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Time-delayed coincidence technique for subnatural-width spectroscopy
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A single photon, emitted in a transition between two states, has a frequency distribution of intensity that
is given by a Lorentzian if the transition is only naturally broadened and the period of observation T is long
compared to the lifetime T1 of the excited state. However, when the observation time T is short or comparable
to T1, the frequency spectrum is appreciably broadened. If only the delayed part of the emitted radiation
field is detected, then the radiation spectrum does not change. However, if the radiation field is transmitted
through a resonant absorber and then detected, the transmission spectrum of the delayed radiation field is
narrowed. We show that this narrowing is due to the interference of the spectral components of the incident
and coherently scattered fields. Experimental spectra of absorption of Mössbauer radiation, obtained by the
coincidence technique, confirm this conclusion.
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I. INTRODUCTION

The intensity distribution of a line emitted in a transition
between two quantum states is given by a Lorentzian if the
line is only naturally broadened and the period of observation
T is long. However, when time T is short or comparable to the
lifetime T1 of the excited state, the frequency spectrum of the
emitted radiation is appreciably broadened. Experiments with
gamma photons clearly demonstrated the spectrum broaden-
ing when T < T1 [1–4]. These experiments make use of the
coincidence-Mössbauer technique, which could be summa-
rized for 57Fe as follows. The source nucleus, 57Co, undergoes
electron capture to form a second excited state of 57Fe whose
lifetime is 12 ns. This state decays via two-photon cascade
emitting sequentially 122- and 14.4-keV photons. Detection
of the 122-keV photon signals the occupation of the 14.4-keV
excited state of 57Fe whose lifetime is 141 ns. This allows
one to use the Mössbauer spectroscopy selecting only those
14.4-keV photons that are emitted during some preset time
interval after detecting the 122-keV photon. Such a “time
filtering” results in substantial modification of the experimen-
tally observed transmission-line shape.

The coincidence-Mössbauer spectroscopy was applied in
[3–5] to improve the spectral resolution by taking spectra
counting only those gamma photons coming from the source
nucleus that have lived longer than one lifetime. Appreciable
line narrowing was explained by the argument that photons,
emitted by nuclei that have lived a longer time, have a better
defined energy [6]. A similar technique was also applied in
an optical domain, and it was called time-biased coherent
spectroscopy since it is based on selectively discarding that
part of the signal arriving shortly after the excitation of the
state to be studied (for a review, see [7]). Significant linewidth
reduction in this technique has resulted in substantial improve-
ments in precision. The gain is attained when one observes
the radiation from naturally decaying states a certain time

interval after they are populated and, therefore, limits data
collection to the set of atoms that have survived in the excited
state for a longer time than average. In the optical domain,
the time-biased technique was successfully applied in double
resonance [8] and level-crossing [9,10] experiments.

In this paper, we show that spectral resolution in time-
biased coherent spectroscopy originates from the interference
phenomena. While in the optical domain this is an obvious
conclusion since the line narrowing effects occur only when
the phase of the decaying signal is preserved by a measuring
process (see, for example, [11]), in the gamma domain the
line narrowing is usually explained by a decrease of the
energy uncertainty of photons emitted at a later time [3–5].
We show theoretically that the spectrum of photons, detected
with an appreciable delay after the excited state population
of the source nucleus, does not experience narrowing. The
experimentally observed narrowing of the transmission line
of the radiation field, detected with a large delay, is due to the
interference of the spectral components of the incident and
coherently scattered fields. We also derive a simple formula
for estimation of the spectral resolution in the gamma domain.

