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A novel secreted metzincin metalloproteinase from Bacillus intermedius
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The mprBi gene from Bacillus intermedius 3–19 encoding a novel secreted metalloproteinase was
identified. The mpriBi gene was expressed in an extracellular proteinase-deficient Bacillus subtilis
BG 2036 strain and the corresponding protein was characterized biochemically. The 19 kDa MprBi
protein was purified to homogeneity and sequenced by mass spectroscopy and Edman degradation
methods. Amino acid sequence analysis of MprBi identified an active site motif HEYGHNFGLPHD and
a conserved structural component Met-turn, both of which are unique features of the metzincin
clan. Furthermore, MprBi harbors a number of distinct sequence elements characteristic of protein-
ase domains in eukaryotic adamalysins. We conclude that MprBi and similar proteins from other
Bacillus species form a novel group of metzincin metalloproteinases in prokaryotes.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Proteinases, which hydrolyze proteins into short peptides or
amino acids, represent one of the most commercially important
groups of industrial enzymes and comprise the majority of the to-
tal enzyme sales worldwide. Bacillus species synthesize several
groups of extracellular proteinases, such as serine and metal pro-
teinases, which are classified based on their mechanism of action
and catalytic amino acids [1].

Zinc-dependent endo-metalloproteinases are a subset of
metalloproteinases found in all kingdoms of life. These enzymes
are characterized by a consensus amino acid sequence HExxH,
where the histidines are zinc ligands and the glutamic acid functions
as a catalytic base. A third zinc ligand is provided by the side-chain of
His, Glu or Asp, usually located downstream of this motif [2]. In the
MEROPS proteinase database, the HExxH motif-containing enzymes
are grouped in the MA clan (http://merops.snger.ac.uk).

The metzincin subclan of zinc-dependent endo-metalloprotein-
ases includes several extracellular and membrane-bound protein-
ase families containing an extended consensus sequence,
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HExxHxxGxxHx, which comprises three zinc ligands (underlined)
and the general base glutamic acid [3,4]. Many typical metzincins
display very limited amino acid conservation overall and often
share less than 20% sequence identity. Despite this fact, the tertiary
structure of their catalytic domains and their active site sequences
are remarkably conserved [5–7]. The name of this subclan origi-
nates from a conserved methionine located in a 1,4-b-turn (so
called Met-turn) of the protein. Metzincins have been recognized
as key players in a variety of biological systems, where they regu-
late the activity of other biological molecules (cytokines, growth
factors, other proteinases) by limited proteolysis [4,6].

The metzincin subclan contains several proteinase families,
including astacins (BMP-1, tolloids, meprins) and adamalysins or
ADAMs (a disintegrin and metalloproteinase-like). Over 120 astac-
ins have been described in a variety of organisms from bacteria to
mammals, but interestingly not in plants, fungi or in Bacilli. Astac-
ins are produced as zymogenes, with a propeptide and a signal
peptide at the N-terminus of the mature form, and typically re-
quire activation via proteolytic processing, in many cases after a
basic residue (autocatalytically in the case of astacin) [7–10]. The
ADAMs (adamalysins/reprolysins) are multi-domain proteins
found in mammalian reproductive tissues and in snake venom.
The ADAMs are secreted as pro-enzymes with the N-terminal
signal sequence and propeptide and are activated upon propeptide
removal either by other proteinases or autocatalytically [11,12].
lsevier B.V. All rights reserved.
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Bacillus intermedius 3–19 is a species of soil bacterium, which
secretes a number of extracellular enzymes, including a glutam-
yl-endopeptidase and a subtilisin-like proteinase [13–19]. Here
we report the cloning, purification and sequence analysis of a novel
extracellular metalloproteinase from B. intermedius, dubbed MprBi.
Our data indicate that mprBi encodes an unusual metalloproteinase
of the metzincin subclan, the first characterized enzyme of this
type in the genus Bacillus.
2. Materials and methods

2.1. Bacterial strains and plasmids

Streptomycin-resistant B. intermedius strain 3–19, obtained
from the All-Russia Collection of Microorganisms (B-3833), was
used for genomic DNA library construction. The shuttle vector
pCB22 [20] was used for cloning of proteinase gene. The extracel-
lular proteinase-deficient Bacillus subtilis BG 2036 strain was kindly
supplied by E. Ferrari (Genencor Int. Inc. USA) and used as a recom-
binant plasmid host.

