МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Казанский (Приволжский) федеральный университет»

Институт геологии и нефтегазовых технологий

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ ПО КУРСУ «ГЕОЛОГИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ГЕОФИЗИЧЕСКИХ ДАННЫХ»

КАЗАНЬ 2020 Печатается по решению учебно-методической комиссии Института геологии и нефтегазовых технологий Протокол № 5 от 10 марта 2020года

Рецензенты:

Д.И. Хасанов, к.г.-м.н., зав. кафедрой геофизики и геоинформационных технологий Института геологии и нефтегазовых технологий КФУ.

Составители:

доцент кафедры региональной геологии и пол. ископаемых Ю. П. Балабанов, доцент кафедры геофизики и информационных технологий Б.Г. Червиков, ст. преподаватель кафедры региональной геологии и полезных ископаемых И.П. Зинатуллина

Учебно-методическое пособие для выполнения лабораторных работ по курсу «Геологическая интерпретация геофизических данных» / Сост. Ю.П. Балабанов, Б.Г. Червиков, И.П. Зинатуллина. // Казань: Казанский федеральный университет, 2020. – 36с.

Учебное пособие предназначено для бакалавров направления 05.03.01 Геология. В пособии приводятся необходимые материалы для выполнения лабораторных работ по трем разделам дисциплины «Геологическая интерпретация геофизических данных»: «Петрофизика. Характеристики свойств горных пород», «Изучение литологических комплексов толщи методами электромагнитного зондирования», «Геологические факторы и геофизические критерии регионального и локального прогноза рудоносности регионов».

Казанский (Приволжский) федеральный университет, 2020 г.

Введение

Пособие знакомит студентов с основами геологической интерпретации геофизических данных при проведении геологических исследований на всех стадиях их выполнения. В основе интерпретации лежат сведения о физических свойствах горных пород, рассматриваемых в первой части пособия.

Пособие предусматривает выполнение следующих компетенций:

- знание основных критериев интерпретации геофизических данных при решении задач геологии горючих ископаемых;
- умение правильно ставить геологические задачи, связанные с решением структурных, нефтепоисковых и других проблем;
- владение навыками интерпретации геофизических данных для решения различных задач геологии горючих и рудных ископаемых.

В рамках программы бакалавр осваивает также способность использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научноисследовательских задач (в соответствии с направленностью (профилем) подготовки) (ПК-1)

Тема № І

ПЕТРОФИЗИКА. ХАРАКТЕРИСТИКИ СВОЙСТВ ГОРНЫХ ПОРОД

Физические свойства горных пород и геологические задачи,

решаемые геофизическими методами

Задание 1, варианты 1 – 6

Для выполнения задания студентам раздаются схематические геологические разрезы в разных вариантах (рис. 1 – 5).

Рис. 1. Схематический геологический разрез.

Условные обозначения к рис. 1-12, 16-20, 22.

1 – суглинки, супеси, пески, галечники; 2 – пески; 3 – песчаники; 4 – мергели; 5 – известняки; 6 – глины; 7 – аргиллиты, глинистые сланцы; 8 – доломиты; 9 – карбонатные породы (без разделения); 10 – прослои углей в песках; 11 – галечники; 12 – доломиты; 13 – дислоцированные породы фундамента, глубинные породы; 14 – граниты; 15 – диориты; 16 – габброиды; 17 – вулканические породы среднего состава.

Рис. 2. Схематический разрез. Задание 1, вариант 2

Рис. 3. Схематическийгеологический разрез.Задание 1, вариант 3

Рис. 4. Схематическийгеологический разрез.Задание 1, вариант 4

Текст задания

Целью используемых в геологии геофизических методов является получение определенной (в зависимости от метода исследования) информации о характере физических полей Земли в окружающем ее пространстве. Гравитационный метод изучает распределение силы тяжести, связанное с плотностной неоднородностью земной коры и верхов мантии, магнитный – исследует изменение магнитных параметров геомагнитного поля, зависящее как от процессов, протекающих в центральных областях Земли (главное поле), так и от материковых и локальных аномалий земной коры, сейсмический – анализирует характер распространения упругих колебаний во всем объеме Земли, определяемый вертикальной и горизонтальной литологической неоднородностью

земной коры, электроразведочный – позволяет проводить расчленение осадочных толщ, а также выделять рудные образования на основе изучения характера, как естественных, так и наведенных, постоянных или переменных электрических полей. Гравитационный и магнитный методы используют преимущественно для изучения вертикально-слоистых, а электроразведочный и сейсмический – для горизонтально-слоистых образований. Выбор того или иного метода (для устранения неоднозначности в решении задачи чаще всего используют комплекс методов) зависит прежде всего от поставленной задачи, геологического строения исследуемого участка, а также физических свойств слагающих его горных пород.

В данном задании на основе анализа геологического строения представленного студенту варианта разреза, физических свойств горных пород и поставленных задач необходимо выбрать оптимальный комплекс геофизических методов, позволяющих решить их с максимальной эффективностью.

Последовательность выполнения задания:

1. На основании литературных источников (1 – 5) изучить следующие физические свойства горных пород: а) магнитные свойства (магнитная восприимчивость, намагниченность); б) плотность; в) электрические характеристики (удельное электрическое сопротивление); г) скорости распространения сейсмических волн.

При описании каждого свойства необходимо дать определение *параметра*, *единицы* его измерения, а также рассмотреть *физико-геологические факторы*, влияющие на изменение данных свойств пород.

2. С правой стороны от геологического разреза составить сводную таблицу величин магнитной восприимчивости, плотности, удельного электрического сопротивления, скорости распространения продольных сейсмических волн, соответствующие определенным типам пород. В таблицу заносят минимальные и максимальные значения параметров (рис. 1).

3. Из общего курса разведочной геофизики рассмотреть области применения и возможности каждого геофизического метода.

4. Дать описание геологического строения разреза, предложенного студенту и сформулировать основные задачи, которые можно решить с помощью геофизических методов.

5. На основе составленной таблицы провести анализ изменения физических свойств горных пород по геологическому разрезу.

6

6. На основании этого анализа выбрать соответствующий комплекс геофизических методов, позволяющий решить поставленные в задании геологические задачи.

СПИСОК ЛИТЕРАТУРЫ

1. Андреев Б.А. Геофизические методы в региональной структурной геологии. Изд. 2-е, доп. М., «Недра », 1965. 324 с. с ил. (Гл.Ш, § 16, 17, с. 129 – 160).

2. Кобранова В.Н., Лепарская Н.Д. Определение физических свойств горных пород. М., Гостоптехиздат, 1957, 157 с. с ил. (Раздел I, § 1, с. 5–7, 32–33, 35–36; разд. II, § 8, с. 61–63, § 9, с.68–71; разд.III, § 14, с. 97–102; разд.IY, § 19, с. 139–141, 148–151, 154– 156).

3. Справочник геофизика. Т. І. М., Гостоптехиздат, 1960. 636 с. с ил. (Гл.IX, с. 609 – 611, 615 – 618, 622 – 628).

5. Федынский В.В. Разведочная геофизика. М., « Недра », 1967, 472 с с ил. (Гл.III, § 31, с. 171 – 174; гл. IY, § 46, с. 257 – 264, гл. Y, § 54, с. 308-314; гл.YI, § 92, с. 461 – 465).