II. SPECTRUM OF AN EMITTED PHOTON IN
TIME-BIASED MEASUREMENTS

Lynch et al. [12] empirically introduced an expression for
the source photon within a classical theory of gamma photon
propagation in a dense resonant absorber. A single-photon
radiation field is presented as a damping electric field

a(t ) = �(t )e−iωSt−�St/2, (1)

where the distance from the source is neglected, the amplitude
of the field at the input of the absorber is normalized to unity,
time t0 when the source nucleus is formed in the excited state
is defined as t0 = 0, �(t ) is the Heaviside step function, ωS

is the frequency of the resonant transition from the excited to
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FIG. 1. Power spectrum of the source radiation field, seen by the
frequency selective detector in a thought experiment. The opening
time T of the shutter is 10T1 (solid red line), 5T1 (dotted blue line),
2T1 (dashed black line), and T1 (dash-dotted blue line).

the ground state, and �S is the reciprocal of the mean lifetime
of the excited state T1, i.e., �S = 1/T1.

If we adopt the Fourier transform of the form

F (ω) =
∫ +∞

−∞
f (t )eiωt dt, (2)

the Fourier transform of the radiation field amplitude (1) is

A(ω) = 1

�S/2 − i(ω − ωS )
, (3)

and its intensity distribution I (ω) = A(ω)A∗(ω) is given by
the Lorentzian function

I (ω) = 1

(�S/2)2 + (ω − ωS )2
. (4)

Assume a shutter is available in the gamma domain, and we
place this shutter between the source and the detector. In this
gedanken experiment, we also suppose that our detector is
capable of measuring the spectral content of the radiation
field. Below we consider two cases, i.e., (i) the shutter is open
in a time interval (0, T ) allowing detection only of a leading
edge of a single-photon wave packet, and (ii) the shutter is
open (T,+∞) to detect only the tail of a single-photon wave
packet.

In the first case, the probability amplitude of the photon,
transmitted by the shutter, is

a0T (t ) = a(t )[1 − �(t − T )], (5)

and its Fourier transform

A0T (ω) = 1 − ei(ω−ωS )T −�ST/2

�/2 − i(ω − ωS )
(6)

gives the following expression for the radiation intensity [1]:

I0T (ν) = 1 + e−�ST − 2e−�ST/2 cos νT

(�S/2)2 + ν2
, (7)

where ν = ω − ωS . For a long-time interval when the shutter
is open, the radiation spectrum is close to Lorentzian (4); see
Fig. 1, the solid red line, which corresponds to T = 10T1.

With time-interval shortening, the spectrum broadens. For
example, for T = T1 the spectrum width increases 5.6 times
(see Fig. 1, dash-dotted blue line). The drop of intensity at the
line center ν = 0 is due to discarding an appreciable part of a
single-photon pulse, and it is described by the equation

I0T (0) = (1 − e−�ST/2)2

(�/2)2
. (8)

For T close to T1, the intensity drops slightly more than two
times with respect to the line center when νT = ±π . For these
frequencies, Eq. (7) is simplified as follows:

I0T (±π/T ) = (1 + e−�ST/2)2

(�S/2)2 + (π/T )2
. (9)

Thus, when T = T1, the half-width at half-maximum of the
radiation field increases almost 2π times.

This result also follows from simple properties of the
Fourier transforms. Since the probability amplitude of the
truncated photon, Eq. (5), is a product of a(t ), Eq. (1), and a
rectangular function fR(t ) = �(t )[1 − �(t − T )], the Fourier
transform of Eq. (5) is a convolution of the Fourier transforms
of the probability amplitude of the nontruncated photon A(ω)
and the rectangular function FR(ω), i.e.,

A0T (ν) = 1

2π

∫ +∞

−∞
A(ν1)FR(ν − ν1)dν1, (10)

where ν = ω − ω0 and

FR(ν) = TeiνT/2 sin νT/2

νT/2
. (11)

For T � T1, the half-width at half-maximum of FR(ν) is π/T ,
which is much larger than that of A(ν1). Therefore, the width
of FR(ν) defines the width of the truncated photon A0T (ν) for
short observation time T .