2.2. Cloning and identification of mprBi gene

Genomic DNA of B. intermedius was isolated as described pre-
viously [21]. Total DNA (100 lg) was digested with Sau3A (4 U)
at 37 �C for 60 min. The partially digested DNA was run on
0.8% agarose gel. Fragments in the range of 6 kb were electroe-
luted, ligated into BglII digested pCB22 plasmid and transformed
into extracellular proteinase-deficient B. subtilis BG 2036 strain as
described by Anagnostopolous and Spizizen (1961). This B. subtil-
is strain lacks both known secreted proteinases (a neutral pro-
teinase nprE522 and an alkaline proteinase apr-684) and is
therefore completely free of any extracellular proteinase activity,
but is otherwise unaffected in its growth, morphology or sporu-
lation [22]. Transformants were plated on an SG-skim milk plate
containing 10 lg/ml of erythromycin. One colony surrounded by
the biggest halo was selected for plasmid isolation. The 6 kb
genomic DNA insert from the isolated plasmid was sequenced
and analyzed using the NCBI BLAST server and Open Reading
Frame Finder (ORF Finder) (http://www.ncbi.nlm.nih.gov) [23].
Promoter regions were identified using the BPROM program
(http://www.softberry.com). Signal peptide was identified using
the SignalP 3.0 server (http://www.cbs.dtu.dk/services/SignalP).
The coding region of the identified mprBi gene and its regulatory
sequences were subcloned into the empty pCB22 vector and the
entire construct was re-introduced into the extracellular protein-
ase-deficient B. subtilis BG 2036 strain for further analysis.

2.3. Determination of proteolytic activity

Proteolytic activity was determined by the azocasein cleavage
assay. 100 ll of 1% azocasein solution in 100 mM Tris–HCl buffer
containing 5 mM CaCl2, pH 7.1 was incubated with 50 ll of the cul-
ture supernatant for 15 min at 37 �C. The reaction was stopped by
the addition of 200 ll of 10% trichloracetic acid. After centrifuga-
tion at 9500�g for 5 min, 250 ll of the supernatant was mixed
with 50 ll of 5 M NaOH and the optical density was measured at
450 nm on a Model 2550 Microplate Reader (BioRad, USA). One
unit of activity was defined as the amount of enzyme necessary
to change the absorbance by 1 optical density unit per min.

2.4. Protein localization

Subcellular proteinase localization was determined by the azoc-
asein cleavage assay using proteins isolated from different subcel-
lular fractions and from the culture medium. Briefly, after 24, 30
and 36 h of cultivation cells were sedimented by centrifugation
(10 000�g, 5 min) and washed using 0.85% NaCl. The resulting cell
suspension was incubated with lyzosyme (1 mg/ml) in 10 mM
Tris–HCl buffer pH 8.5 in the presence of 20% sucrose for 25 min
at room temperature. Protoplast formation was monitored
by microscopy. Protoplasts were purified by centrifugation
(10 000�g, 15 min), while cell wall proteins remained in the super-
natant. Membrane-bound proteins were solubilized by detergent
treatment with 0.1% Triton X-100 in 0.1 M Tris–HCl buffer pH 8.0
with 50 mM NaCl and 20% sucrose for 20 min at room temperature,
followed by centrifugation (13 000�g, 20 min). To isolate intracel-
lular proteins, protoplasts were lysed by osmotic shock with
the addition of 5 mM Tris–HCl buffer pH 7.8 at 4 �C. Protoplast ex-
tracts were digested with DNase I (1 mg/ml) for 30 min at room
temperature and centrifuged (15 000�g, 30 min) to obtain the frac-
tion of intracellular proteins. To inhibit intracellular serine protein-
ases, possibly present in B. subtilis protein extracts, proteolytic
activity against azocasein in all fractions was determined in the
presence of 5 mM PMSF, a specific serine proteinase inhibitor.
Proteinase activity in all fractions was defined as unit/mg of
biomass.

