but – to the best of our knowledge - Martian hydrologists (e.g., Luo et al., 2011) so far have used 129 

only flow models for saturated soils.  130 

Models of Darcian flows towards drainage ditches commonly conceptualize the ditches as 131 

rectangles in vertical cross-sections having vertical slopes (Afruzi et al., 2014, Barua and Alam, 132 

2013, Chahar and Vadodaria, 2008, Gureghian and Youngs, 1975, Sarmah and Tiwari, 2018,   133 

Youngs, 1975, 1990, 1994). However, natural ephemeral river channels, both on Earth and Mars,  134 

as well as constructed drainage ditches and trenches often have non-rectangular shapes (Grotzinger 135 

et al., 2014, Kocurek et al., 2020). Excavations (pits) and natural depressionsare often axisymmetric 136 

and mild-sloped (see, e.g., Goldspiel and Squyres, 2011). Only in few studies have phreatic seepage 137 

and flows in the unsaturated zone to non-rectangular (trapezoidal and curvilinear) draining entities 138 

been analytically examined (PK-77 reported solutions by Bazanov, p. 150 of her book, and 139 

Vedernikov, pp.181-182, see also Ilyinsky and Kacimov, 1992a, Kacimov, 2005, 2006a, Kacimov 140 

and Obnosov, 2002). We note that although Luo et al. (2011) sketched trapezoidal draining 141 

channels in their models of groundwater discharge into these channels, they posited the Dupuit-142 

Forchheimer (hereafter abbreviated as DF) model, which actually ignores the shape of channels. 143 

Marra et al. (2014, 2015) conceptualized, and studied experimentally in sand boxes, seepage into 144 

real trapezoidal channels, allegedly occurring on Mars, but unfortunately did not refer to a plethora 145 
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of theoretical studies of this type of seepage to draining channels on our own planet (see, e.g., 146 

Aravin and Numerov, 1953, PK-62,77, Vedernikov, 1939). 147 

This work is organized as follows. In Section 2, we develop a simple analytical solution for 148 

a 2-D (not DF!) confined flow to a curvilinear ditch draining a saturated, confined aquifer. Some 149 

natural wadi channels in our study area are arcuate, like ones on Mars (Malin and Carr, 1999), but 150 

as the first approximation, we ignore the 3-D effect. Our isobaric ditch contour is an isobar 151 

generated by a line sink. In Section 3, we obtain a similar solution for a point sink in an 152 

axisymmetric flow towards a crater-shaped isobar, the piezometric head being still a harmonic 153 

function. In Section 4, we assemble an infinite array of J.R. Philip’s sinks-sources of the advective 154 

dispersion equation (ADE) for the Kirchhoff potential, which models an axisymmetric, steady water 155 

movement from a horizontal water table towards a topographic depression in a partially saturated 156 

so-called Gardner soil. In Section 5 and Appendix I, 2-D seepage towards a triangular empty or 157 

partially-filled ditch is studied by the machinery of holomorphic functions. All analytical solutions 158 

of Sections 2-5 are tested against HYDRUS-2D numerical simulations. In Section 6, we outline 159 

applications to arid zone hydrology, and in particular, to Martian hydrology.  160 

 161 

2. A Line-Sink-Generated Seepage Face Ditch Draining a Confined Aquifer 162 

   Unlike Hobbs et al. (2014) who could not identify confining layers, in the form of 163 

bedrocks and caprocks, of hydrostratigraphic units in the Martian regolith massif, we - when 164 

making excavations on our SQU site  - indeed crashed a low-permeable caliche layer at a depth of 165 

1.5-2 m. Typical values of Ks for low-permeable (cemented) layers (also called calcrete, petrocalcic 166 

horizons, see, e.g., Duniway et al., 2010), formed by the precipitation of carbonates or gypsum due 167 

to intensive evaporation in semi-arid, arid and hyper-arid regions, are given in the literature: 10−4 to 168 

10−6 cm/s (Al-Yaqout and Townsend, 2004), 0.0002 to 0.008 m/day (Heilweil and Watt, 2011), 169 
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2.8*10-7 m/s (Mujica and Bea, 2020), among others. In most reported cases, these strata 170 

hydrologically cap the vadose zone rather than a perched or confined aquifer in our situation.   171 

We could not excavate deeper to the next low-permeable horizon, and therefore, in Fig. 1a, 172 

the aquifer is not confined from below. We note that genesis of the caliche in the SQU soil profile is 173 

similar to what Michalski et al. (2013) argued about the impact of the upwelling Martian 174 

groundwater on the sequence of cemented sediments of the Red Planet. Specifically, a periodic 175 

“upwelling” (rise) of groundwater in SQU shallow perched unconfined aquifers, and intensive 176 

evaporation from the water table has – allegedly – formed the caliche and “self-confined” this 177 

aquifer by a caprock (Fig. 1a). When we “punctured” the caliche by the JCB scoop, groundwater 178 

gushed into the excavation and filled it to the level of *
Ah  (Fig. 1a) within 2 hours.  179 

 180 

 Fig. 1. A vertical cross-section of an empty ditch B0MC0 a); the right half of the empty ditch 181 

constructed such that the bottom of the ditch, BMC, is a seepage face of the flow in the domain Gz, 182 

generated by a fictive line sink at the origin O(x,y) b); the complex potential domain Gw for the 183 

whole ditch c).  184 
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 185 

Fig. 1a shows a vertical cross-section of an empty ditch B0MC0, which drains a dry soil layer 186 

above a horizontal aquifuge and a confined, homogeneous and isotropic aquifer (having at 187 

saturation a hydraulic conductivity Ks) beneath an originally impermeable layer (caprock) ABCA. 188 

Point A in Fig. 1a is at infinity on the Riemann sphere. If the excavation depth H*, counted 189 

from ABCA (point M is the deepest point of the ditch), is below the aquifuge, groundwater 190 

discharges into the ditch BMC (symmetric and having the width 2 L) with the total flow rate *
dQ   191 

(m2/s).  192 

We assume that flow takes place only below the aquifuge. Goldspiel and Squyres (2011) 193 

call this layer “aquiclude”, that is – in the vernacular of groundwater hydrology (Strack, 1989) – a 194 

“Martian misnomer,” because Goldspiel and Squyres (2011) model impermeable rather than leaky 195 

confining layers. At a point Ah (Fig. 1a), located a certain distance *
AL ( *( )AL L>>  from O, a remote 196 

piezometer shows an elevation *
Ah . For simplicity, we ignore groundwater exfiltration upward 197 

through the caliche in Fig. 1a, i.e., leaky layer (aquitard) flow scenarios, as considered by Kacimov 198 

and Obnosov (2008, 2019).  199 

We introduce Cartesian coordinates  Ox*y* and the complex physical coordinate z* =x* + i y* 200 

(Fig. 1b). In this section, we study the case of an empty ditch, i.e., the pressure head,  p*, along 201 

BMC is zero. The emptiness of the ditch can be ensured by either a high Manning slope in the 202 

direction perpendicular to the plane of Fig. 1a, so that all seeped water rapidly flows away as 203 

surface water (see, e.g., Al-Shukaili et al., 2020a), or due to intensive evaporation, provided H* is 204 

relatively small and climate is arid enough. We note that surface water flow perpendicular to the 205 

plane of Fig. 1, i.e., along the ditch, can be easily tracked on Earth. In our fieldwork, we detected 206 

what Malin and Edgett (2000) called a Martian “seepage-fed surface runoff,” slow Hortonian 207 

motion downslope a ditch, with velocities of few mm/s. On Mars, the juxtaposition of groundwater 208 
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and surface water flows, reconstructed from the contemporary Martian landforms, is purely 209 

hypothetical (Malin and Carr, 1999).  210 

As we have already pointed out in Section 1, a saturated 2-D flow from a homogeneous  211 

aquifer into a ditch (Fig. 1a) obeys Laplace’: 212 

* * *( , y ) 0,   h x∆ =        (1) 213 

where 
* * * *( , ) sV u v K h= − ∇


 is the Darcian velocity vector, *u  and *v  are its horizontal and vertical 214 

components, h* is the total piezometric head, h* = p* - y*, where the pore water pressure is 215 