Петрофизика. Горные породы и полезные ископаемые. Справочник / Под ред.
Н.Б.Дортман, кн.1. М, Недра, 1992, 385 с.

Физические свойства горных пород и полезных ископаемых (петрофизика).
Справочник геофизика / Под ред. Н.Б.Дортман /, - 2 – е изд., перераб. и доп. – М.: Недра, 1984, 455с.

8. Зинченко В.С. Петрофизические основы гидрогеологической и инженерногеологической интерпретации геофизических данных: Учебное пособие для студентов ВУЗов. Тверь: изд.АИС, 2005, 392 с.

9. Знаменский В.В. Общий курс полевой геофизики. М.: Недра, 1989, 520 с.

Контрольные вопросы:

- 1. На чем основано применение гравитационного и магнитного методов?
- 2. Что лежит в основе использования сейсмического метода?
- 3. Почему электроразведочный метод используется для изучения, в основном, горизонтально-слоистых отложений?
- 4. С какой целью в геофизике используют знание физических свойств горных пород?
- 5. Почему гравитационный и магнитный методы называются потенциальными?

Тема № II

ИЗУЧЕНИЕ ЛИТОЛОГИЧЕСКИХ КОМПЛЕКСОВ ТОЛЩИ МЕТОДАМИ ЭЛЕКТРОМАГНИТНОГО ЗОНДИРОВАНИЯ

Корреляция диаграмм электрических методов исследования скважин и построение геолого-геофизического разреза

Задание 2, варианты 1 – 5

Текст задания

Методы электрического и радиоактивного каротажа успешно применяются в практике геологоразведочных работ для литологического расчленения разрезов скважин и их пространственной корреляции. В данном задании анализируются материалы стандартного электрического каротажа, включающего методы ПС (метод собственной поляризации) и КС (метод сопротивлений). В методе ПС исследуется характер изменения по разрезу скважин потенциала собственной поляризации, возникающий на границе раздела сред с разными значениями концентраций содержащихся в них растворов солей. Позволяет выделять пласты с повышенной проницаемостью за счет отсутствия в них глинистости. Метод КС анализирует изменение по разрезу электрического сопротивления пород при пропускании через них постоянного электрического тока. С его помощью выделяют более или менее проводящие слои.

Студентам для выполнения задания выдаются следующие материалы: литологическая колонка скважины и вариант диаграммы ПС и КС (рис. 6), альтитуды скважин и расстояние между ними (табл.1).

Рис. 6. Диаграмма КС и ПС и литологическая колонка скважины. Задание 2. вариант 1.2 Таблица 1

Номер скважины	300	256	182	1	54
Альтитуда, м	240	235	220	210	360
Расстояние, км	2,0	2,4	2,3	3	2,8

Задание 2, вариант 1.1

Для выполнения задания необходимо для скважины, сопровождаемой литологической колонкой, провести выделение определенных участков диаграмм с характерными особенностями поведения кривых ПС и КС, которые соответствуют пластам различного литологического состава.

Произвести корреляцию диаграмм КС и ПС: последовательно, начиная со скважины, сопровождаемой литологической колонкой, проследить по всему профилю кривые КС и ПС, соответствующие пластам разного литологического состава и соединить границы выделенных участков диаграмм прямыми линиями по всему профилю (рис. 6). При этом надо обращать свое внимание на возможное изменение по профилю характера кривых, которое может быть связано с изменением вдоль слоя его литологического состава (фациальное замещение слоев, их выклинивание или появление водонасыщенных или газонефтенасыщенных пластов и линз), что отражается на поведении кривых ПС и КС. Проводимая таким образом корреляция, без привлечения радиоактивного каротажа, не всегда может быть однозначной.

Затем на этот профиль необходимо нанести условные обозначения состава пород.

Учитывая данные таблиц с альтитудами скважин необходимо ввести поправку за альтитуды скважин в глубину кровли и подошвы выделенных пластов и получить глубины пластов от уровня моря.

Предварительно выбрав вертикальный и горизонтальный масштабы *построить на миллиметровке геолого-геофизический разрез* (рис. 7). Для этого использовать значения глубин пластов, приведенные к уровню моря. На разрезе показать состав пород условными обозначениями.

Описать полученный разрез и решить поставленные геологические задачи, отметив перспективы района на поиски воды и газонефтеносных залежей.

Рис. 7. Геолого-геофизический разрез. Задание 2, вариант 1.3.

Задание 2, вариант 2

Студентам для выполнения задания выдаются следующие материалы: литологическая колонка скважины и вариант диаграммы ПС и КС (рис. 8), альтитуды скважин и расстояние между ними (табл.2).

Скв.320

Рис. 8. Диаграммы КС и ПС и литологическая колонка скважины 320. Задание 2, вариант 2.1

Рис.8 (продолжение - правая часть).

Таблица 2

Задание 2, вариант 2.2

Номер скважины	49	1	1	304		30	2	303		320
Альтитуда, м	+90	+2	230	+160)	+170		+230		+110
Расстояние, км	15	15		13		12		14		10

Задание 2, вариант 3

Студентам для выполнения задания выдаются следующие материалы: литологическая колонка скважины и вариант диаграммы ПС и КС (рис. 9), альтитуды скважин и расстояние между ними (табл.3).

Таблица 3

Номер скважины	22		1	1	1		21
Альтитуда, м	+180	+	20	+	10		+50
Расстояние, км	7,5		5,0)	4,3	3	

Задание 2, вариант 3.2

0	22
(KR	11

Задание 2, вариант 4

Студентам для выполнения задания выдаются следующие материалы: литологическая колонка скважины и вариант диаграммы ПС и КС (рис. 10), альтитуды скважин и расстояние между ними (табл.4).

Таблица 4

Задание 2, вариант 4.2

Номер скважины	1	49	11	304	302
Альтитуда, м	+195	+160	+110	+80	+60
Расстояние, км	16,3	14,0	12	,0	10,0

Рис. 10. Диаграммы КС и ПС и литологическая колонка скважины 302. Задание 2, вариант 4.1.

Задание 2, вариант 5

Студентам для выполнения задания выдаются следующие материалы: литологическая колонка скважины и вариант диаграммы ПС и КС (рис. 11), альтитуды скважин и расстояние между ними (табл.5).

Таблица 5

Задание 2, вариант 5.2

Номер скважины	107	2	204	1	61		300	2	256	1	82	54
Альтитуда, м	+220	+	180	+1	160		+175	+	170	+	160	+180
Расстояние, км	1,2		1,2		1,2	2	1,2		1,2			4,7

Скв. 54

Рис. 11. Диаграммы КС и ПС и литологическая колонка скважины 54. Задание 2, вариант 5.1.

СПИСОК ЛИТЕРАТУРЫ

1. Дебранд Р. Теория и интерпретация результатов геофизических методов исследования скважин. М., « Недра », 1972. 288 с. с ил. (Гл.II, с.18 - 27; Гл.III, с. 32 – 40; Гл.YIII, с. 72 – 77; Гл.Х, с. 87 – 94).