2.5. The effect of inhibitors

Fifty microliters of supernatant or homogeneous enzyme solu-
tion in 50 mM Tris–HCl buffer (pH 7.1) containing 0.2 mM CaCl2

and either 10 mM 1,10-phenanthroline, or 10 mM ethylenedi-
aminetetraacetic acid (EDTA), or 10 mM phenylmethyl sulfonyl
fluoride (PMSF) was incubated at 25 �C for 1 h. Residual proteolytic
activity was determined by hydrolysis of 1% azocasein in 50 mM
Tris–HCl buffer containing 1 mM CaCl2, pH 7.1, as described above.

2.6. Purification of MprBi proteinase

Bacterial cells were grown in the culture medium (0.01 g/l
CaCl2, 0.01 g/l MgSO2, 0.3 g/l NaCl, 0.01 g/l MnSO4, 0.01 g/l NH4Cl,
1 g/l yeast extract, 1.7 g/l peptone) and harvested by centrifugation
(4500�g, 60 min, 4 �C). Extracellular proteins were precipitated
with ammonium sulfate (20–70% saturation interval). The precipi-
tate was dissolved in 50 mM Tris–HCl buffer pH 7.3 containing
5 mM CaCl2, dialyzed, and loaded onto a Bacitracin-sylochrom col-
umn, equilibrated with the same buffer. Protein was eluted with
50 mM Tris–HCl buffer pH 7.3 containing 1 M NaCl and 7% isopro-
panol. Elution fractions were analyzed for total protein concentra-
tion by Bradford assay and proteolytic activity was measured with
the azocasein assay. Fractions with high proteolytic activity were
combined, dialyzed against 50 mM Tris–HCl buffer pH 7.3 contain-
ing 35% ammonium sulfate and placed on a Octyl-Sepharose
hydrophobic column «HiTrap» (‘‘Pharmacia”), equilibrated with
the same buffer. The protein was eluted using a linear ammonium
sulfate gradient (35–0%) in the same buffer at a flow rate of 1 ml/
min. The proteolytic activity and protein amount were determined
in the collected fractions as described above. The concentrated pro-
tein samples were applied to a 12.5% preparative SDS–polyacryl-
amide gel, followed by Coomassie brilliant blue staining and
Imidazol/ZnCl2 negative staining as described (http://www.molbi-
ol.ru/protocol/17_03.html).

2.7. MALDI-TOF and N-terminal sequencing

MprBi proteinase was digested by trypsin according to the
method described at http://www.sigmaaldrich.com/etc/medialib/
docs/Sigma/General_Information/maldi_tof_ms_analysis.Par.0001.
File.tmp/maldi_tof_ms_analysis.pdf and analyzed using Ultraflex II
BRUKER mass spectrometer (Justus Liebig University, Germany).
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The theoretical peptide mass for the predicted amino acid
sequence of B. intermedius metalloproteinase MprBi was calculated
using the Peptide Mass Fingerprint program (http://www.exp-
asy.net/tools/dna.html). Mass spectrometry data for the peptide
weights were matched with peptide sequence from protein
databases in NCBI using the MASCOT search program
(www.matrixscience.com). N-terminal amino acid sequence was
determined by automated Edman degradation method using a
Model 816 Protein Sequences (Germany) equipped with a Model
120A PTH Analyzer (Applied Biosystems, USA).

2.8. Nucleotide sequence accession number

Nucleotide sequence of the cloned 6 kb genomic DNA from B.
intermedius, containing the mprBi gene, was deposited into Gen-
Bank, accession number EU678894.2. MprBi protein accession
number is ACE75740.
Fig. 1. Sequence of the B. intermedius mprBi gene. Nucleotide and amino acid sequence
binding site (RBS) are marked with grey color. The transcription initiation codon GTG
indicates a stop codon. Potential transcription terminators are indicated by single lines af
is underlined. N-terminal ten amino acids, determined by the Edman degradation meth
3. Results and discussion