* *
dP g pρ= , g is gravity acceleration (9.8 m/s2 

 on Earth and  3.7 m/s2  on Mars), and dρ  is pore 216 

fluid’s (groundwater, brine, soil moisture) density. We emphasize that eq. (1) and all the results 217 

below do not assume a quasi-horizontal pore water motion, as it is postulated, for instance, in the 218 

DF model of Boatwright and Head  (2019), and  Luo et al. (2011).  219 

We collected soil-sediment samples, measured Ks using standard techniques (see, e.g., Al-220 

Shukaily et al., 2020b), and ascribed the obtained value to the textural class of HYDRUS-2D sands.  221 

  We introduce the complex potential * * *iw φ ψ= + , * *
sK hφ = − . The stream function  *ψ   222 

and a velocity potential  *φ  are conjugate harmonic functions. Due to symmetry, we consider only 223 

the right half of the physical domain Gz (Fig. 1b). The following dimensionless quantities are 224 

introduced: 225 

* * * * * * * * * * *( , , , , , , , , ) ( , , , , , , , , ) / ,   ( , ) ( , ) / ( )A A A A d d sH L x y z r h h p H L x y z r h h p L w Q w Q K L= = ,  226 

(V, u, v)=(V*,u*,v*)/Ks  227 

where r  (0 )r≤ < ∞  is the modulus of point z=x+i y in the aquifer (Fig. 1a) 228 

 The complex potential domain Gw is depicted in Fig. 1c. The piezometric head is assumed to 229 

be zero at points B and C. The image of the BMC isobar in G is a specific curve whose shape is 230 
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unknown. Far away from the ditch, the piezometric head is constant (hA) along a circle of a radius 231 

LA in Gz (Fig.1a). The image of this circle is a segment AhAv in Gw (Fig. 1c).  232 

 Now we use the trick implemented by Zhukovskii (1948) in fluid mechanics of ideal fluids 233 

(see recent applications in Belotserkovsky and Lifanov, 1992), also employed in problems of 234 

subsurface mechanics of steady and transient Darcian flows (Fujii and Kacimov, 1998, Kacimov, 235 

1992, 2000a, 2007, 2009, Kacimov et al., 2009, Kacimov and Obnosov, 2002, PK-62,77, Strack, 236 

1989, 2020, Vedernikov, 1939). We place a line sink of intensity Q=2Qd  at the origin of 237 

coordinates. The complex potential of this sink is:   238 

2 2i Ln ,   exp[i ], ,
2

Ln , , | V | ,
2

d d

d d d d

Q Qw z z r r x y

Q Q Q Qh z
r

n
p

y θ
p p p

= − − = = +

= = − − =

     (2) 239 

where ν  is the argument of z. It is evident from eq. (2) that the streamlines of this flow are rays 240 

converging to point O in Fig. 1b. The isotachs and equipotential lines are semicircles centered at the 241 

same point.  242 

 Now we restrict r in eq. (2) to only a positive-pressure part of the half-plane in Fig.1a, i.e., 243 

we use eq. (2) for the reconstruction of BMC by plotting the curve, which is determined by the 244 

following explicit formula: 245 

2 2Ln , 0 1, 0.dQ x y y x H yπ+ = ≤ ≤ − ≤ ≤                                                   (3) 246 

  The depth H of the ditch, found from the solution of the equation 247 

Log | |dQ y yπ= ,                                                           (4) 248 

is equal to 249 

( / ) /d dH Q W Qππ = − − ,                                                                   (5) 250 

where W stands for the Lambert W-function (implemented as ProductLog in Wolfram’s (1991) 251 

Mathematica). 252 
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                253 

Fig. 2. a) Half-contours of sink-generated ditches for Qd = 0.2, 1, and 5.86 (curves 1, 2, and 3, 254 

respectively). b) The depth H of a sink-generated ditch and its area A (curves 1 and 2, respectively) 255 

as functions of the seepage flow rate Qd. 256 

  257 

Fig. 2a shows the MC contours for sink-generated ditches (Fig. 1b) plotted for Qd = 0.2, 1, 258 

and 5.86  (curves 1, 2, and 3, respectively). Curve 1 in Fig. 2b shows H(Qd). From eq. (3) it is 259 

obvious that for small Qd, the ditch degenerates into a horizontal segment, while in another limit, 260 

lim 1
dQ

H
→∞

= , BMC becomes a semicircle. The analytical solution (2)-(5) is similar to those obtained 261 

by Bazanov (see PK-62, 77) and Kacimov and Obnosov (2002) for empty ditches reconstructed by 262 

the specification of boundaries corresponding to BMC in the hodograph or other auxiliary planes 263 

(e.g., the plane of the Zhukovskii holomorphic function, which is defined as w–i z, see PK-62,77). 264 

We also recall the analytical and numerical solutions of Dagan (1964) and Gjerde and Tyvand 265 

(1992), who studied potential transient 2-D (not DF) flows towards horizontal drains (modeled by 266 

linear sinks and empty circles, correspondingly). 267 

Curve 2 in Fig. 2b shows A(Qd). The cross-sectional area, A, of BMC (in Fig. 1a) is 268 

evaluated by the NIntegrate routine of Mathematica as:  269 

1

0

2 ( )dA y x x= − ∫ ,      (6) 270 
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 Fig. 3 shows the results of modeling with HYDRUS-2D (Šimůnek et al., 2016). We selected   271 

Qd = 0.2/p in the analytical solution (3). With the help of eqs. (3) and (5) we generated 10 points on 272 

MC, imported them from Mathematica into HYDRUS, and made a spline curve in dimensional 273 

quantities used by HYDRUS. Also, HYDRUS uses z for the vertical coordinate. Fig. 3a shows the 274 

HYDRUS modeling domain bounded by an isobaric curve MC, for which we selected L=100 cm. 275 

Soil is loam from the HYDRUS soil catalog. The horizontal and vertical segments CAh and MAv in 276 

Fig. 3 are no-flow lines. We selected * 500AL =  cm, i.e., we assumed a quarter-circle AhAv with a 277 

radius of 500 cm to be a line with a constant piezometric head (we recall that HYDRUS, unlike PK-278 

62,77 and Strack, 1989, uses h as a notation for the pressure head), along which we set  * 32.2Ah =  279 

cm. This value was found at r* =500 cm for a selected value of *
dQ  from the logarithmic variation of  280 

h*(x*) along CA, counting from the fiducial point C where * 0Ch = , see eq. (2). Fig. 3b shows the 281 

isotachs (also constant h* and  *φ  contours), and Fig. 3c shows the streamlines. The origin of the 282 

spatial coordinates is retained in Fig. 3 to indicate the position of the generating sink. HYDRUS 283 

results match very well the analytical solution.   284 

    285 

Fig. 3. The HYDRUS flow domain for a half-ditch generated by a line sink a), isotachs b), and 286 

streamlines c).  287 

 288 
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3. A Point-Sink-Generated Dimple Draining a Confined Aquifer 289 