 Комаров С.Г. Геофизические методы исследования скважин. М., « Недра », 1973. 367 с. с ил. (§ 1, с. 8 – 12; § 3, с. 16 – 25; § 5, с. 29 – 30; §7, с. 33-43; § 8, с. 43 – 51; § 26, с. 134 – 138; § 27, с. 138 – 143; § 28, с. 143 – 148; § 30, с. 153 – 161; § 63, с. 280 – 284; § 64, с. 284 – 290; § 66, с. 295 – 300; § 71, с. 317 – 320; § 72, с. 320 - 325). 3. Геофизические исследования скважин. Справочник мастера по

промысловой геофизике. Мартынов В. Г., Лазуткина Н. Е., Хохлова М. С.,

Н. Н. Богданович, А. С. Десяткин и др. — Издательство «Инфра-Инженерия», 2009 г.

Контрольные вопросы:

- 1. Что лежит в основе применения методов КС и ПС?
- 2. Что лежит в основе корреляции разрезов скважин?
- 3. Что влияет на аномальное поведение кривой КС?
- 4. Какие отложения характеризуются положительными и отрицательными аномалиями кривой ПС?
- 5. Почему удельное электрическое сопротивление проницаемых пород в скважине на границе с ее стволом называется кажущимся?

Изучение линейных антиклиналей геофизическими методами

(двумерная задача)

Задание 3

Текст задания

В данном задании для изучения антиклиналей использован комплекс двух методов: *сейсморазведка* в модификации метода отраженных волн (МОВ) и *гравиразведка*. Геофизические наблюдения проводились по профилю, проходящему вкрест простирания структуры.

Студентам выдаются двухуровневые модели антиклинальных структур представляющие собой результат интерпретации сейсмических данных (рис. 12).

Рис. 12. Геофизическая модель антиклинальных структур, построенных по данным сейсмических исследований. Задание 3, вариант 1.1.

В задачу работы входит уточнение сейсмических моделей с помощью гравиразведочных данных. В задании предусмотрен анализ первичных гравитационных наблюдений в редукции Буге (график Δg), полученных в ходе полевых наблюдений по профилю, совмещенному с сейсмическим профилем (рис. 13).

Первичные наблюдения должны быть сопоставлены с теоретическими расчетами суммарного гравитационного эффекта от двух моделей, которые рассчитываются студентами самостоятельно с помощью специальной палетки Гамбурцева для двумерных моделей произвольной формы.

Рис. 13. Графики аномального гравитационного поля. Положительные значения ∆g обозначены сплошной линией, отрицательные – штрих-пунктирной.

Параметры палетки: цена деления одной трапеции $\Delta V_z = 1$ мгал, плотность $\sigma_n = 1$ г/см³, масштаб палетки 1 : 86 000. При расчете Δg от аномальных тел, изображенных на разрезах с масштабом M_p , отличным от масштаба палетки, используется масштабный коэффициент $K = (\Delta \sigma_p / \sigma_n) \cdot (M_n / M_p)$. Для расчета гравитационного эффекта выбираются не все точки сейсмического профиля. Их количество ограничивается 5 -7. Значения Δg (*x*) в этих точках $x_1, x_2, ..., x_i$ равны *KN*, где *N* – число трапеций,

рассчитанное с помощью палетки, а центр палетки расположен в точке *x_i*. Плотность аномального тела σ_p вычисляется как средняя плотность слоя по формуле:

$$\sigma_{p} = \frac{h_{1} + h_{2} + \ldots + h_{i}}{h_{1}/\sigma_{1} + h_{2}/\sigma_{2} + \ldots + h_{i}/\sigma_{i}}$$

где h₁, h₂,..., h_i и σ_1 , σ_2 ..., σ_i – мощности и плотности отдельных слоев, составляющих осредненный слой и входящих в сейсмическую модель (верхнюю или нижнюю в разрезе). Мощности и плотности отдельных слоев определяются по литологической колонке, выдаваемой студентам, к которой прилагаются графики изменения пластовой скорости и плотности по скважине, расположенной на сейсмическом профиле (рис. 14).

Границы между осредненными слоями совпадают с условными отражающими границами. Таким образом, подсчитывается осредненная плотность σ_{0p} для пород, покрывающих верхний отражающий горизонт (кровля верхней модели), затем осредненная плотность σ_{1p} пород, залегающих между условными отражающими границами (между кровлями верхней и нижней моделей), и осредненная плотность σ_{2p} пород, залегающих ниже второго условного отражающего горизонта (ниже кровли второй модели).

Рис. 14. Литологическая колонка отложений, слагающих район исследований и

графики пластовой скорости $\upsilon_{nn} = f(H)$ и плотности $\Delta \sigma = f(H)$ по скв. Р-1 (x=7125м,

где х – расстояние от ПК 1 до скважины). Задание 3, вариант 1.2.

Затем подсчитывается избыточная плотность для слоя между отражающими границами $\Delta \sigma_{1p} = \sigma_{1p} - \sigma_{0p}$ и для слоя, подстилающего второй сейсмический горизонт (ниже кровли второй модели),

$$\Delta \sigma_{2p} = \sigma_{2p} - \sigma_{0p}.$$

Полученные таким образом значения избыточной плотности для каждой модели в дальнейшем используют для расчета масштабного коэффициента K, а затем и для вычисления $\Delta g(x)$. По рассчитанным значениям $\Delta g(x)$ в пяти – семи точках профиля строятся графики изменения $\Delta g_1 = f(x)$ (для верхней модели) и $\Delta g_2 = f(x)$ значения (для нижней модели). Затем подсчитываются суммарные $\Delta g_{\Sigma} = \Delta g_1(x) + \Delta g_2(x)$ гравитационного теоретического эффекта от верхней и нижней модели и строится соответствующий график. На этом же графике строится по соответствующей таблице (табл. 6) график изменения наблюденных значений $\Delta g = f(x)$ в том же масштабе. При построении этого графика начало координат можно, если это необходимо, сместить по оси Δg .

Таблица 6

Аномальные значения силы тяжести Δg в редукции Буге.

ПК	Δg, мгал	ПК	Δд, мгал	ПК	Δg, мгал	ПК	Δд, мгал	ПК	Δд, мгал
8	-6,05	16	-4,10	24	-0,45	32	+0,80	40	-4,15
9	-5,75	17	-4,00	25	+0,10	33	+0,45	41	-4,90
10	-5,50	18	-3,90	26	+0,45	34	0,00	42	-5,75
11	-5,25	19	-3,80	27	+0,80	35	-0,55	43	-6,50
12	-4,95	20	-3,40	28	+0,90	36	-1,25	44	-7,30
13	-4,65	21	-2,60	29	+0,90	37	-1,85		•
14	-4,30	22	-1,90	30	+0,90	38	-2,50		
15	-4,15	23	-1,25	31	+0,90	39	-3,35		

Задание 3, вариант 1.3.

Примечание. Расстояние между пикетами наблюдений равно 200 м. Пикеты совпадают с сейсмическими пикетами.

Проанализировать, дав качественное описание, график Δg (визуально выделить фон и возможные локальные аномалии, изменение горизонтальных градиентов, возможность проявления структуры в аномальном гравитационном поле).

Получить разностную кривую $\Delta g_{\text{разн.}}(x) = \Delta g(x) - \Delta g_{\Sigma}(x)$, на которой отражается строение нижних слоев осадочной толщи и фундамента. Дать качественную характеристику поля $\Delta g_{\text{разн.}}(x)$ и высказать гипотезы относительно строения низов осадочной толщи и фундамента.