3.1. Cloning, identification and sequence analysis of B. intermedius
mprBi gene

B. intermedius is a rich source of extracellular enzymes. Among
other hydrolases, we have previously isolated and characterized
two secreted serine proteinases from B. intermedius [13–19]. Dur-
ing the course of these earlier studies, we detected an additional
weak proteolytic activity present in B. intermedius culture medium,
and preliminary experiments indicated that this enzyme may rep-
resent a previously uncharacterized metalloproteinase. However,
detailed biochemical characterization of this activity was stymied
by the presence of two highly abundant serine proteinases. In an
effort to identify this potentially novel enzyme, we constructed a
genomic library of B. intermedius and introduced it into an extracel-
lular proteinase-deficient B. subtilis BG 2036 strain on pCB22
of MprBi are shown. Putative �35 and �10 regions of the promoter and ribosome
is underlined, and the translation initiation codon ATG is shown in bold. Asterisk
ter the stop codon. Signal peptide sequence is shown in italics, propeptide sequence
od, are shown in bold. Active site and Met-turn motifs are shown in boxes.

http://www.expasy.net/tools/dna.html
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http://www.matrixscience.com


Table 1
Specific proteinase activity in the B. subtilis culture medium and in subcellular fractions of recombinant and untransformed cells.

Fraction Specific endopeptidase activity, U/mg of cells �103

24 h 30 h 36 h

Recombinant cells Untransformed cells Recombinant cells Untransformed cells Recombinant cells Untransformed cells

Culture medium 715.00 3.20 1324.00 3.90 910.00 4.50
Cell wall 4.60 3.10 5.00 3.40 6.00 5.50
Membrane 7.80 8.20 8.70 8.10 9.20 9.00
Cytoplasm 3.40 3.70 5.00 4.80 6.90 7.00

Table 2
The effects of group-specific proteinase inhibitors on the MprBi enzymatic activity in
B. subtilis culture medium.

Inhibitor (10 mM) Residual proteolytic activity (%)

PMSF 99.20
EDTA 3.90
1,10-Phenanthroline 0.10
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plasmid. Following transformation, erythromycin-resistant B. sub-
tilis colonies were screened on SG-skim milk plates for the pres-
ence of recombinant extracellular proteinase from B. intermedius.
One colony producing the biggest halo was selected for further
analysis.

The isolated plasmid harbored a 5896 bp insertion of B. interme-
dius genomic DNA. G/C ratio was determined to be 43%, which is
typical for bacillar genomes. Preliminary sequence analysis of the
cloned B. intermedius genomic DNA indicated that it contained sev-
eral possible open reading frames (ORFs), one of which appeared to
encode a metalloproteinase. This ORF was designated mprBi
Table 3
Purification of MprBi from the B. subtilis culture medium.

Purification steps V (ml) Total protein (mg) Total activit

Culture medium 480.00 7260.00 392.00
Ammonium sulfate fraction* 18.00 269.00 222.00
Bacitracin-sylochrom 64.00 22.80 49.00
Octyl-sepharose 6.00 5.14 31.40

* Values shown for dialyzed samples.
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Fig. 2. Purification of MprBi proteinase. (A) Chromatography of MprBi on Octyl-sepharo
purified MprBi. Lane 1, protein markers; lane 2, protein fraction after ammonium sulfate
4, MprBi after Octyl-sepharose column chromatography. Protein markers: bovine album
(Fig. 1). SignalP analysis of MprBi protein sequence revealed a
potential propeptide cleavage site (ASA), indicating that this pro-
tein is likely to be extracellular. Thus, mprBi gene was selected
for further analysis. The putative promoter sequence contains the
typical �35 and �10 regions and the Shine–Dalgarno sequence
(SD-site), located 7 bp upstream of translation start site ATG. The
complete ORF consists of 810 bp. The putative signal peptide con-
tains 30 amino acids.