In this section, we use the same procedure as in Section 2 for the case of axisymmetric flow 290 

towards a depression BMC shown in Fig. 4 in an axial cross-section. We select a system of 291 

cylindrical coordinates Oz*ρ* κ, where z* is a vertical coordinate (the same now as in HYDRUS-292 

2D), * *2 *2 * *2 *2= ,x y r zrr + = +  and the angular coordinate κ  vanishes from the analysis due 293 

to axial symmetry. At the origin O, we now place a point sink of intensity *
dQ  (m3/s).  294 

 295 

Fig. 4. An axial cross-section of an axisymmetric crater draining a confined aquifer.  296 

 297 

The piezometric head caused by a point sink is (PK-62,77):  298 

*
*

*
1 1=

2
d

s

Qh
K R rπ

 − 
 

,        (7) 299 

where R is the radius of the depression that coincides with the r* (and ρ*) coordinate of points B and 300 

C in Fig. 4. Eq. (7) sets up the total head equal to zero in these reference points. The depression of a 301 

depth H* is empty and, therefore, the pressure head * 0BMCp =  along this curve in Fig. 4 (a surface in 302 

3-D). At a remote point Ah, located at a distance *
AR  ( *

AR R>> ) from point O (Fig. 4), we have: 303 

*
* =

2
d

A
s

Qh
K Rπ

.        (8) 304 
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Point Ah is a surrogate infinity of the infinite point A on the Riemann sphere. The head of eq. (8) is 305 

illustrated in a remote piezometer sketched in Fig. 4. We recall (PK-62,77) that for flow to a 3-D 306 

sink, the piezometric head at infinity is finite, unlike for a 2-D sink (Section 2), for which the head 307 

at infinity (point A) in Fig. 1b logarithmically blows up to infinity.  308 

We introduce dimensionless quantities: ( , , , , , , , )A AH z r h p h Rr = * * * * * * * *( , , , , , , , )A AH z r h p h Rr , 309 

* 2/ (2  )d d sQ Q K Rπ= , * * *( , , ) ( , , ) /Z sV u v V u v Kρ= ,  where  (u,v) are now the radial and vertical 310 

velocity components.  311 

 From eq. (7), a zero-pressure isobar (seepage face) BMC is reconstructed, similarly to eq. 312 

(3), by an equation: 313 

2
2

1 , 0 1, 0.
(1 / )d

z H z
z Q

ρ ρ= − ≤ ≤ − ≤ ≤
−

   (9) 314 

We note that some Martian hydrologists use the term “aquifer sapping face” and “crater wall” 315 

(Goldspiel and Squyres, 2011) for what is called a “seepage face” in terrestrial civil engineering 316 

(Strack, 1989).  317 

Eq. (9) defines a quartic line. The depth H is found from eq. (9), which at ρ = 0 is reduced to 318 

a quadratic equation having the following physically meaningful solution:  319 

2 4
2

d d dQ Q Q
H

+ −
= .      (10) 320 

We used eqs. (9-10) and calculated the volume of the depression BMC in Fig. 4 as a body of 321 

revolution: 322 

( )0 2 2(z)d 6 6 (4 ) (4 )
6

d
d d d d dH

QV z Q Q Q Q Qππ ρ
−

= = + + − + +∫ ,             (11) 323 
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          324 

Fig. 5. a) Half-contours of a sink-generated axisymmetric topographic depression draining a 325 

confined aquifer for Qd = 0.2, 1, and 2 (curves 1, 2, and 3, respectively). b) Depth and volume 326 

(curves 1 and 2, respectively) of an axisymmetric sink-generated depression in a confined aquifer. 327 

 328 

Fig. 5a shows the isobars MC for Qd = 0.2, 1, 2 (curves 1-3, correspondingly). In Fig. 5b, the 329 

curves (10) and (11) are plotted. Obviously, for
0

lim 1
dQ

H
→

=  and lim 2 / 3
DQ

V π
→∞

= , BMC becomes a 330 

hemisphere in this limit, while for small Qd, we get a disk. 331 

 332 

       333 

Fig. 6. HYDRUS isobars corresponding to Qd = 0.2 a), isotachs b), and streamlines c).  334 

 335 

 The results of HYDRUS-2D simulations (in dimensional quantities) corresponding to the 336 

analytical case of Qd = 0.2 are presented in Fig. 6. As in Section 2 (Fig. 3), we considered a loamy 337 

soil. We selected the radius R of the HYDRUS axisymmetric depression to be 100 cm. Using eqs. 338 
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(9) and (10), we generated ten discrete points on MC and made a HYDRUS spline (seepage face). 339 

The radius *
AR  of a constant piezometric head quarter-circle AhAv was 500 cm. According to eq. (8) 340 

the total head * * 20A Ahh p= =  cm at point Ah and, therefore, along AhAv, i.e., the HYDRUS pressure 341 

head is *
AVp =520 cm at point Av. Fig. 6a presents steady-state pressure head isolines. Fig. 6b 342 

illustrated isotachs and Fig. 6c plots the streamlines. Figs. 6bc perfectly fit the analytical solution.   343 

In the next section, we focus on an opposite case of steady flow in a purely unsaturated 344 

Gardner soil, albeit the same trick will be used, viz. we place a fictitious sink “in the air” and use 345 

real isobars to construct topographic craters (dimples).  346 

 347 

4. An Isobaric Depression Reconstructed From Philip’s Point-Sink Array and 348 

HYDRUS-2D Simulations 349 

Analytical solutions of Sections 2 and 3 ignored flow in the unsaturated zone and the 350 

capillary fringe, which are important in the case of small-scale drainage entities (Abit et al., 2008, 351 

Silliman et al., 2002  352 

  In this section, we incorporate into an analytical quasilinear model all three physical 353 

factors, which control seepage: the gravitational force on Earth or Mars, Darcian resistance of the 354 

soil, and capillarity.  355 

We use a constitutive relation for the phase conductivity: 356 

                               *exp[ ]un s pk K pα= ,                                                           (12) 357 

where *( )unk p  for * 0p ≤  is an unsaturated hydraulic conductivity, αp (const > 0) is the sorptive 358 

number (1/m) (Gardner, 1958, see also Raats, 1973). J.R.Philip (1968) pioneered utilizing eqn. (12) 359 

for modeling 2D and 3D unsaturated flows (see, e.g.,  Pullan, 1990, Raats et al., 2002 ). The soil 360 

constant αp is related to the VG-HYDRUS parameters α and n via well-known empiric relations 361 

(Acharya et al., 2012); we used eqn. (10) from Ghezzehei et al. (2007).  362 
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 363 

Fig. 7. An axial cross-section of evaporative flow in an unsaturated soil from a horizontal water 364 

table W1W0W2  to a topographically depressed isobar BMC.  365 

 366 

 The evaporation arises from a steady upward flow from a horizontal (shallow) water table 367 

W1W0W2 to a hot and dry soil surface BMC (Fig. 7) where the pressure head is constant ( * *
sp p= − , 368 

* 0sp > ). This surface has a topographic depression with the deepest point M at a depth H* > 0 369 

counted from the soil surface, which is horizontal and flat, far away from the topographic trough in 370 

Fig. 7, i.e., the water table is at a given depth b* above a flat soil surface (near remote points B and 371 

C). BMC in Fig. 7 can also be related to the “sapping valleys” on Mars (see, e.g., Salese et al., 372 

2019), albeit there is a difference in scales: the Martian depth of the water table * *
1( )sZ Z−  is 4-5 373 

km, while at SQU, the shallow groundwater table is only several tens of cm deep.  374 