Дать характеристику формы структуры, высказать соображения относительно ее генезиса и влияние на формирование структуры нижележащих осадочных толщ и строения фундамента (возможность прослеживания структуры на глубину), сделать выводы о перспективах структуры на нефть и газ.

Задание 3, вариант 2

Задание 3, вариант 2.3.

Студентам для выполнения задания необходимы следующие материалы: модели антиклинальных структур, построенные по сейсмическим данным; значения первичных гравитационных наблюдений в редукции Буге (значения Δg)(табл. 7), полученных в ходе полевых наблюдений по профилю, совмещенному с сейсмическим профилем; литологическая колонка, к которой прилагаются графики изменения пластовой скорости и плотности по скважине, расположенной на сейсмическом профиле (рис. 15).

Таблица 7

ПК	Δg, мгал								
2	-5,50	16	-4,50	30	-3,15	44	-1,60	58	-2,60
4	-5,40	18	-4,30	32	-2,90	46	-1,60	60	-2,80
6	-5,25	20	-4,10	34	-2,50	48	-1,60	62	-3,00
8	-5,10	22	-3,95	36	-2,25	50	-1,75	64	-6,50
10	-5,00	24	-3,75	38	-2,05	52	-2,00		
12	-4,80	26	-3,60	40	-1,90	54	-2,25		
14	-4,60	28	-3,45	42	-1,75	56	-2,40		

Аномальные значения силы тяжести Δg в редукции Буге.

Примечание. Расстояние между пикетами наблюдений равно 200 м. Пикеты совпадают с сейсмическими пикетами.

Рис. 15. Литологическая колонка отложений, слагающих район исследований и графики пластовой скорости $\upsilon_{nn} = f$ (H) и плотности $\Delta \sigma = f$ (H) по скв. Р-3 (x=3700м). Задание 3, вариант 2.2.

Задание 3, вариант 3

Студентам для выполнения задания необходимы следующие материалы: модели антиклинальных структур, построенные по сейсмическим данным; значения первичных гравитационных наблюдений в редукции Буге (значения Δg)(табл. 8), полученных в ходе полевых наблюдений по профилю, совмещенному с сейсмическим профилем; литологическая колонка, к которой прилагаются графики изменения пластовой скорости и плотности по скважине, расположенной на сейсмическом профиле (рис. 16).

Таблица 8

Аномальные значения силы тяжести Δg в редукции Буге.

ПК	Δg, мгал	ПК	Δg, мгал	ПК	Δg , мгал	ПК	Δg , мгал	ПК	Δg, мгал
8	-3,48	20	-1,79	32	-0,77	44	-1,11	56	-2,36
10	-3,20	22	-1,50	34	-0,76	46	-1,26	58	-2,63
12	-2,93	24	-1,20	36	-0,78	48	-1,43	60	-2,90

Задание 3, вариант 3.3.

14	-2,65	26	-0,91	38	-0,79	50	-1,58	62	-3,19
16	-2,36	28	-0,73	40	-0,79	52	-1,80	64	-3,46
18	-2,08	30	-0,74	42	-0,95	54	-2,09		

Примечание. Расстояние между пикетами наблюдений равно 200 м. Пикеты совпадают с сейсмическими пикетами.

Рис. 16. Литологическая колонка отложений, слагающих район исследований и графики пластовой скорости $\upsilon_{\pi\pi} = f(H)$ и плотности $\Delta \sigma = f(H)$ по скв. Р-2 (x=2600м). Задание 3, вариант 3.2.

Задание 3, вариант 4

Студентам для выполнения задания необходимы следующие материалы: модели антиклинальных структур, построенные по сейсмическим данным; значения первичных гравитационных наблюдений в редукции Буге (значения Δg) (табл. 9), полученных в ходе полевых наблюдений по профилю, совмещенному с сейсмическим профилем; литологическая колонка, к которой прилагаются графики изменения пластовой скорости и плотности по скважине, расположенной на сейсмическом профиле (рис. 17).

Таблица 9

Аномальные значения силы тяжести Δg в редукции Буге.

Залание 3	вариант 4.3.
Sugarine 5	Dupituiti 1.5.

ПК	∆g, мгал	ПК	Δg , мгал						
12	9,35	22	9,11	32	8,10	42	6,74	52	5,35
14	9,31	24	9,01	34	7,75	44	6,37	54	5,33
16	9,26	26	8,93	26	7,60	46	6,25	56	5,25

18	9,20	28	8,74	38	7,21	48	6,05	58	5,20
20	9,09	30	8,30	40	7,05	50	5,73	60	5,15

Примечание. Расстояние между пикетами наблюдений равно 200 м. Пикеты совпадают с сейсмическими пикетами.

Рис. 17. Литологическая колонка отложений, слагающих район исследований и графики пластовой скорости $\upsilon_{nn} = f(H)$ и плотности $\Delta \sigma = f(H)$ по скв. Р-2 (x=1200м). Задание 3, вариант 4.2.

СПИСОК ЛИТЕРАТУРЫ

1. Грушинский Н.П., Сажина Н.Б. Гравитационная разведка. Изд.2-е, испр. И доп. М., «Недра », 1973. 389 с ил. (Гл. ХҮ, § 8, с. 360).

2. Михайлов А.Е.Структурная геология и геологическое картирование.М., « Недра », 1973. 432 с. с ил. (Гл.11, с 140 – 144, 157 – 172).

3. Пузырев Н.Н. Интерпретация данных методом отраженных волн. М., Гостоптехиздат, 1959. 446 с. с ил. (Гл. YII, § 25, с. 297 – 298, § 29, с.352 – 356).

4. Боганик Г.Н., Гурвич И.И. Сейсморазведка. Тверь: Изд-во АИС, 2006, 744 с.

Контрольные вопросы:

- 1. Какой принцип используется в методе подбора?
- Почему расчетные кривые потенциала силы тяжести по отдельным профилям не всегда совпадают с наблюденными кривыми Δg?

- 3. Чем отличается региональный фон от локальной аномалии?
- 4. Чем обусловлена локальная аномалия?
- 5. Что обуславливает природу регионального фона при гравитационных наблюдениях?

Интерпретация кривых вертикального электрического зондирования и

построение геоэлектрического разреза

Задание 4, варианты 1 – 6

Текст задания

Метод вертикального электрического зондирования (ВЭЗ) является одним из старейших методов электроразведки. Первые применения метода относятся к 20-м г.г. XX века. Сравнительная простота и наглядность ВЭЗ привела к его широкому распространению и развитию во всем мире.

На сегодняшний день электрические зондирования остаются одним из самых применяемых электроразведочных методов. На основе ВЭЗ разработаны и другие современные технологии – например, электротомография, базирующиеся на тех же принципах, что и «классические» электрические зондирования.

Одним из основных требований к применению геофизических методов является контрастность по физическим свойствам объекта изучения относительно вмещающей среды. Для электроразведки методами сопротивлений, к которым относится ВЭЗ – это означает, что изучаемый объект (тело, слой, пласт и пр.) должен заметно (желательно в несколько раз) отличаться по удельному электрическому сопротивлению от вмещающих пород.