If the shutter is open at time T for a long-time interval
(T,+∞), the probability amplitude of the photon transmitted
by the shutter is

aT ∞(t ) = �(t − T )a(t ). (12)

Its Fourier transform

AT ∞(ν) = eiνT −�ST/2

�S/2 − iν
(13)

gives the following expression for the radiation intensity:

IT ∞(ν) = e−�T

(�S/2)2 + ν2
, (14)

which differs from the Lorentzian profile (4) only by the nu-
merical factor exp(−T ). Thus, there is no spectrum narrowing
of photons, which are detected at a later time.

In the gamma domain, the shutters and spectrum selec-
tive detectors are not yet available. Instead, the time-delayed
coincidence counting technique and resonant absorbers are
used [1–5]. While transmission spectrum broadening detected
by this technique [1–4] confirms the spectrum broadening of
a photon for the observation time interval (0, T ), the line
narrowing in the time interval (T,+∞) could be explained
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only by the interference phenomenon since the photon spec-
trum is not narrowed in delayed detection. This point will be
discussed in the next section.

III. COINCIDENCE-MÖSSBAUER SPECTROSCOPY

Lynch et al. [12] proposed describing the time dependence
of the radiation field amplitude of the source, Eq. (1), which is
transmitted through the absorber of physical thickness L, by
an inverse Fourier transformation,

aout (t − t0) = 1

2π

∫ +∞

−∞
Aout (ω)e−iω(t−t0 )dω, (15)

where Aout (ω) = A(ω) exp[−αA(ω)L/2] is the radiation spec-
trum at the exit of the absorber, A(ω) is the spectrum of
the incident radiation field [see Eq. (3)], t0 is the time
when the excited state nucleus is formed in the source, α(ω)
is the complex dielectric constant, which describes frequency-
dependent absorption and the phase shift of the field in the
sample, and L is the absorber physical thickness. For the
absorber with a single resonance line, αA(ω) is

αA(ω) = i�Ad/2L

ω − ωA + i�A/2
, (16)

where ωA and �A are the resonant frequency and absorption
linewidth of nuclei, d = nAσ fAL is the optical thickness of
the absorber, nA is the number of nuclei per unit volume of the
absorber, σ is the resonance absorption cross section, and fA

is the recoilless fraction of gamma ray absorption. If we count
a number of photons, detected within long time intervals of
the same duration for different values of the detuning from
resonance, 	 = ωS − ωA, we obtain the Mössbauer spectrum
showing the dependence of transmitted radiation intensity on
	. This number of counts is

n∞(	) =
∫ +∞

−∞
nout (t − t0)dt, (17)

where nout (t − t0) = |aout (t − t0)|2. If we express nout (t − t0)
as

nout (t − t0)

= 1

(2π )2

∫ +∞

−∞
dω1

∫ +∞

−∞
dω2Aout (ω1)A∗

out (ω2)ei(ω2−ω1 )(t−t0 ),

(18)

then, from Eq. (17) and the definition of the Dirac delta
function,

1

2π

∫ +∞

−∞
ei(ω2−ω1 )(t−t0 )dt0 = δ(ω1 − ω2), (19)

we obtain

n∞(	) = 1

2π

∫ +∞

−∞
dωAout (ω)A∗

out (ω), (20)

which is a well-known expression for transmitted radiation in
Mössbauer spectroscopy [13]. Here, nonresonant absorption
is disregarded. Recoil processes in nuclear emission are not
taken into account assuming that the recoilless fraction of
the source emission (Debye-Waller factor) is fS = 1. These

processes can be easily taken into account in experimental
data analysis.