The depression in Fig. 7 is axisymmetric, like in Section 3. The axis of symmetry coincides 375 
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with the OZ* axis of a cylindrical system of coordinates OZ*ρ∗ (introduced similarly as in Section 3 376 

above). To be consistent with Philip, we orient OZ* downward.   377 

Thus, unsaturated soil in 3-D is sandwiched between the W1W0W2 plane and the soil surface 378 

obtained by the revolution of BMC with respect to the axis OZ* in Fig. 7. There are no physical 379 

singularities representing drains, subsurface emitters, or plant roots in this soil layer.  380 

 The contour BMC in Fig. 7 is obtained in the following manner (Philip, 1989, Obnosov and 381 

Kacimov, 2018). A fictitious point sink of intensity *
pQ  (m3/s) is placed at the origin of coordinates, 382 

such that the water table is beneath this sink at a depth of *
1 0Z > . A fictitious horizontal isobaric 383 

plane F1F0F2 is placed at the level * *
2Z Z= − , *

2 0Z > , as illustrated in Fig. 7. At this plane, the 384 

pressure head * *
0p p= −  is specified. Points B and C in Fig. 7 of an “intermediate isobar” between 385 

two sandwiching isobaric planes F1F0F2 and W1W0W2  are at the level of  *
sZ , which can be either 386 

positive or negative. Fictitious point sources and sinks of intensity *
pQ  mirror each other with 387 

respect to the planes F1F0F2 and W1W0W2. Only the first fictitious source under the water table, 388 

placed on the OZ* axis at a depth of *
12Z , is shown in Fig. 7. The array of an infinite number of such 389 

sinks-sources generates a family of isobars, some of which are real (two dashed lines * *
2p p= − , 390 

* *
1p p= − , * * *

2 1 sp p p< <  are sketched in Fig. 7), and others are fictitious (two dotted lines * *
2p P= − , 391 

* *
1p P= − , * * *

2 1sp P P< <  are sketched in Fig. 7). Mathematically, instead of BMC in Fig. 7, we can 392 

select another soil surface, for example, any of the two dashed isobars.  393 

Practically, we proceed in the following manner. One goes to the field with a theta-probe 394 

and collects the moisture content, θs, from the topsoil of a real depression, having a certain  395 

geometrical sizes b*, H*. If θs (and hence *
sp ) is almost constant in the depression and on a flat 396 

surface away from the depression, then the position * *
1 2( , )Z Z  of the origin of coordinates (sink’s 397 
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locus) and the strength *
pQ  of Zhukovskii’s sinks-sources array should be mathematically adjusted 398 

in such a manner that the physical (field) depression becomes close to a mathematical isobar BMC 399 

in Fig. 7. In what follows, we illustrate this algorithm.    400 

Routinely (see Philip, 1968, Raats, 1970, Obnosov and Kacimov, 2018), we introduce the 401 

Kirchhoff potential, Ω∗, which is often called the matric flux potential: 402 

*
* * * * *( , ) ( )d [ ( *, *)] / , /

p

un un P s PZ k u u k p Z Kρ ρ α α∞−∞
= =Ω Ω =∫ , (13) 403 

i.e., *
∞Ω is the Kirchhoff potential along W1W0W2. Obviously, the lines of a constant Kirchhoff 404 

potential are also isobars (the values of corresponding pressure heads are found directly from eq. 405 

(13)) and isowetness curves  (the corresponding water content is found from eq. (13) and the soil-406 

water retention function). 407 

We introduce dimensionless quantities: 1 2( , , , , , , , , , ) sz b H z z z r h pr = 408 

* * * * * * * * * *
1 2( , , ,Z ,Z ,Z , , , , ) / 2sZ b H r h pr α× ,  * / ∞Ω = Ω Ω , * /p pQ Q α ∞= Ω , * * *( , , ) ( , , ) /p Z sV u v V u v K=409 

.  Then Richards’ equation (0) is reduced to a linear ADE: 410 

* * *
* * * *

* * *, , ,P Z Pu v
Z Zρα α

ρ
∂Ω ∂Ω ∂Ω

∆Ω = = − = Ω −
∂ ∂ ∂

 (14) 411 

where ∆ is the Laplacian operator in (ρ,Z), *uρ  and *
Zv  are the radial and vertical velocity 412 

components.  413 

  We adapt  Philip’s (1989) and Obnosov and Kacimov (2018) solutions to the case of flow in 414 

Fig. 7 and obtain a series: 415 
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                     (15) 416 

where the constant 0 2exp[ ]pzαΩ = − , 00 1≤ Ω ≤  is the Kirchhoff potential along F1F0F2. At points 417 

B and C, which are located on a physical isobar, whose remote «wings» are above the sink in Fig. 7, 418 

we have 2exp[ ]s pzαΩ = Ω = −  for 0 1sΩ ≤ Ω ≤ .   419 

The first term on the RHS of eq. (15) determines 1-D unsaturated evaporative flow from 420 

W1W0W2 to F1F0F2 in the layer 1 2z z z< < − . The terms in the square brackets of eq. (15) are 421 

responsible for sinks and sources, and consequently, for mirrored (imaged) with respect to the 422 

plains 1z z=  and 2z z= − . We emphasize that Philip (1989) and Obnosov and Kacimov (2018) 423 

studied flow for one real source representing a subsurface irrigation emitter, while all in Fig. 7 and 424 

eq. (15) are fictitious. A trick similar to ours was used by Zhukovskii (1948) in his famous formula 425 

for aerodynamics of ideal fluids. He combined mathematical singularities of a characteristic 426 

holomorphic function (two dipoles and vortex), the latter placed inside an airfoil (e.g., an 427 

impermeable cylinder). Zhukovskii also ignored a fictitious flow inside an airfoil (in the vicinity of 428 

the vortex) and only considered an exterior of a mathematical separatrix-streamline (cylinder). We 429 

confine real Darcian flow not by streamlines (for the sake of brevity, we have not even introduced 430 

the Stokes stream function, see Obnosov and Kacimov, 2018), but by two isobars (BMC and 431 

W1W0W2 in Fig. 7).  432 
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 433 

Fig. 8. Analytically computed isolines of Kirchhoff’s potential for (z1, z2, 0Ω , QP) =(1, 1, 0.2, 1). 434 

 435 

The results of computations based on eq. (15), where the series was truncated to 5 terms, are 436 

plotted by the ContourPlot routine of Mathematica in Fig. 8 for (z1, z2, 0Ω , QP) =(1, 1, 0.2, 1). As 437 

an example, in Fig. 8, we selected an isobar BM as the real depressed isobaric soil surface 438 

maintained at the Kirchhoff potential 0.26sΩ = . For this isobar, we used the FindRoot routine of 439 