Физические основы метода ВЭЗ

Идея метода ВЭЗ – на поверхности земли собирают электроразведочную установку (установки Шлюмберже, Веннера, дипольная осевая установки и некоторые другие), которая, как правило, состоит из двух питающих и двух приемных электродов (см. Рис. 1, Рис.2). В качестве электродов обычно применяют металлические штыри, которые забиваются в землю. Питающие электроды принято обозначать буквами A и B, приемные – М и N. К питающим электродам подключают источник тока – батарею или генератор. В земле возникает электрическое поле и, соответственно, электрический ток. Силу тока в питающей линии (I_{AB}) измеряют с помощью амперметра, включенного в цепь AB. На приемных электродах M и N возникает разность электрических потенциалов ΔU_{MN} , которая измеряется с помощью вольтметра. Область исследования располагается под центром установки и простирается от поверхности до глубин, примерно равным 1/3 длины линии AB (рис. 18).

Рис. 18. Схема измерений в методе ВЭЗ

По результатам выполненных измерений вычисляют кажущееся электрическое сопротивление, обозначаемое рк, и измеряемое в Ом*м.

 $\rho_{k} = K(\Delta U_{MN}/I_{AB})$, где, К – геометрический коэффициент (зависит от расстояний между электродами A, B, M и N), ΔU_{MN} – разность потенциалов между приемными электродами, I_{AB} – сила тока в питающей линии AB.

По результатам измерений можно судить об электрических свойствах горных пород на глубинах проникновения тока в землю. Глубина проникновения тока зависит, в основном, от расстояния между питающими электродами А и В.

Для выполнения наблюдений методом ВЭЗ применяется специализированная электроразведочная аппаратура для возбуждения поля (генераторы) и измерения разности потенциалов (измерители). В настоящее время, как правило, для метода сопротивлений применяется аппаратура на ультранизких частотах (1-10 Гц) или на постоянном токе. Среди применяемых отечественных приборов можно назвать следующие образцы:

· ЭРА-МАХ - современный прибор, работающий на частотах 0, 4.88, 625, 1250 и 2500 Гц;

· ЭРП-1 - современный прибор, работающий на частотах 0, 1.22, 2.44 и 4.88Гц;

· генератор АСТРА и измеритель МЭРИ - современные многочастотные приборы, работающие на частотах от 0 до 625 Гц;

Для монтажа питающих и приемных линий применяются стале-медные провода и кабели. В качестве питающих электродов используют стальные заостренные штыри, для приемных - медные или латунные.

В процессе зондирования производят серию измерений, постепенно увеличивая размер питающей линии AB. Длина линии MN в установках Шлюмберже остается постоянной, а расстояние между питающими электродами увеличивается в геометрической прогрессии с коэффициентом 1,2 - 1,5. Чем больше параметр AB/2 – тем глубже «проникает ток в землю» и тем больше глубинность исследований (рис.19). В электроразведке параметр AB/2 называют разносом питающей линии (или просто разносом). При этом каждая следующая область исследования полностью включает в себя предыдущую. Значения AB/2 выбирают в зависимости от требуемой глубинности исследований.

Как правило, *минимальные AB/2* принимают 1-1.5 метра. *Максимальные AB/2* редко делают больше первых километров. Таким образом, метод ВЭЗ применяют для изучения сред до глубин не более чем сотни метров. В результате описанной серии измерений получается набор значений кажущегося сопротивления, измеренных при известных AB/2.

Рис. 19. Эффект зондирования в методе ВЭЗ.

Для удобного представления результатов наблюдений строят *график зависимости* ρ_k (в *Ом*·*м*) *от разноса* (в *м*). Такой график называется *кривой зондирования* или *кривой* **ВЭЗ**. Кривые зондирования принято строить не в обычном (линейном) масштабе, а на билогарифмических бланках (рис. 3). По обеим осям такого бланка откладываются не значения ρ_k (Ом·м) и AB/2 (м), а их логарифмы (рис. 20).

Рис. 20. Пример кривой ВЭЗ.

Кривая ВЭЗ качественно отображает изменения удельного электрического сопротивления (УЭС) горных пород с глубиной – левая часть графика отвечает приповерхностным слоям, чем дальше вправо, тем больше глубинность. В данном случае, на рисунке изображена 3-х слойная кривая ВЭЗ.

Кривые ВЭЗ и соответствующие им геоэлектрические разрезы могут быть двухслойными (два типа), трёхслойными (четыре типа), четырёхслойными (восемь типов) и более многослойными. Первые три группы кривых ВЭЗ представлены на рис.21. С прибавлением слоя в геоэлектрическом разрезе количество типов кривых удваивается.

Для определения параметров геоэлектрического разреза – мощностей и удельного электрического сопротивления слоёв проводят количественную интерпретацию кривых ВЭЗ. Существуют следующие способы интерпретации:

1. Палеточный - путём сопоставления наблюдённой кривой ВЭЗ с теоретическими кривыми, рассчитанными при определённых параметрах геоэлектрического разреза.

2. Статистический – путём использования корреляционных связей между характерными точками кривой ВЭЗ (координаты точек минимумов, максимумов, перегибов на кривых ВЭЗ) и параметрами геоэлектрического разреза (глубины залегания границ, мощности и удельные электрические сопротивления слоёв установленных). по ланным параметрических зондирований ВЭЗ, проведённых возле скважин, результатов электрокаротажа в этих скважинах, других геофизических методов.

Основные типы кривых ВЭЗ.

а – двухслойные: 1 – (р₁>р₂), 2 – (р₁<р₂);</p>

 $\boldsymbol{\delta}$ – трехслойные: 1 – тип H ($\rho_1 > \rho_2 < \rho_3$), 4 – тип A ($\rho_1 < \rho_2 < \rho_3$).

2 – тип K ($\rho_1 < \rho_2 > \rho_3$), 3 – тип Q ($\rho_1 > \rho_2 > \rho_3$),

в - четырехслойные – на восемь типов – НК, НА, КН, КQ, АА, QH,QQ, АК

Рис.21. Характерные типы кривых ВЭЗ.

3. С помощью ЭВМ.

При проведении количественной интерпретации необходимо учитывать что одной и той же кривой ВЭЗ соответствует целый ряд возможных моделей геоэлектрического разреза. Этот эффект носит название эквивалентность геоэлектрических разрезов. Эквивалентность характерна для моделей с количеством слоев больше 2-х. Как правило, эффект проявляется для промежуточного слоя повышенного или пониженного сопротивления. Этот эффект носит название эквивалентность геоэлектрических разрезов. Эквивалентность характерна для моделей с количеством слоев больше 2-х. Как правило, эффект проявляется для промежуточного слоя повышенного или пониженного сопротивления. Этот эффект носит название эквивалентность геоэлектрических разрезов. Эквивалентность характерна для моделей с количеством слоев больше 2-х. Как правило, эффект проявляется для промежуточного слоя повышенного или пониженного сопротивления. Для таких слоев по кривой ВЭЗ невозможно корректно определить одновременно УЭС слоя и его мощность, поэтому правильный результат можно получить, если известен один из параметров слоя - или его мощность или УЭС.