A. Photon counts in a short time interval starting immediately
after the formation of the excited state nucleus in the source

In the time-delayed coincidence technique, we are able to
collect photon counts, which are detected in a time interval
(t0, t0 + T ). These counts satisfy the equation

n0T (	) =
∫ t0+T

t0

nout (t − t0)dt . (21)

Substituting an integral representation of aout (t − t0) and
a∗

out (t − t0) via Fourier transforms Aout (ω) and A∗
out (ω),

Eq. (15), into nout (t − t0) = aout (t − t0)a∗
out (t − t0) and taking

into account the relation∫ t0+T

t0

ei(ω2−ω1 )(t−t0 )dt = Tei(ω2−ω1 )T/2 sin[(ω2 − ω1)T/2]

(ω2 − ω1)T/2
,

(22)

we obtain

n0T (	)

= 1

(2π )2

∫ +∞

−∞
dω1

∫ +∞

−∞
dω2Aout (ω1)A∗

out (ω2)FR(ω2 − ω1),

(23)

where FR(ω2 − ω1) is the function that is defined in Eq. (11)
and coincides with that on the right-hand side of Eq. (22).
Thus, in the time-delayed coincidence technique we measure
the interference of spectral components Aout (ω1) and A∗

out (ω2),
which is governed by the spectral function FR(ω2 − ω1)
whose width is defined by duration T of the observation time
window.

Equation (20) is consistent with Parseval’s theorem, which
is written as∫ +∞

−∞
aout (t −t0)a∗

out (t −t0)dt = 1

2π

∫ +∞

−∞
Aout (ω)A∗

out (ω)dω.

(24)

However, if we limit the time integration interval to
(0, T ), then the relation between aout (t − t0)a∗

out (t − t0) and
Aout (ω)A∗

out (ω) changes to Eq. (23), where we have interfer-
ence of spectral components Aout (ω1) and A∗

out (ω2) governed
by the spectral function FR(ω2 − ω1).

This change can be explained by the spectral broadening of
the radiation field at the exit of the absorber if we shorten the
observation time interval. According to Eq. (10), the spectrum
broadening is described by the equation

A0T (ν) = 1

2π

∫ +∞

−∞
Aout (ν1)FR(ν − ν1)dν1. (25)

For the spectrum of the radiation field at the exit of the ab-
sorber, which is calculated in a time interval (0, T ), Parseval’s
theorem holds, i.e.,

n0T (	) = 1

2π

∫ +∞

−∞
dωA0T (ω)A∗

0T (ω). (26)
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To facilitate numerical calculation of the integrals in
Eq. (23), we present them with the help of substitution ω± =
ω2 ± ω1 as

n0T (	) = 1

2(2π )2

∫ +∞

−∞
dω+

∫ +∞

−∞
dω−Aout

(
ω+ − ω−

2

)

× A∗
out

(
ω+ + ω−

2

)
FR(ω−). (27)

It is possible to verify the accuracy of this expression if we
calculate numerically the integral in Eq. (21) for n0T (	).
Analytical expression for the amplitudes aout (t − t0) and
a∗

out (t − t0) in this integral can be found in Ref. [12], where
they were calculated for �A = �S . For practical use when
�A �= �S , the condition that is often met in experiment, we
also calculated analytically aout (t − t0) for �A �= �S . The
result is

aout (t ) = �(t )e−(�A/2+iωA )t
+∞∑
n=0

[
s

(
t

b

)1/2
]n

Jn(2
√

bt ), (28)

or

aout (t ) = �(t )e−(�S/2+iωS )t

×
[

e−b/s − e−st
+∞∑
n=1

(−b/s)n Jn(2
√

bt )

(bt )n/2

]
, (29)

where s = (�A − �S ) − i	, b = �Ad/4, and Jn(x) is the nth-
order Bessel function; see also Ref. [14].

Moreover, it is possible to calculate the amplitude of the
radiation field at the exit of the absorber with the help of the
response function technique [15,16], which gives

aout (t ) =
∫ +∞

−∞
a(t − τ )R(τ )dτ, (30)

where a(t ) is defined in Eq. (1) and

R(t ) = δ(t ) − e−(�A+iωA )t�(t )

√
b

t
J1(2

√
bt ) (31)

is the response function (or Green function) of a single line
absorber. Equation (30) is reduced to

aout (t ) = a(t )

[
e−st J0(2

√
bt ) + s

∫ t

0
e−sτ J0(2

√
bτ )dτ

]
, (32)

which is easy to calculate numerically because the integrand
is smooth and not a fast oscillating function.