Mathematica and evaluated 0.389Mz = , 0.177B sz z= = − , i.e., the dimensionless depth of the 440 

depression in Fig. 8 is H=0.566. 441 

HYDRUS-2D simulations are presented in Fig. 9. We used silt loam with the VG-HYDRUS 442 

triad of soil hydraulic parameters (α, n, Ks)=(2 1/m, 1.41, 1.08 m/day). We followed Ghezzehei et 443 

al. (2007) and made Gardners’s soil having αP=1.3α n, i.e., αP=3.67 1/m. In Fig. 9a, a HYDRUS 444 

axial section is shown for the case of the pressure head * 0.82 mMCp = − . The flow domain, which 445 
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corresponds to the analytical depression, has the HYDRUS coordinates 0.13mMz = − , 0.23mCz = , 446 

and 2 0.55mWz = − . The analytical isobar MC is converted to the HYDRUS spline curve similarly 447 

as in Sections 2 and 3. Figs. 9b and 9c show the HYDRUS isobars and streamlines. As is evident 448 

from Fig. 9c, the ditch funnels up the flux of moisture from the water table that also evaporates at 449 

the almost flat part of the soil surface (near point C). In other words, a simple flow tube is realized 450 

in Fig. 9c.  451 

 In Fig. 9d, we assumed a wetter soil surface having * 0.63mMCp = − . The origin of 452 

coordinates O is again, like in Figs. 8 and 9a, at the locus of the analytic imaginary sink. The 453 

geometry of the flow domain has changed as compared to Fig. 9a. The corresponding analytical 454 

depression MC has now the HYDRUS coordinates 0.1mMz = − , 0.176mCz = , and 2 0.55mWz = − . 455 

The isobars are shown in Fig. 9d. They seem uninteresting, like ones in Fig. 9b. Fig. 9e presents 456 

HYDRUS streamlines, which are more interesting. Indeed, the flow topology is different from one 457 

in  Fig. 9c. Specifically, like in Kacimov and Youngs (2005), who studied a seemingly trivial flow 458 

domain having a nontrivial two-sheet Riemann surface in the hodograph plane (see also Anderson, 459 

2013). In Fig. 9e, we see a separatrix SsSwSd, which divides the unsaturated domain into three 460 

subdomains. In the first one (counted from the left in Fig. 9e), moisture ascends from segment W0Sw 461 

of the water table to the closest (deepest) section MSd of the ditch surface (like in Fig. 9c). At the 462 

rest of the water table, segment SwW2, moisture descends (infiltrates) from SsC on the soil surface 463 

(third subdomain). Point  Sw is a stagnation point. Stagnation points and separatrix streamlines also 464 

appeared in Raats (1977) for steady flows to an array of the parallel line sinks in unsaturated 465 

Gardner soils. In HYDRUS, the numerical value of the velocity vector at this point (x=0.35 m) 466 

attains a sharp minimum (1.3×10-5 m/day).  467 

The second, and most interesting, subdomain in Fig. 9e is bounded by the separatrix 468 

(streamline) and a curve segment SdHpSs. Along this isobar (we recall that * 0.63mMCp = − , moisture 469 
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infiltrates into the soil through HpSs and exfiltrates back into the atmosphere through SdHp, making a 470 

U-turn. Therefore, the whole flow domain in Fig. 9e represents a complex flow tube similar to one 471 

in the potential flow shown in Fig. 62 of PK-77. It is noteworthy that in potential flows governed by 472 

the Laplace equation, this type of separatrix (complex flow tubes) emerges in situations when the 473 

boundary of the flow domain has three or more equipotential components. Figs. 9c and 9e illustrate 474 

that in ADE-governed unsaturated flow, a complex topology can appear in a domain bounded by 475 

two lines (surfaces) of a constant Kirchhoff potential. 476 

 A hinge point Hp in Fig. 9e is similar to ones in the classical Tothian (see, e.g., Kirkham, 477 

1947, Toth, 2009) topology of purely saturated flows controlled by gravity, Darcian resistance, and 478 

topography of the isobaric ground surfaces (postulated by Toth), along which groundwater 479 

infiltrates-exfiltrates (but without taking into account unsaturated flow in the vadose zone). At the 480 

point Hp, the Darcian velocity vector is tangential to the soil slope. We rephrase: if the velocity 481 

vector is decoupled into the components normal and tangential to the local soil surface, then at Hp, 482 

the normal component is zero. Along SdHp, this normal component is oriented from the soil to the 483 

air, whereas along HpSs, the normal component points into the soil.   484 

Summarizing, in the analysis of flow in an unsaturated soil represented in Fig. 9d and e, we 485 

amended the Tothian (2009) physical factors by capillarity of the soil. We then got a topological 486 

pattern shown (upside-down) at the forefront of the Freeze and Cherry (1979)  and in a normal way 487 

in Figs. 2.25 – 2.26 of Radcliffe and Šimůnek (2010). 488 

   489 
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   490 

 491 

Fig. 9. HYDRUS simulations of purely unsaturated flow between a water table and an 492 

analytically found isobaric depression: a) finite element discretization of the flow domain and the 493 

boundary conditions, b) and d) pressure head contours, c) and e) streamlines. b) and c) flow to a 494 

relatively dry soil surface, d) and e) evaporation-infiltration at a relatively wet soil surface. 495 

 496 

5. A Triangular Ditch in a Confined Aquifer 497 

 498 

Ιn this section, we return to steady, and capillarity-free flow in saturated soil. We consider 2-499 

D potential flow in a vertical plane (Fig. 10a) and use the notations of Section 2, i.e., the complex 500 

physical coordinate is again z*=x* +i y*. 501 
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 502 

Fig. 10. A vertical cross-section of seepage flow towards a triangular ditch in a confined 503 

aquifer a), a complex potential domain b), a reference plane c), and a mirror-image in the 504 

hodograph plane d). 505 

 506 

A caprock of a confined aquifer is now breached by a triangular isosceles ditch B0MC0, 507 

having a bank slope πω , 0 1 / 2ω≤ ≤ . The flow domain, Gz, is now the half-plane y* < 0 with a 508 

triangular indent BMC. Ditch’s depth is * * tanH L πω= .    509 

Unlike in Section 2, we allow water to accumulate in the ditch up the horizon B1C1 at the 510 

level *
wH . The piezometric head at infinity (point A in Fig. 10ab) is infinite but, as in Section 2, we 511 

replace this infinity by a “surrogate infinity,” viz. an equipotential line AvAh  (shown as a dashed 512 

semi-circle and a segment in Figs. 10a and 10b, respectively). Practically, in a remote piezometer 513 

located distance *
AL  from the ditch axis, the total head, *

Ah , counted from points B and C, is 514 

measured. The overall flow rate into the ditch is *
tQ . The domain Gw of the complex potential w is 515 

sketched in Fig. 10b. The boundary conditions for w are 516 
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* *
1 1

* *
1 1
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* *
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
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=
 = −

                                              (16) 517 

To the dimensionless quantities introduced in Section 2, we add 518 

* * *
'( , ) ( , , ) / ,w A A w A AH L h H L h L=   * / ( )t t sQ Q K L= . 519 

We map the tetragon Gz onto a half-plane 0η ≥  of a reference plane iζ ξ η= +  (Fig. 10c) with the 520 

correspondence of points 0M → , A → ∞ , 1B → , 1C → − , 1B β→ , 1C β→ −  .  Appendix I 521 

presents the details of our solution. An alternative method for the analytical solution (see the 522 

taxonomy of these methods in Aravin and Numerov, 1953, see also Bear, 1972) involves a 523 

conformal mapping of Gz onto a mirror-image of the pentagon in the hodograph plane. Fig. 10d 524 

sketches such a half-plane with two semi-infinite cuts for the case of an empty ditch.  525 

Fig. 11 shows the function Qt(H) (curve 1) computed by eq. (A9) for hA = 3 and LA = 5. 526 

Similarly to Al-Shukaili et al. (2020b) and Kacimov (1985), we introduce the Morel-Seytoux 527 

dimensional seepage flow rate * * * * */ ( ),     t sQ K A A H Lµ = = .   528 

 529 

Fig. 11. Dimensionless seepage flow rates Qt (curve 1) and µ (curve 2) as functions of H for an 530 

empty ditch, Ah = 3, and AL = 5. 531 
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 532 