В настоящее время практически используется третий способ интерпретации. При интерпретация кривых ВЭЗ в программе IPI2WIN используется метод подбора. В этом методе производится сравнение двух кривых: экспериментальной и теоретической, рассчитанной для начальной модели геоэлектрического разреза Как правило, кривые сильно различаются. В модель начального приближения вводятся поправки, таким образом, чтобы приблизить рассчитываемую теоретическую кривую к полевой. После каждого корректирования модели рассчитывается новая теоретическая кривая, кривые сравниваются, определяются новые поправки и т.д. Корректировку модели продолжают до получения приемлемой точности подбора. Считается, что допустимое расхождение кривых не должно быть больше погрешности полевых измерений. Максимально допустимая погрешность полевых измерений в электроразведке - 5 %. После окончания подбора можно сказать, что созданная модель «адекватна» изучаемому разрезу – т.е. дает такую же кривую зондирования, что и полученная в поле и, возможно, описывает реальную ситуацию.

Таблица 10

				Абсо	олютные	е отметк	(м)						
AB/2	141		138	135	136		140	142	143	143			
		141				139							
				Н	омера г	икетов	ВЭЗ						
	1 2 3 4 5 6 7 8 9												
1.5	32.7	39.9	15.1	13.6	28.7	41.2	19.4	109.4	105.4	34.2			
3	52.1	56.9	16.2	17.8	24.7	34.8	15.4	155.8	177.3	41.3			
5	58.8	56.0	17.0	22.0	20.7	29.5	15.0	144.8	223.2	56.5			
9	61.5	43.9	17.9	20.1	20.3	26.0	18.1	101.2	228.2	90.5			
15	54.5	29.9	20.0	16.9	20.2	17.4	18.8	36.3	186.6	129.8			
25	43.3	25.0	22.4	16.0	21.2	14.8	21.2	23.9	80.7	194.7			
40	34.0	27.6	25.6	14.2	20.6	14.8	23.5	27.8	44.1	276.0			
65	31.3	32.7	29.4	11.3	19.1	15.2	25.5	32.8	30.0	325.0			
100	34.8	37.4	31.2	8.3	15.9	15.0	24.7	35.6	28.8	283.3			
150	34.7	44.0	29.8	6.5	9.7	13.3	26.5	38.3	32.6	181.7			
220	34.2	42.6	25.2	6.6	8.3	13.5	29.5	43.6	30.8	88.3			
340	32.2	34.8	17.0	5.8	6.5	13.0	39.2	47.6	33.6	52.9			
500	34.0	21.5	13.7	6.2	6.1	14.2	54.0	55.7	35.8	44.8			

Профиль 2

Таблица 11

				Абсо	лютные	отметки	1 (M)			
AB/2	139	139	138	135		136	137	136	138	138
					136					
				Нс	омера пи	икетов В	ЭЗ			
	1	2	3	4	5	6	7	8	9	10
1.5	34.1	15.5	27.0	5.1	13.6	19.7	18.5	15.0	27.3	46.6
3	50.1	12.4	31.9	4.9	15.2	21.5	18.7	16.8	21.8	56.4
5	57.9	12.6	27.3	5.0	20.0	21.0	20.0	17.8	21.5	51.1
9	53.7	15.4	23.7	5.9	25.4	20.5	22.2	20.3	27.2	44.3
15	52.6	17.0	23.9	8.0	26.4	23.6	23.5	20.3	32.8	33.0
25	52.0	18.8	23.8	11.7	29.2	28.3	24.4	17.3	30.0	27.3
40	50.4	20.7	27.7	16.8	32.4	35.1	24.2	15.5	27.2	31.5
65	49.6	22.7	33.8	21.5	37.0	41.9	23.4	15.2	25.0	35.7
100	39.5	25.7	37.4	20.0	37.3	40.9	21.2	14.6	31.1	35.0
150	42.6	29.4	37.2	19.4	37.9	40.6	22.0	18.3	36.8	33.4
220	57.2	36.2	36.7	18.8	38.8	37.2	17.8	27.2	44.1	31.5
340	68.9	44.5	31.2	17.1	40.2	43.2	14.9	35.3	46.5	28.8
500	74.2	48.7	25.4	18.2	36.1	44.1	13.8	44.9	44.4	31.5

Профиль 3

Таблица 12

		-	-	Абс	олютные	отметки	(м)	-		
AB/2	131	132	131	132	133	131	133	130	128	127
			-	Н	омера пи	кетов ВЭ	3			
	1	2	3	4	5	6	7	8	9	10
1.5	28.1	38.0	19.5	30.1	28.8	12.8	30.4	17.1	19.4	11.4
3	46.8	56.2	24.5	44.8	54.3	13.0	34.1	20.4	20.0	12.3
5	56.1	57.0	35.5	51.3	80.3	13.7	35.1	20.5	22.0	15.8
9	59.8	48.8	52.8	37.7	108.6	16.9	29.2	21.0	25.7	19.0
15	55.5	38.1	62.8	26.2	121.8	20.5	26.0	22.9	24.4	19.7
25	41.8	28.7	60.3	24.2	51.4	22.6	22.3	24.3	21.9	19.9
40	32.9	25.4	50.6	22.3	23.3	21.0	21.5	26.5	25.4	20.1
65	23.3	26.2	37.0	21.2	19.1	24.9	23.7	30.4	32.7	20.3
100	22.3	30.0	33.0	20.2	18.5	20.8	25.2	34.5	32.8	17.8
150	24.1	32.8	35.2	19.4	22.6	19.8	29.1	37.3	31.8	16.2
220	31.4	30.5	38.4	19.6	32.3	22.7	35.2	39.2	28.8	15.9
340	36.3	21.9	30.2	20.6	36.2	24.1	37.1	34.2	17.6	15.8
500	38.9	16.3	21.1	22.3	36.4	30.1	37.0	27.5	15.0	11.8

Профиль 4

Таблица 13

				Абс	олютные	отметки	(м)			
AB/2	130	128	128	127	130	132	134	135	136	134
				Н	Іомера пі	икетов ВЗ	93			
	1	2	3	4	5	6	7	8	9	10
1.5	18.5	5.1	15.0	13.6	19.7	27.3	27.0	28.1	46.6	34.1
3	18.7	4.9	16.8	15.2	21.5	21.8	31.9	46.8	56.4	50.1
5	20.0	5.0	17.8	20.0	21.0	21.5	27.3	56.1	51.1	57.9
9	22.2	5.9	19.7	25.4	20.5	27.2	23.9	57.4	56.7	53.7
15	23.5	7.9	19.6	26.4	22.3	33.4	23.8	53.7	36.9	52.6
25	24.4	11.7	17.3	29.2	28.3	30.0	23.8	37.8	31.3	45.2
40	23.8	16.4	15.2	31.6	35.1	27.2	27.7	30.3	32.0	49.2
65	23.0	20.7	13.9	36.1	41.7	25.0	33.8	22.9	35.7	48.3
100	20.2	20.0	14.6	35.3	40.9	31.1	37.4	22.3.	35.0	36.5
150	21.0	19.4	18.3	35.9	40.6	36.8	37.2	24.1	33.4	39.6
220	16.8	21.8	23.7	36.8	35.9	39.2	33.2	26.1	30.4	48.9
340	13.9	19.6	33.5	38.2	36.5	42.2	28.0	30.2	27.5	57.9
500	12.8	18.2	43.9	34.9	42.6	39.1	22.1	32.8	30.2	63.2