3.2. mprBi gene encodes a secreted metalloproteinase

We PCR-amplified mprBi gene from the pCB22 plasmid and re-
introduced it into the extracellular proteinase-deficient B. subtilis
BG 2036 strain for further analysis. Different cellular fractions of
B. subtilis, as well as its culture medium, were tested for the pres-
ence of high levels of proteinase activity. As expected for an extra-
cellular proteinase, the peak of activity was found in the culture
medium (Table 1). Only trace amounts of proteolytic activity were
detected in various cellular fractions as well as in the culture med-
ium of untransformed B. subtilis cells, which served as a negative
y (units) Specific activity (units/mg) Purification fold Yield (%)

0.05 1.00 100
0.83 15.70 57
2.10 39.60 12.5
6.10 115.00 8

  kDa   66 

            45 

          20.6 

          14.4 

1    2 4

19 kDa 

3

se column. 1 – endopeptidase activity, 2 – ammonium sulfate, %. (B) SDS–PAGE of
precipitation; lane 3, protein fraction after bacitracin column chromatography; lane
ine (66 kDa), ovalbumin (45 kDa), papain (20.6 kDa), lysozyme (14.4 kDa).
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control. The presence of the proteolytic activity predominantly in
B. subtilis culture medium indicates that MprBi is a secreted
proteinase.

As mentioned before, the original B. intermedius strain secretes a
number of serine proteinases [13–15]. To analyze the nature of
MprBi proteolytic activity, we tested the effects of several specific
proteinase inhibitors on the enzyme activity (Table 2). The proteo-
lytic activity in the B. subtilis culture medium was resistant to
PMSF, which is a specific inhibitor of serine proteinases. In
contrast, most of the proteinase activity was inhibited by a zinc-
specific chelator 1,10-phenanthroline and by a general metallopro-
teinase inhibitor EDTA. These results indicate that MprBi is a zinc-
dependent metalloproteinase.
Fig. 3. Partial amino acid alignment of active center and Met-turn motifs of MprBi and
shown for MprBi.

Table 4
Comparion of hypothetical MprBi-like metalloproteinases in Bacillus species.

Putative adamalysins in Bacilli Accession number

MprBi (B. intermedius 3–19) ACE75740.2
Reprolysin (M12B) family zinc metalloprotease

[Bacillus pumilus ATCC 7061]
ZP_03055196.1

Hypothetical protein BPUM_3392
[Bacillus pumilus SAFR-032]

YP_001488604.1

Hypothetical protein BL03917
[Bacillus licheniformis ATCC 14580]

YP_081058.1

Hypothetical protein RBAM_030640
[Bacillus amyloliquefaciens FZB42]

YP_001422626
3.3. MprBi purification and protein sequence determination

To purify MprBi from the culture medium, we employed a
3-step protocol (Table 3). First, extracellular proteins were precip-
itated with ammonium sulfate in 20–70% saturation interval.
Specific activity of the dialyzed fraction after ammonium sulfate
precipitation was increased over 15-fold, with 57% yield (Table
3). Next, the proteinase was purified over a bacitracin-sylochrom
column, which resulted in 2.5-fold improvement in purification
fold, with 12.5% yield (Table 3). The last purification step was
protein chromatography over an Octyl-sepharose column, which
allowed us to purify MprBi to homogeneity (Fig. 2A and B). The
metalloproteinases from several major metzincin groups. Amino acid numbering is

Active center motif Met-turn motif % homology with MprBi

HEYGHNFGLPHD CLMNY N/A
HEYGHNFGLPHD CLMNY 98

HEYGHNFGLPHD CLMNY 98

HEFSHNFGLNHD CIMNY 69

HEFSHNFGLQHD CVMNY 62
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molecular weight of MprBi, calculated based on the protein
electrophoresis results, is 19 kDa (Fig. 2B).

The availability of large quantities of homogeneous recombi-
nant MprBi allowed us to utilize MALDI-TOF and Edman degrada-
tion techniques to confirm the amino acid sequence of the mature
protein (Fig. 1 and Supplementary material). The protein’s first ten
N-terminal amino acids are ASTGSQKVTV. The identification of
alanine as the first N-terminal amino acid of the mature protein al-
lowed us to verify the molecular organization of the mprBi gene. It
encodes a signal peptide of 30 amino acids, a 66 amino acid pro-
peptide sequence and 174 amino acids of the mature protein
(Fig. 1).