The frequency dependencies of the number of counts for
the infinite-time interval n∞(	), Eq. (20), and the short-time
interval n0T (	), Eq. (23), are shown in Fig. 2. The transmis-
sion spectrum measured in a short-time interval is appreciably
broadened. The results of spectrum calculation by formulas
(27) and (21) are coincident.

B. Analytical results for a short-time interval

To analyze analytically the spectrum broadening in
coincidence-Mössbauer spectroscopy, we consider an ab-
sorber of moderate thickness d . Then, the exponential func-
tion in Aout (ω) can be approximated as

e−αA(ω)L/2 = 1 − a1x + a2x2 + ε(x), (33)

FIG. 2. Dependence of the number of counts on the detuning 	,
which are collected in different time windows ntw(	). Here the index
“tw” denotes time window. The number of counts is normalized to
unity for n∞(±∞). The dashed black line shows the case when the
time window is (0,∞). The solid red line and the dotted blue line
show the case when the time window (0, T ) is short, i.e., T = T1/2 =
1/2�. Spectra are plotted for �A = �S = � and optical thickness
d = 4. The solid red line is plotted in accord with Eq. (21), while
the dotted blue line corresponds to Eq. (27).

where x = αA(ω)L/2, a1 = 0.9664, a2 = 0.3536, and
|ε(x)| � 3 × 10−3 if 0 � |x| � ln 2; see Ref. [17]. This ap-
proximation is valid if d � 1.386.

For simplicity, we limit our consideration to the case �A =
�S = �. Then, with the help of approximation (33) we cal-
culated analytical expressions for the infinite-time spectrum
n∞(	), Eq. (20), and the spectrum n0T (	), which is detected
in a short-time interval, Eq. (23). The results are presented
in the Appendix. Analysis of these expressions allowed us to
derive an analytical approximation for n0T (	), which is valid
for arbitrary values of the effective thickness of the absorber
d . This expression is

n0T (	) ≈ 1

�
(1 − e−�T ) − KB(d, T )Lb(	, T ), (34)

where

Lb(	, T ) = �

	2 + �2
− e−�T sin(	T + ψ )

	

√
1 + 	2

�2

(35)

is the function describing the frequency dependence of photon
counts n0T (	) and ψ = tan−1(	/�). The numerical coeffi-
cient

KB(d, T ) = 1 − e−�T − �n0T (0)

1 − e−�T (1 + �T )
(36)

gives the correct value of the dip in the transmission spectrum
n0T (	). Here, the number of counts n0T (0) for 	 = 0 is
calculated numerically with the help of Eq. (21) for a given
value of d , which is not small.
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FIG. 3. Time spectrum collected in a short time interval (0, T ),
where T = T1/2. The effective thickness of the absorber is d = 4.
The analytical approximation, Eq. (34), is shown by a red solid line,
and the exact numerical calculation by a blue dotted line.

Comparison of the approximation (34) with the numeri-
cally calculated exact result for n0T (	) is shown in Fig. 3 for
d = 4 and T = T1/2. These functions are indistinguishable.

The width of the transmission line, which is defined by the
function Lb(	, T ), originates from the competition between
two terms in Eq. (35), i.e., the Lorentzian, �/(	2 + �2), and
the sinc function, sin(	T + ψ )/	. Numerical analysis shows
that if T = T1/2, the transmission line becomes six times
broader than the Lorentzian.