Профиль 5

Таблица 14

		-		Абсолютные отметки (м)										
AB/2	125	129	132	130	129	127	128	130	131	130				
				Н	омера пи	ікетов ВЭ	3							
	1	2	3	4	5	6	7	8	9	10				
1.5	30.4	17.1	19.5	28.8	38.0	30.1	11.4	12.8	15.4	19.4				
3	34.1	20.4	24.5	54.3	56.2	44.8	12.3	13.0	14.9	20.0				
5	35.1	20.5	35.5	80.3	57.0	51.3	15.8	13.7	16.3	22.0				
9	29.1	20.9	50.7	108.6	48.8	45.9	18.1	17.3	21.7	25.7				
15	25.9	22.9	62.3	121.3	38.1	29.4	19.0	21.2	27.3	24.3				
25	22.3	24.3	60.3	51.4	29.7	24.2	19.9	22.6	30.3	21.9				
40	23.8	26.8	50.2	23.3	26.4	22.3	20.0	21.3	27.9	26.7				
65	24.9	30.4	36.5	19.1	25.6	22.1	20.3	24.2	25.5	33.7				
100	25.2	34.5	33.0	20.4	30.0	19.2	17.8	20.8	24.6	32.8				
150	29.1	37.3	35.2	24.5	32.8	18.4	16.2	19.8	27.0	31.8				
220	35.2	41.1	33.8	34.2	30.5	18.6	15.9	22.7	26.3	30.3				
340	37.1	35.4	27.5	38.1	21.9	19.2	15.8	24.1	24.5	18.6				
500	36.6	27.5	18.4	36.5	16.3	19.9	11.8	30.1	19.0	16.7				

Профиль 6

Таблица 15

				Абсо	олютные	отметки	(м)			
AB/2	127	128	129	130	132	130	128	126	127	127
				Н	омера пи	икетов ВЭ	13			
	1	2	3	4	5	6	7	8	9	10
1.5	85.6	35.7	28.3	27.7	11.8	12.9	15.4	20.9	17.2	18.5
3	150.4	53.5	22.1	20.8	16.2	14.7	14.9	18.1	18.2	18.7
5	133.1	59.1	24.7	19.0	19.9	19.3	16.3	20.4	18.1	20.0
9	73.3	51.1	36.2	21.3	29.8	26.2	21.0	23.9	17.3	22.2
15	33.4	35.6	53.2	25.1	42.7	31.2	27.1	25.5	16.7	23.5
25	18.0	23.7	67.9	32.4	55.0	31.1	30.3	28.1	16.6	24.4
40	19.3	22.2	61.8	44.4	51.5	33.2	28.2	31.2	19.2	24.2
65	18.9	23.9	42.9	53.5	38.1	38.7	25.6	31.3	24.2	23.4
100	18.3	24.0	30.1	54.7	26.2	43.3	24.6	30.2	24.2	21.2
150	18.7	26.5	27.0	37.1	24.4	45.0	27.0	29.3	25.3	22.0
220	20.4	35.0	29.7	30.2	30.2	44.5	26.3	28.4	33.0	17.8
340	21.5	39.7	24.8	27.0	33.5	42.7	24.5	21.2	35.7	14.9
500	24.1	41.9	17.9	23.4	34.3	39.0	19.0	18.1	34.7	13.8

Наименование горной породы	УЭС min (Ом·м)	УЭС	УЭС тах (Ом∙м)
		типичное	
		(Ом м)	
Глины	5	10	15
Суглинки	15	30	50
Супеси	30	50	80
Пески водонасыщенные	50	80	200
Пески слабоувлажнённые	100	150	500
Пески сухие	200	500	10000
Карбонатные скальные породы	500	1000	5000
слаботрещинноватые			
Интрузивные горные породы	1000	2000	10000
слаботрещинноватые			
Дресва	30	50	500
Вечномерзлые породы различной	500		80000
льдистости			
Руды минералов проводников (в	0,001		1-5
основном сульфидов)			

Удельное электрическое сопротивление (УЭС) горных пород

Порядок выполнения задания:

- 1. Ознакомиться с программой IPI2WIN, изучив текстовый документ в папке IPI2WIN (см. приложение) (3).
- Запустить программу ввести данные ВЭЗ по одному из профилей (табл.№№ 11 15) (вариант профиля и расстояние между точками ВЭЗ уточнить у преподавателя).
- 3. Просмотреть кривые ВЭЗ и определить их тип.
- 4. Проинтерпретировать кривые ВЭЗ и построить геоэлектрический разрез по заданному профилю.
- 5. Используя данные об УЭС горных пород (табл.16) установить предположительно литологию слоёв и нанести её на геоэлектрический разрез.

СПИСОК ЛИТЕРАТУРЫ

- 1. Воскресенский Ю.Н. Полевая геофизика: Учеб. Для вузов. М.: ООО « Издательский дом Недра », 2010. 479с.: ил.
- 2. Инструкция по электроразведке. Л.: Недра, 1984 г.
- Учебно-методическое пособие «Интерпретация кривых ВЭЗ в программе IPI2WIN"/Е.В. Нугманова – Казань: Казанский (Приволжский) федеральный университет, 2014. – 32 с.
- Справочник геофизика. Электроразведка. 1 из 2. (ред. Хмелевской В.К., Бондаренко В.М.) Издательство: Недра, 1989 г. - 441 стр.
- 5. Справочник геофизика. Электроразведка. 2 из 2. (ред. Хмелевской В.К., Бондаренко В.М.) Издательство: Недра, 1989 г. 381 стр.

Контрольные вопросы:

1. Что отображают кривые ВЭЗ?

- 2. Какие типы кривых ВЭЗ выделяют?
- 3. Как построить геоэлектрический разрез?
- 4. Как определить тип кривой ВЭЗ?
- 5. Для каких целей используют метод ВЭЗ?

Тема III

ГЕОЛОГИЧЕСКИЕ ФАКТОРЫ И ГЕОФИЗИЧЕСКИЕ КРИТЕРИИ РЕГИОНАЛЬНОГО И ЛОКАЛЬНОГО ПРОГНОЗА РУДОНОСНОСТИ РЕГИОНОВ

Выделение магматических образований изометричной формы Задание 5

Выполнить количественную интерпретацию данных магниторазведки (значений B_z), наблюденных с шагом 50 м по меридиональному профилю, проходящему через эпицентр аномалии, по форме близкой к изометричной, если намагниченность горных пород, слагающих аномальный объект, равна 1 А/М и направлена под углом к поверхности (рис. 22). Изменение B_z по профилю, проходящему через эпицентр изометричной аномалии описывается формулой:

$$B_z = M \cdot 10^{-7} \cdot \frac{(2h^2 - x^2)\sin i - 3hx \cos i}{(x^2 + h^2)^{5/2}}$$
, при x=0 $B_z(0) = 2M \cdot 10^{-7} \cdot \sin i / h^3$

Рис. 22. График, построенный для интерпретации аномалии В_z.

Последовательность выполнения задания:

 Построить график значений В_z (по данным, приведенным в таблице № 17) в масштабе: в 1 см – 100 нТл (вертикальный) и в 1 см – 50 м (горизонтальный).

2. Сделать заключение о форме возмущающего объекта.

Проинтерпретировать аномалию B_z методом характерных точек (рис. 22).
Характерными точками являются точки пересечения кривой B_z оси абсцисс X₁, X₂ и абсцисса точки B_{z max} -- X_{max}.

Метод характерных точек.