Curve 2 in Fig. 11 plots the function ( )Hµ . The minimum of the function is 6.085µ ≈  and 533 

1.177H ≈ . This minimum can be interpreted as a solution to the following optimal shape design 534 

problem, OSDP (similar to ones solved in Kacimov, 2005, 2006b): 535 

 OSDP 1. Determine an empty ditch, into which a minimal quantity *
tQ  of water seeps, 536 

provided the ditch area A* and remote piezometric data ( *
Ah  and *

AL ) are fixed.  537 

 Curve 2 in Fig. 11 provides evidence that there is a unique and global solution to OSDP1. 538 

The minimum is “mild” (similar to ones in Kacimov, 1985), i.e., triangular ditches having slopes 539 

close to the best one will not deviate much from the best (minimal) seepage exfiltration rates. 540 

Problems similar to OSDP1 are common in civil engineering when a pit (e.g., for a building 541 

foundation) is excavated, and minimum exfiltration is desired, or pit’s drainage measures are 542 

planned.  543 

 544 
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 545 

Fig. 12. HYDRUS simulations for a triangular empty ditch having H*=50 cm, L*=100 cm, *
AL = 546 

500 cm, and *
Ah =300 cm: isobars a), isotachs b), and Darcian velocities along the ditch side MC c).  547 

 548 

For comparisons, in Fig. 12, we present the results of HYDRUS simulations for the tetrad of 549 

parameters (H*, L*, *
AL , *

Ah ) =(50 cm, 100 cm, 500 cm, 300 cm). Fig. 12a shows the isobars. Fig. 550 

12b illustrates the isotachs. In the analytical solution, the Darcian velocity approaches infinity at 551 

points M and C. At the same time, it attains a minimal value, which corresponds to the tip of the cut 552 

in the hodograph domain (Fig. 10d). HYDRUS shows the same. In Fig. 12c, we plot the distribution 553 

of the velocities along the ditch side MC, where a minimum |V|=43.1 cm/day is attained at sd =66.7 554 

cm, where sd  is the arc coordinate counted from point M in Fig. 10a. Curves like the one in Fig. 12c 555 

are useful for the assessment of erosional stability of slopes of ditches, since heaving and suffusion 556 

are determined by exit values and directions of hydraulic gradient vectors i


. For example, PK-557 

62,77 considers the condition | | 1i >


 as a criterion of instability, according to which Fig. 12c 558 

illustrates that the ditch side MC in Fig. 12 is absolutely unstable at any sd.  559 

The HYDRUS-computed Morel-Seytoux factor µ is equal to 6.97 for the trench in Fig. 12, 560 

while the analytical solution gives µ =7.08. We computed other triangular ditches in HYDRUS-2D, 561 
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by using a discrete variation of the slope angle. We evaluated *
tQ  from the steady-state limit of the 562 

cumulative flux into the ditch from a “feeding semicircle” (Fig. 10a, dashed curve). Then we 563 

converted this dimensional *
tQ  into the dimensionless µ , which fits well the analytical curve 2 in 564 

Fig. 11.  565 

Collation of solutions for seepage into a triangular ditch and sink-generated ditch in Section 566 

2 is done in the following manner. For the case presented in Fig.11, we use eq. (2) and evaluate 567 

/ Ln 3 / Ln 5 5.86d A AQ h Lππ = = = . The corresponding isobar is shown as curve 3 in Fig.2. Using 568 

eq.(6) we evaluated the area and the Morel-Seytoux factor µ = 5.94. We surmise that this is a global 569 

optimum in the class of arbitrary ditch shapes. 570 

 571 

 572 

 573 

Fig. 13. The dimensionless seepage rate Qt into a triangular partially filled ditch as a function of Hw 574 

for three slopes (ω=1/6, 1/4, and 1/3), Ah =3, and AL =5.     575 

 576 

 Next, we considered a general case of a partially-filled ditch (Fig. 10a). In Fig. 13, curves 1-577 

3 show the graphs of the functions Qt(Hw) for three ditch slopes: π/6, π/4, and π/3, and the same 578 

3Ah =  and 5AL =  as in Fig. 11. In the regimes of partial filling, we can solve OSDPs similar to 579 
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OSDP1. Regional groundwater flow can be easily taken into account, similarly to Ilyinsky and 580 

Kacimov (1992b). The analytical solution to the steady problem can be readily extended to a 581 

transient regime of exfiltration into a gradually-filling ditch. We assume that the value *
Ah  in Fig. 582 

10a is high enough such that when we make a ditch, seepage into it does not reduce much *
Ah , and 583 

the soil in Fig. 10a remains saturated (an aquifer remains confined).  584 

Let us assume, similarly as in HYDRUS, that during the transient seepage phase, the porous 585 

skeleton and water are incompressible. If evaporation from the ditch is ignored, then from the 586 

principle of mass conservation, the following ODE follows: 587 

*
* *

*
d [ ( )],     
d

s
t

A Q H t
t

=       (17) 588 

where t* is dimensional time and *( )sA t   is the area of the swelling triangle B1C1M in Fig. 10a (for 589 

comparisons see Al-Shukaili et al., 2020b, where emptying of triangular trenches has been studied).  590 

Obviously, the initial condition in eq. (17) is *(0) 0sA = , i.e., seepage-filling commences from an 591 

empty ditch stage. We put ( )2* * *( ) (t) cotans wA t H H πw= −  into eq. (17) and get the following 592 

Cauchy problem: 593 

( )
*

* * * * *
*

d ( )2cotan ( ) [ ( )],   (0)  = 0, 0
d

w
w t w w

H tH t H Q H t H t
t

πw − = < < ∞ .  (18) 594 

We used the NDSolve routine of Mathematica to solve the nonlinear 1-st order ODE (18) 595 

numerically, with the RHS taken from eq. (A9). For this purpose, we interpolated 51 point values of 596 

* *[ ]t wQ H  (see curve 1) in the steady-state problem. The results of computations are shown in Fig. 597 

13 in dimensionless quantities, to which we added a dimensionless time * /st t K L= . In Fig.14, we 598 

plotted the functions ( )wH t  obtained from the solution of eq. (18) for 3Ah =  and 5AL = , and the 599 

same ditch slopes ω = 1/6, 1/4, and 1/3, (curves 1-3, correspondingly). As is evident from these 600 
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draw-up curves, the ditches are filled out in finite time intervals, ft  =(0.115, 0.175, 0.24), 601 

respectively. At ft t> , seepage into a ditch continues due to an artesian pressure in an aquifer, and 602 

exfiltrating water has to be removed (e.g., pumped out) if we want to keep points C and B in Fig. 603 

10a at zero pressure heads (i.e., not ponded). That is equivalent to the condition that the horizon BC 604 

remains static (see in Kacimov, 1991, a similar flow regime in a horizontal plane). The type of 605 

curves in Fig. 14 can be used for the determination of sK  (similarly to Al-Shukaili et al., 2020b and 606 

