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DYNAMICS OF 2D SOLITONS IN MEDIA WITH VARIABLE DISPERSION:

SIMULATION AND APPLICATIONS

OLEG KHARSHILADZE1, VASILY BELASHOV2, AND ELENA BELASHOVA3

Abstract. Dynamics of multidimensional solitons in media with variable dispersion is studied nu-
merically. The application of the obtained results to the dynamics of FMS waves in a magnetized

plasma, and the 2-dimensional surface waves on shallow water are discussed.

In this paper we consider the problem of dynamics the multidimensional solitons which are described
by the Kadomtsev-Petviashvili (KP) equation

∂tu+ αu∂xu+ β∂3xu = κ
x∫

−∞

∆⊥udx, (1)

in complex media with the varying in time and/or space dispersive parameter β = β(t, r). This
problem is mainly interesting from the point of view of its evident applications in physics of real
complex media with the dispersion. For example, such situation can have place in the problems of the
propagation of the 2-dimensional (2D) gravity and gravity-capillary waves on the surface of “shallow”
water [5], [7] when β is defined respectively as

β = c0H
2/6

and

β = (c0/6)[H2 − 3σ/ρg]

where H is the depth, ρ is the density, and σ is the coefficient of surface tension of fluid. If H =
H(t, x, y), β also becomes the function of the coordinates and time. Similar situation may have place
on studying of the evolution of the 3D fast magnetosonic (FMS) waves in magnetized plasma [1], [6]
in case of the inhomogeneous and/or non-stationary plasma and magnetic field when β is a function
of the Alfv’en velocity vA = f [B(t, r), n(t, r)] and angle θ = (k ̂B):

β = vA(c2/2ω2
0i)(cot2 θ −m/M)

where m and M are the masses of electron and ion, respectively. It is well known [8] that the
1D solutions of the Korteweg-de Vries (KdV ) equation (equation (1) with κ = 0) with β = const in
dependence on value of β are divided into two classes: at |β| < u0(0, x)l/12 (l is the characteristic wave
length) they have soliton character, in an opposite case they are the wave packets with asymptotes
being proportional to the derivative of the Airy function [7], [8]. In these cases, the KdV equation
can be integrated by the inverse scattering transform (IST) method [5], [7]. But, if β = β(x, t) it
is impossible principally, and it is necessary to resort to a numerical simulation. Similar situation
has place for the multidimensional KP equation: in case β = β(t, r) the dispersive term becomes
quasi-linear and the model being not exactly integrable [7].

Here, the problem of study of structure and evolution of the nonlinear waves described by the KP
equation with β = β(t, r) is considered distracting from a specific type of the propagation medium.
The numerical experiments were conducted for several model types of function β when at t < tcr
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β = β0 = const, and at t ≥ tcr

1) β(x) =

{
β, x ≤ a;

β0 + c, x > a;
(2)

2) β(x, t) =

{
β0, x ≤ a;

β0 + nc, n = (t− tcr)/τ = 1, 2 . . . ; x > a
(3)

3) β(t) = β0(1 + k0β sinωt), β = (βmax − βmin)/2, (4)

0 < k0 < l, π/2τ < ω < 2π/τ,

a and c are constants. In terms of the propagation of the waves on shallow water that means respec-
tively, that after reaching of time tcr: 1) sharp “break of bottom”; 2) gradual “change of a height” of
a segment of bottom; and 3) the “oscillations of bottom” with time take place.

In the first series of numerical experiments we investigated the evolution of initial pulse in case when
at tcr the spasmodic change of β = β(t, x, y) has a place behind soliton [“negative” step when c < 0
in (2), (3)]. At this, the dependence of spatial structure of solution on parameter a was studied. The
obtained results (see Figure 1) showed that in all cases the evolution leads to the formation of waving
tail which is not connected with soliton going away and caused only by local influence of sudden change
of the “relief” β(t, x, y). Consequently, the formation of oscillatory structure is connected not so much
with decreasing of a role of the dispersion effects behind soliton as with the spasmodic changing of β
in space.

 

Figure 1. Evolution of a 2D soliton of equation (1) for the dispersion change law
(3) at a = 5.0, c = −0.0038 for t = 0.6.

In the next series of simulations we considered a case when the sudden change of β takes place
directly under or in front of an initial pulse (“negative” step). An example of the results is shown
in Figure 2. One can see that for such character of the “relief” the disturbance caused by sudden
change of β has also local character, i.e. it doesn’t propagate together with the going away soliton.
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Figure 2. Evolution of a 2D soliton of equation 1 for the dispersion change law (2)
at a = 4.0, c = −0.0038 for t = 0.6.

But, unlike the cases of the first series, the asymptotes of leaving soliton become oscillating, besides,
against a background of the long-wave oscillations of the waving tail we can also see the appearance
of the wave fluctuations. The effects noted can be interpreted as a result of those that for the areas
of the wave surface with different values of local wave number kx the value of the dispersive effects
is different. As a result, the dispersive confusion of the Fourier-harmonics phases takes place in the
(x, y)-region not equally intensity everywhere and, consequently, it counteracts with different extent
of activity to the generation due to nonlinearity of the harmonics with big kx.

In the next series of simulations with β changing with the laws (2) and (3) we considered the cases
of “positive” step (c > 0) being both in front of and behind of initial pulse for the wide range of values
of a. The examples of the most interesting results are shown in Figure 3.

One can see that when “positive” step is far in front of maximum of function u(0, x, y) the soliton
evolution on the initial stage does not differ qualitatively from that for β = const (Figure 3a), but in
the future their character is defined by presence of the step, namely the processes, caused by the same
causes which have been noted for the results of the second series, begin to be developed (Figure 3b).

As we can see, the appreciable change of the soliton structure which can lead to wave falling is
observed owing to intensive generation of the harmonics with big kx in the soliton front region, even
for rather small height of the step. Thus, the disturbance of the propagating 2D soliton has also local
character.

As to equation (4), the simulation for different k0 = const and variable frequency ω showed that for
some values of ω the stationary (locally) standing waves can be formed, in another cases the formation
of the stationary periodical wave structures is possible, and in the intermediate cases a chaotic regime
is usually realized.

In conclusion, we studied propagation of 2D solitons in complex media with variable dispersion,
considering as a concrete example evolution of 2D solitary waves on shallow water. Let us note that
such approach can be useful and effective in the problems of nonlinear dynamics of the FMS waves
and wave beams in a magnetized plasma [1], [5–7], and also in problems of investigation of evolution
and transformation of the internal gravity waves (IGW) and travelling ionospheric disturbances at
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Figure 3. Evolution of a 2D soliton of equation (1) for the dispersion change law
(3) at a = 5.0, c = 0.0038: (a) t = 0.6, (b) t = 0.8.

heights of the ionosphere F -region on fronts of the solar terminator and the solar eclipse spot [2], [4]
and in regions where basic ionosphere characteristics are changed in time and space [3].
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