Сущность метода характерных точек при решении обратной задачи магниторазведки сводится к определению глубины залегания, оценке намагниченности и размеров тел по характерным точкам на графиках B_z (точки на оси абсцисс- x_1, x_2, x_{max}). Первый этап интерпретации методом характерных точек сводится к построению графика B_z в масштабе по изученному профилю. Затем проводится определение параметров возмущающего объекта в следующей последовательности:

- 1. Расчет местоположения начала координат (центра объекта относительно оси X): $X_{max} = 0,1 (p q)$, где X_{max} абсцисса точки $B_{z max}$ (абсцисса точки $B_{z max}$ должна быть всегда < 0, поскольку с учетом направления намагниченности аномалиеобразующего тела проекция точки, соответствующей началу координат B_z (0) на кривой B_z должна располагаться на более крутой ее ветви, т.е. в нашем случае справа от значения $B_{z max}$).
- 2. Расчет глубины залегания центра объекта:

$$h = 0.71\sqrt{pq - 0.11(p-q)^2}$$
, где p и q расстояния,

соответственно, от абсциссы точки $B_{z \max}(x_{max})$ до точки x_2 и точки x_1 .

3. Вычисление угла намагниченности тела:

$$ctg \ i = 4 \frac{|X_{\max}|}{h}$$

4. Определение магнитного момента тела:

$$M = \frac{h^3 B_z(0) 10^7}{2 \sin i}$$
 (A·м²), где значение B_z(0) должно быть

выражено в теслах (на графике оно представлено в нТл).

1 нТл =
$$1 \cdot 10^{-9}$$
 T.

Далее можно оценить объем возмущающего тела и вычислить его радиус
(R):

$$V = \frac{M}{J}$$
 (м³), отсюда $V = \frac{4}{3}\pi R^3$
 $R = \sqrt[3]{\frac{3V}{4\pi}}$

Таблица 17

№№ точек 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 В_z (нТл) -5 -7 -4 -2 1 2 21 57 186 648 861 222 -38 -57 -28 -24 -19 -16 -13 -9

Контрольные вопросы:

- 1. В чем состоит сущность метода характерных точек при решении обратной задачи магниторазведки для тел изометричной формы?
- Как определить местоположение начала координат на оси абсцисс при интерпретации кривых В_z от тел изометричной формы?

Выделение магматических образований пластообразной формы Залание 6

Выполнить количественную интерпретацию значений B_z, наблюденных с шагом 20 м по профилям, проходящим вкрест простирания вытянутых в меридиональном направлении аномалий с односторонним минимумом (табл. 11, 12), если намагниченность горных пород аномальных объектов равна 250 А/М.

Рис. 23. График, построенный по методу характерных точек, применяемый для интерпретации аномалии В_z от пластообразных тел разной мощности и бесконечных по простиранию.

Последовательность выполнения задания:

 Построить график значений В_z (по данным, приведенным в таблицах № 18 и № 19) в масштабе: в 1 см – 100 нТ (вертикальный) и в 1 см – 50 м (горизонтальный).

2. Сделать заключение о форме возмущающего объекта.

3. Проинтерпретировать аномалию В_z методом характерных точек (рис. 23).

Метод характерных точек.

Аналогично предыдущему заданию строится график B_z в масштабе по изученному профилю. Затем проводится определение параметров возмущающего объекта в следующей последовательности:

1. Определение начала координат (центра верхней кромки пласта относительно оси X):

$$\mathbf{B}_{z}(\mathbf{0}) = |\mathbf{B}_{z_{\max}}| \cdot |\mathbf{B}_{z_{\min}}|$$

Находим на более крутом склоне кривой B_z , расположенном в сторону ее минимума, значение $B_z(0)$ и определяем абсциссу этой точки, которая и является в данном случае началом координат.

2. Построение вспомогательного графика f(x) по функции B_z (симметричного относительно начала координат) используя при этом формулу:

$$f(x_i) = \frac{1}{2} [B_x(x_i) + B_x(-x_i)]$$

где і – номера точек наблюдения по профилю;

3. Расчет глубины залегания верхней кромки пласта:

$$h = \frac{x_{\frac{1}{4}}^2 - x_{\frac{1}{2}}^2}{2x_{\frac{1}{2}}},$$

где $X_{1/2}$ и $X_{1/4}$ - это расстояния в метрах от начала координат до точек, соответствующих абсциссам точек на вспомогательной кривой f(x), со значениями, равными 1/2 и 1/4 максимального значения f(x), отложенными по оси ординат снизу вверх;

4. Для пластов различной мощности дальнейшая методика расчета основных характеристик возмущающего объекта (в данном случае пласта) будет отличаться. Если $h < x_{\underline{1}}$, то принимается, что пласт относительно мощный, если

 $h \approx x_{\frac{1}{2}}$ - пласт тонкий;

Для тонкого пласта: Исходной формулой для расчета изменений B_z в данном случае является:

 $B_z = [2b \cdot 2\sigma \cdot 10^{-7} \cdot \sin \alpha / (x^2 + h^2)] \cdot (h \cdot \sin \alpha + x \cdot \cos \alpha);$ при x=0 $B_z(0) = 2b \cdot 2\sigma \cdot 10^{-7} \cdot \sin^2 \alpha / h$ Расчет основных параметров пласта осуществляется в следующей последовательности:

1. Вычисление угла падения пласта:

$$\sin \alpha = \frac{Bz_{\max} + Bz_{\min}}{Bz_{\max} - Bz_{\min}};$$

2. Определение видимой мощности пласта: $2b = \frac{h Bz(0) 10^7}{2\sigma \sin^2 \alpha}$;

здесь σ – плотность магнитных зарядов на поверхности тела, которая при вертикальном намагничении тела (в нашем случае) равна намагниченности J (250 A/M). Значение B_z как и в случае интерпретации изометричных аномалий необходимо перевести из нТл в теслы, умножив данное значение на 10^{-9} .

Для мощного пласта: Исходной формулой для расчета изменений B_z в данном случае является:

Расчет параметров пласта:

3. Вычисление угла падения пласта по исходному графику В_z:

$$tg \ \alpha = \frac{|x_{\min}| - |x_{\max}|}{2h}$$

4. Определение видимой мощности пласта по кривой f(x),

$$b = \sqrt{x_{\frac{1}{2}}^2 - h^2}$$

По полученным данным строятся модели возмущающих объектов.

Таблица 18

№№ точек	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Bz(нТл)	-38	-40	-41	-41	-40	-38	-33	-15	49	193	829	575	493	365	257	196	163

18	19	20	21	12	22														
135	113	97	86	57	17														
																	Та	блиі	19 ta
NºNº	точек	: 1	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86
Bz (н	ιТл)	- 38	-41	-41	-37	-30	0	80	196	323	457	505	464	374	279	216	176	141	111
91	96	101																	
89	69	50																	

СПИСОК ЛИТЕРАТУРЫ

1. Логачев А.А., Захаров В.Л. Магниторазведка. Л.: Недра, 1979.

2. Маловичко А.К., Гершанок Л.А. Магниторазведка. Пермь: Изд-во Пермского университета, 1993, 100 с.

Контрольные вопросы:

- 1. В чем состоит сущность метода характерных точек при решении обратной задачи магниторазведки для тел пластообразной формы?
- 2. Как построить кривую f(x)?
- 3. Каков принцип выделения мощных и тонких пластов по кривым B_z?