Kacimov, 2000b) that is also useful for deep structure constructors when pumping tests in deep 607 

confined aquifers are not feasible. If an aquifer is unconfined, then for a suddenly emptied ditch (or 608 

an auger hole, Kacimov 2000,b), ft = ∞  609 

 610 

Fig. 14. Dimensionless draw-up curves Hw (1, 2, and 3) as functions of dimensionless time t for 611 

different values of ω (1/6, 1/4, and 1.3,respectively). 612 

 613 

 A transient analytical solution can be compared with a numerical one, which involves a new 614 

reservoir boundary condition of HYDRUS (Šimůnek et al., 2018). This new HYDRUS option 615 

allows for the consideration of variable storage of a furrow channel, or well bore (e.g., Bristow et 616 

al., 2020, Sasidharan et al. 2018, 2019, 2020), the contours of which are subject to the condition of 617 

a constant piezometric head on the submerged part and a seepage face on the empty part of the 618 
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draining entity. HYDRUS then considers flow into or out of the reservoir through its interface with 619 

the subsurface transport domain depending on the prevailing conditions in the transport domain, 620 

such as the position of the groundwater table or piezometric heads, and external fluxes, such as 621 

pumping, or injection, or evaporation, or precipitation. The furrow reservoir can be adapted for our 622 

triangular ditch. The problem considered in Fig. 12 was rerun under transient conditions, starting 623 

with an empty ditch with dimensional sizes of H* =50 cm and L*=100 cm, corresponding to the case 624 

illustrated by curve 1 in Fig. 14. The HYDRUS draw-up curve * *( )wH t  is shown in Fig. 15. 625 

       626 

 Fig. 15. A draw-up curve computed by HYDRUS for ω =1/6, H*=50 cm, and L*=100 cm.  627 

 628 

There is a perfect match between the results in Fig. 15 and curve 1 in Fig. 14 from the analytical 629 

solution in dimensionless variables. We also compared the transient fluxes into the half-ditch, i.e., 630 

the analytical Qt /2 from Fig. 11 (curve 1) and one computed by HYDRUS. For example, at t*=0.1 631 

day, the HYDRUS flux is about 6075 cm2/day, whereas the analytical flux * / 2tQ  is 6063 cm2/day. 632 

 633 

6. Comparison of Terrestrial and Martian Evaporating Spots 634 

As an example, let us consider depression 1 (Qd=0.2) in Fig. 5. Assume R* =100 cm, H*=35 635 

cm, and a loamy soil having Ks=25 cm/day. Let the water evaporate from the disk *2Rπ  with a 636 

constant intensity e. In order to keep the crater empty, this value has to be 0.2 25 / 1.6e π= × ≈  637 
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cm/day, which is - according to the Penman-Monteith equation and field measurements of 638 

evaporation - a too high value even in the Empty Quarters of Oman.    639 

If one wants to reconstruct desertification of Mars or intercept ascending moisture fluxes 640 

from the deep water table, for example in projects of Mars colonization, then the topography like 641 

the one in Fig. 9 should be taken into account similarly to what we have on Earth. Hummocky 642 

terrains or even earth dams (Kacimov and Brown, 2015) generate complex 2D and 3D Toth-type 643 

Darcian fluxes. Specifically, flat landforms with a homogeneous vadose zone and a shallow water 644 

table are easy to examine for water storage and fluxes: it suffices to measure the depth of the water 645 

table and the pressure head (moisture content) of the topsoil to infer what is the value and direction 646 

of the flux. If the vadose zone is heterogeneous, the flux magnitudes can attain nontrivial extrema, 647 

even of a simplest type of a two-layered soil (Kacimov et al., 2019). Fig. 9e illustrates that routine 648 

measurements of the boundary condition on soil surfaces with depressions are not sufficient for the 649 

determination of the directions and magnitudes of the motion of water governed by the Richards 650 

equation.  651 

 652 
7. Concluding Remarks 653 

The mainstream groundwater hydrology focuses on MAR (Managed Aquifer Recharge), a 654 

method of replenishing aquifers, especially in arid environments. We are putting forward the 655 

opposite concept of MAD (Managed Aquifer Discharge) of shallow aquifers, which have to be 656 

intelligently drained to mitigate the damage inflicted by groundwater inundation. The analysis in 657 

this paper will be useful in planned drainage of water-logged built-up areas and further studies in 658 

dryland ecohydrology (Camporeale et al., 2019). Maillart’s desert ditches of Central Asia (similarly 659 

as ones in humid Holland), can be viewed as a technique of lowering a shallow water table or 660 

piezometric surface. The shape of these ditches can be mathematically approximated by isobars 661 

made by hydrodynamic sinks, comparable with Zhukovskii’s method of a smart composition of 662 
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singularities in aerodynamics. The Darcian flows governed by the Laplace equation in saturated 663 

media or ADE for steady flows in unsaturated media can be viewed as created by intelligently 664 

located singularities. The resulting isobars model the outlets in seepage to empty curvilinear ditches 665 

and depressions. Seepage to triangular ditches, both empty and partially filled, is modeled by 666 

conformal mappings and the BVP method. The transient stage of filling, i.e., the variable storage in 667 

ditches, is examined by solving a Cauchy problem for a nonlinear ODE with type curves showing 668 

how rapidly the ditch is filled up. HYDRUS-2D simulations well agree with analytical modeling. 669 

Analytical solutions and HYDRUS reconstruct jointly isobars, isohumes, isotachs, and streamlines -  670 

the theoretical arsenal of soil physicists and civil engineers working with Earth and Mars soil and 671 

water systems. The proper design of ditches, pits, and other artificial excavations to be operated in 672 

shallow water table environments, as well as understanding of subsurface hydrology of natural 673 

wadis and depressions, can incorporate the findings of this paper. 674 

 675 

Appendix  676 

The Schwarz-Christoffel integral maps conformally the reference half-plane on Gz:  677 

22 2
1

0

B (1/ 2 ,1 )
( ) i c (1 i ) (1 ) d (1 i )

B(1/ 2 ,1 )
z H H H

z
zω ω

ω ω
z τ τ τ

ω ω
−

+ −
+ = − − − = − −

+ −∫ ,                (A1) 678 

where B and 2B
ζ  are the complete and incomplete beta-functions, respectively (Abramowitz and 679 

Stegun, 1969, formula 6.6.1). The positive constant 1 2 / B(1 / 2 ,1 )c ω ω= + −  in (A1) is determined 680 

from the condition (1) 1z = − . Note that ( )z z  obeys the symmetry condition ( ) ( )z zzz − = −  as it 681 

should be.                     682 

From eq. (A1), along two seepage faces (BB1 and CC1), we have: 683 

2B (1 / 2 ,1 )
( ) 1

B(1 / 2 ,1 )
y H ξ

ω ω
ξ

ω ω

+ − 
= −  + − 

,    | | 1β ξ≤ ≤ ,                                           (A2) 684 
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where β−  is the affix of point C1. We determine β  from the relation ( ) wy Hβ− = − , that gives: 685 

 
2B (1/ 2 ,1 )

B(1/ 2 ,1 )
wH H

H
β

ww

ww

+ − −
=

+ −
.                            (A3) 686 

 Next, we introduce a holomorphic function:  687 

i( ) ( ) arcsintQW wζ ζ ζ
π

= − .                                            (A4) 688 

The function (A4), in accordance with (16) and properties of the function arcsin, satisfies the 689 

conditions: 690 

Re ( ) ( ),   ( 1, ) ( ,1),
Re ( ) , ( , ),
Im ( ) 0,   ( , 1) (1, ).

w

W y
W H
W

ξ ξ ξ β β
ξ ξ β β
ξ ξ

= − ∈ − − ∪
 = ∈ −
 = ∈ −∞ − ∪ ∞

 691 

Here ( )y ξ is determined in eq. (A2). Then the function 2
0 ( ) ( ) / 1W Wζ ζ ζ= − obeys the following 692 

conditions along the ξ -axis:  693 

2
0

2
0

0

Re ( ) ( ) / 1 ,   ( 1, ) ( ,1),

Re ( ) / 1 , ( , ),
Re ( ) 0,   ( , 1) (1, ).