C. Analytical results for delayed photon counts

Using a similar approach (see the Appendix), we derived
the approximate expression for the delayed photon counts,
which is

nT ∞(	) ≈ e−�T

�

[
1 − KN(d, T )

�2 sin(	T + ψ )

	
√

�2 + 	2

]
, (37)

where

KN(d, T ) = 1 − �nT ∞(0)e�T

1 + �T
, (38)

and nT ∞(0) = n∞(0) − n0T (0) is the number of counts in
resonance (	 = 0), which is calculated numerically with the
help of Eqs. (20) and (21) for a given value of d , which is
not small. In the case �A = �S = �, one can use the exact
expression n∞(0) = exp(−d/2)I0(d/2)/�, Ref. [18], for the
value of the dip in the transmission spectrum measured by
a traditional technique. Here, I0(d/2) is the modified Bessel
function of zero order.

Analysis of Eq. (37) shows that for long delay time,
T > T1, the width of the transmission dip is mainly de-
fined by the sinc function, sin(	T + ψ )/	. For example, if
T = 2T1 = 2/�, the sinc function reaches its first zero at
	 = 1.14�. This detuning corresponds to the first maximum
of the transmission spectrum. Therefore, the half-width of the
absorption dip in the spectrum is located between 	 = 0 and
	 = 1.14�. This half-width is equal to 0.57�, i.e., it becomes
nearly two times smaller than the half-width of the stationary
spectrum. Thus, narrowing of the time-delayed spectra is
obvious.

Figure 4 shows a comparison of the numerically calcu-
lated exact function nT ∞(	) and approximation, Eq. (37).

FIG. 4. Time spectrum collected in a time interval (T, ∞), where
(a) T = T1, (b) T = 2T1, and (c) T = 3T1. Effective thickness of
the absorber is d = 4 in (a)–(c) and d = 0.04 in (c). The analytical
approximation, Eq. (37), is shown by a red solid line, and the exact
numerical calculation by a blue dotted line.

Qualitatively these functions are similar. The small difference
between them originates from the thickness broadening of the
transmission line.

It is interesting to notice that, for example, for the ab-
sorber with an effective thickness d = 4, the transmission line,
collected an infinite time, broadens 1.54 times, i.e., its half-
width is equal to 1.54�. If we collect the transmission spec-
trum with a delay T = 2T1, then the approximate expression
predicts a half-width 0.57�, while numerical calculation gives
0.72�. Thus, line narrowing by the factor 2–3 compared with
the traditional technique is achieved for these parameters.

Interference of the incident and coherently scattered radia-
tion fields plays a crucial role in the line narrowing effect. This
is because the radiation field of the source and the radiation
field coherently scattered by nuclei in the absorber have dif-
ferent frequencies, i.e., ωS and ωA, respectively; see Eq. (30)
and the structure of the response function in Eq. (31). One
can find a discussion of this point in Ref. [19]. Interference
of the fields results in intensity beats with frequency 	 =
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FIG. 5. Simplified scheme of the experimental setup. TAC is a time-to-amplitude converter. PHA is a pulse-height analyzer. TA is a timing
amplifier. SA is a spectroscopy amplifier. SCA is a single-channel analyzer. DFG-MD is the Mössbauer driving unit and function generator.
HV is a high-voltage supply.

ωS − ωA. If we discard photon counts within a time interval
(0, T ) corresponding to the leading edge of a single-photon
wave packet, the phase shift 	T , accumulated in this interval
between the fields, will be revealed in the signal detected at
a later time. If T > T1, this interference results in the line
narrowing effect.

IV. EXPERIMENT

Our experimental setup is based on an ordinary delayed
coincidence scheme usually used in measurements of the
lifetimes of nuclear states. The schematic arrangement of the
source, absorber, detectors, and electronics is shown in Fig. 5.
The source 57Co incorporated in the Rh matrix, with 0.14
MBq activity, is mounted on the holder of the Mössbauer
drive, which is used to Doppler-shift the frequency of the
radiation of the source. The absorber was made of enriched
K4Fe(CN)6 · 3H2O powder with an effective thickness
d = 13.2. To calibrate a time resolution of our setup, we
measured a time spectrum of the decay of the 14.4 keV state
with no absorber. A time resolution of 9.1(5) ns was obtained
by least-squares-fitting the experimental lifetime spectra with
the convolution of the theoretical decay curve and a Gaussian
distribution originating from the time resolution function of
the experimental setup (see, for example, Ref. [19] for the
procedure). The curve measured for a single line source 57Co
shows the single exponential decay with a mean lifetime
T1 = 1/� of 140(9) ns, in good agreement with the mean
lifetime and the natural linewidth data for the 14.4 keV state
of 57Fe.