3.4. MprBi is an unusual metzincin with sequence similarity to the
proteinase domain of eukaryotic adamalysins

Amino acid sequence alignment of MprBi with several other
metalloproteinases allowed us to identify the conserved active site
motif (Figs. 1 and 3). MprBi harbors several active site histidines
and a glutamate residue, indicating that this protein belongs to
the class of zinc metalloproteinases. Furthermore, while most zinc
metalloproteinases contain only five active site amino acids
HExxH, a subset of these proteins, called the metzincin clan, har-
bors an extended 12 amino acid site HExxHxxGxxHx. A similar ex-
tended region HEYGHNFGLPHD is present in MprBi (Fig. 3),
suggesting that this B. intermedius metalloproteinase also belongs
to the metzincin clan. The other characteristic feature of all pro-
teinases from the metzincin clan is the presence of Met-turn motif,
which is typically located very close to the protein’s C-terminus. As
expected for a metzincin-type protein, MprBi harbors the corre-
sponding Met-turn sequence CLMNY (amino acids 145–149)
(Fig. 3).

Several lines of evidence suggest that MprBi is most closely re-
lated to a metalloproteinase domain of one particular metzincin
family – eukaryotic adamalysins. First, while both astacins and
adamalysins contain a negatively charged residue in the twelfth
position of the active site, HExxHxxGxxHE/D, astacins are charac-
terized by a conserved Glu in this position, which is involved in
the formation of a salt bridge to the N-terminus after propeptide
removal [9,10]. In contrast, adamalysins harbor Asp in this posi-
tion, which is also present in MprBi (Fig. 3). Second, the presence
of Cys 145 in the Met-turn motif of MprBi is also uniquely indica-
tive of adamalysins (Fig. 3). Third, the overall amino acid sequence
similarity of MprBi with adamalysins is 66%, while it is only 42–
58% with astacins and serralysins. Finally, a unique feature of all
adamalysins is a long a-helix occupying the region between b-
strands sII and sIII [5]. A similar region is also present in MprBi
(see Supplementary data).

While MprBi appears to be the most similar to eukaryotic
adamalysins, it also harbors sequence features characteristic of
astacins and serralysins, such as the presence of Tyr 149 in the fifth
position of the Met-turn motif (Fig. 3). In astacins and serralysins,
tyrosine in this position is used as a switch to help stabilize the
transition state during substrate hydrolysis [24–27]. Interestingly,
matrixins also harbor Tyr in the Met-turn motif, but in the fourth
position. The unique combination of sequence features, character-
istic of proteinase domains in both adamalysins and astacins/ser-
ralysins, makes MprBi a very interesting protein from a structure
and function perspective.

Taken together, our biochemical and sequence analysis data
strongly indicate that MprBi is most similar to the adamalysin
group of metalloproteinases, and, therefore, represents the first
such enzyme identified and characterized in Bacilli. In addition, a
simple protein blast search indicates that similar proteins may also
exist in other Bacillus species (Table 4). Indeed, putative genes
encoding at least four MprBi-like metalloproteinases have recently
been sequenced from Bacillus pumilis (ZP_03055196 and
YP_001488604), Bacillus licheniformis (YP_081058.1) and Bacillus
amyloliquefaciens (YP_001422626.1). Similar to MprBi, all these
hypothetical Bacillus proteinases harbor the characteristic Asp in
the twelfth position of the active site, and Cys and Tyr in the 145
and 149 positions of the Met-turn motif, respectively (Table 4).
Therefore, MprBi may in fact represent the founding member of a
novel Bacillus-specific subfamily of metzincins with a unique com-
bination of adamalysin-like and astacin/serralysin-like sequence
elements.

In eukaryotes, metalloproteinases are involved in the regulation
of hormonal homeostasis, signal transduction, production of bioac-
tive peptides and modulation of protein–protein and cell-to-cell
interactions [3]. Aberrant metalloproteinase functions often lead
to various pathologies, including tumorigenesis, inflammation,
infections, allergy and asthma [28–31]. While the exact biological
function of MprBi requires further investigation, it is becoming
increasingly evident that extracellular proteinases are not only in-
volved in the digestive function, but may also participate in cellular
regulatory pathways [32,33]. The identification of MprBi protein-
ase clearly suggests that, despite decades of extensive research,
bacteria and, specifically, the genus of Bacillus, may still yield unex-
pected discoveries and provide a valuable source of novel enzymes,
which could potentially be beneficial for pharmaceutical and other
biotechnological industries.
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