w

W y

W H
W

ξ ξ ξ ξ β β

ξ ξ ξ β β
ξ ξ

 = − − ∈ − − ∪

 = − ∈ −
 = ∈ −∞ − ∪ ∞

     (A5) 694 

Eqs. (A5) comprise a Riemann (Schwartz) BVP (Henrici, 1993, PK-62,77). The function ( )W ζ  is 695 

finite at two transition points 1ξ = ± , continuous at points β± , and has a logarithmic singularity at 696 

infinity. Hence, the function 0( )W ζ has integrable singularities at points 1ξ = ±  and vanishes at 697 

infinity. Therefore, the unique solution of the problem (A5) gives the Schwartz operator for the 698 

upper half-plane (Henrici, 1993, PK-62,77). Thus, after simple algebra, we get  699 

12

2 2 2 2 2 2
0

2 1 d ( )d( )
i 1 ( ) 1 ( )

w
yW H

β

β

ζ ζ τ τ τζ
π τ τ ζ τ τ ζ

 −
= −  − − − − 

∫ ∫ ,         (A6) 700 
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where, for the sake of definiteness, the branch of the radical 21 ζ− is fixed positive for 701 

( 1,1)ζ ξ= ∈ −  in the upper half-plane. This branch and, therefore, the function (A6) satisfy the 702 

symmetry condition ( ) ( )W Wζ ζ− = . The integrals in (A6) are evaluated by the Sokhotski-Plemely 703 

formula: the first for (0, )ζ ξ β→ ∈ , and the second for ( ,1)ζ ξ β→ ∈   (Henrici, 1993).  704 

 We illustrate the computations for the case of an empty ditch (Hw=H). We use the 705 

piezometric data at point Ah ( Fig.10a), i.e., A Ahφ = −  First, from eq. (A1) along the ray CA we get:  706 

2 2 2

1

( ) 1 2 1 ( 1) d / B(1/ 2 ,1 ), 1x H
x

ω ωx τ τ τ ω ω x
−

−= + + − + − − ∞ ≤ < −∫ .       (A7) 707 

From eq. (A5) we determine the affix γ−  of point Ah in the reference plane (Fig. 10c):  708 

( )AL x γ= − .           (A8) 709 

We use the FindRoot routine of Mathematica to solve eq. (A8) for γ. We put the found root of eq. 710 

(A8) into eq. (A6), and at 2( ) log( 1) / Re ( )A tQ Wφ φ gggπg    = − = − + − + − arrive at the equality:  711 

12

2 2 2 2 2 2 2 2
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2 1 d ( )d
log( 1) 1 ( ) 1 ( ) log( 1)

A
t w

yQ H
β

β

gg  tttπ   φ
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 −
= − −  + − − − − − + − 

∫ ∫ .    (A9) 712 
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 Figure Captions 1151 

Fig. 1. A vertical cross-section of an empty ditch B0MC0 a); the right half of the empty ditch 1152 

constructed such that the bottom of the ditch, BMC, is a seepage face of the flow in the domain Gz, 1153 

generated by a fictive line sink at the origin O(x,y) b); the complex potential domain Gw for the 1154 

whole ditch c).  1155 

 1156 

Fig. 2. a) Half-contours of sink-generated ditches for Qd = 0.2, 1, and 5.86 (curves 1, 2, and 3, 1157 

respectively). b) The depth H of a sink-generated ditch and its area A  (curves 1 and 2) as functions 1158 

of seepage flow rate Qd . 1159 

 1160 

Fig. 3. The HYDRUS flow domain for a half-ditch generated by a line sink a), isotachs b), and  1161 

streamlines c).  1162 

 1163 

Fig. 4. An axial cross-section of an axisymmetric crater draining a confined aquifer.  1164 

 1165 

Fig. 5. a) Half-contours of a sink-generated axisymmetric topographic depression draining a 1166 

confined aquifer for Qd = 0.2, 1, and 2 (curves 1, 2, and 3, respectively). b) Depth and 1167 

volume(curves 1 and 2, respectively) of an axisymmetric sink-generated depression in a confined 1168 

aquifer.  1169 

 1170 

Fig. 6. HYDRUS isobars corresponding to Qd = 0.2 a),  isotachs b), and streamlines c).  1171 

 1172 

Fig. 7. An axial cross-section of evaporative flow in an unsaturated soil from a horizontal water 1173 

table W1W0W2  to a topographically depressed isobar BMC. 1174 

 1175 
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Fig. 8. Analytically computed isolines of Kirchhoff’s potential for (z1, z2, 0Ω , QP) =(1, 1, 0.2, 1). 1176 

 1177 

Fig. 9. HYDRUS simulations of purely unsaturated flow between a water table and an analytically 1178 

found isobaric depression: a) finite element discretization of the transport domain and the boundary 1179 

conditions, b) and d) pressure head contours, c) and e) streamlines. b) and c) pure evaporation to a 1180 

relatively dry soil surface, d) and e) evaporation-infiltration to-from a relatively wet soil surface. 1181 

 1182 

Fig. 10. A vertical cross-section of seepage flow towards a triangular ditch in a confined aquifer a), 1183 

a complex potential domain b), a reference plane c), and a mirror-image in the hodograph plane d). 1184 

 1185 

Fig. 11. Dimensionless seepage flow rates Qt (curve 1) and µ (curve 2) as functions of H for an 1186 

empty ditch, Ah =3, and AL =5.   1187 

 1188 

Fig. 12. HYDRUS simulations for a triangular empty ditch having H*=50 cm, L*=100 cm, *
AL = 1189 

500 cm, *
Ah =300 cm: isobars a), isotachs b), and Darcian velocities along the ditch side MC c).  1190 

 1191 

Fig. 13. The dimensionless seepage rate Qt into a triangular partially filled ditch as a function of Hw 1192 

for three slopes (ω=1/6, 1/4, and 1/3), Ah =3, and AL =5.    1193 

 1194 

Fig. 14. Dimensionless draw-up curves Hw (1, 2, and 3) as functions of dimensionless time t for 1195 

different values of ω (1/6, 1/4, and 1.3, respectively). 1196 

 1197 

Fig.15. A draw-up curve computed by HYDRUS for ω=1/6, H* =50 cm, and L*=100 cm. 1198 
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 1200 
Abbreviations: 1201 
 1202 

1) ADE = advective dispersion equation 1203 
 1204 

2) BVP = boundary value problem 1205 
 1206 

3) DF = Dupuit-Forchheimer 1207 
 1208 

4) LHS, RHS=left hand side, right hand side  1209 
 1210 

5) ODE = Ordinary Differential Equation 1211 
 1212 

6) OSDP = Optimal Shape Design Problem 1213 
 1214 

7) PK-62,77 = Polubarinova-Kochina, P.Ya., 1962. Theory of Ground Water Movement. 1215 
Princeton University Press, Princeton. The second edition of the book (in Russian) was 1216 
published in 1977, Nauka, Moscow.  1217 
 1218 

8) VG = van Genuchten 1219 
 1220 

 1221 
 1222 
HIGHLIGHTS 1223 
 1224 
 1225 

• Steady 2-D flows in a vertical plane and axisymmetric flows from a shallow horizontal 1226 
water table to isobaric ditches (topographic depressions) are studied 1227 

• Method of images applied to the Laplace and advective dispersion  equations, conformal 1228 
mappings and HYDRUS-2D are utilized 1229 

• Saturated and unsaturated moisture motion in homogeneous soils is illustrated by isobars, 1230 
isohumes, isotachs  and streamlines 1231 

• Applications to arid zone hydrology on Earth and Mars are proposed 1232 
   1233 
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