The decay curve of the radiation field from the source along
with time windows where photon counts were collected to
plot delayed spectra are shown in Fig. 6. The background
due to accidental coincidences is subtracted from the data.
This background is defined from the counting rate at times
preceding the fast front of the incident radiation pulses.

Transmission spectra obtained for different time windows
are shown in Fig. 7. When the time window is short, i.e.,
for δ1 = 38 ns with t1 = 2 ns and t2 = 40 ns, the line is
appreciably broadened [see Fig. 7(a)]. Then, with increasing

t1 and lengthening time interval δn, the line narrows. The
narrowest line is obtained for δ5 = 200 ns with t1 = 280 ns
and t2 = 480 ns [see Fig. 7(e)]. The accumulation time of
the spectrum, shown in Fig. 7(e), was about 70 h. As can
be seen in this case, the absorption line becomes narrower
than the usual transmission spectrum obtained without the
time-delayed technique [shown in Fig. 7(f)].

Interference of Mössbauer and Rayleigh scattering in the
absorber does not play a role in the transmission spectroscopy
experiments; see Ref. [20]. This is because the resonant
interaction of the radiation field with nuclei takes place due
to M1 (magnetic dipole) transition, while Rayleigh scattering
occurs via electric dipole interaction (E1) with atomic elec-
trons. Meanwhile, in reflection geometry, the radiation Bragg
scattering in specular fashion (except for the 90◦ angle of
incidence) demonstrates such an interference. For nuclei with

FIG. 6. Decay curve of the radiation field from the source along
with time windows δn(t1 − t2) where photon counts were collected to
plot delayed spectra. The solid red line is a theoretical fitting by an
exponent with T1 = 141 ns. Blue dots are experimental data.
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FIG. 7. Transemission spectra obtained with different delay times t1 and t2 and different durations of data collection time windows.
They are (a) t1 = 2 ns, t2 = 40 ns, and δ1 = 38 ns; (b) t1 = 40 ns, t2 = 120 ns, and δ2 = 80 ns; (c) t1 = 120 ns, t2 = 200 ns, and
δ3 = 80 ns; (d) t1 = 200 ns, t2 = 280 ns, and δ4 = 80 ns; and (e) t1 = 280 ns, t2 = 480 ns, and δ5 = 200 ns. Conventional spectrum is
shown in (f).

a single absorption line, this interference results in asymmetry
of experimentally measured spectra [21,22]. Therefore, the
symmetry of the spectra, shown in our Fig. 7, and the experi-
mental results obtained by Black and Moon in transmission
geometry [20], confirm that the Rayleigh scattering can be
disregarded in the transmission experiments as a simple back-
ground.

The advantage of using the time-delayed technique
is shown here via an example of gamma-resonance

measurements with time selection of iron-based nanoparticles
on the graphene oxide support. Composite materials compris-
ing metal nanoparticles on a structural support have gained
significant attention in recent years as novel systems for a new
generation of catalysts, electrode materials in energy conver-
sion and storage devices, and other similar applications. Due
to the large surface area, the nanostructured systems possess
an apparent advantage over traditional forms of materials.
Moreover, iron-containing materials are interesting due to
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FIG. 8. Transemission spectra of GO containing Fe nanoparti-
cles, which are obtained by conventional Mössbauer spectroscopy
(a) and by collecting γ -photon counts in a time window (t1, t2),
where t1 = 280 ns and t2 = 550 ns (b).

their peculiar electromagnetic and catalytic properties, and the
low cost-to-performance ratio.

Graphene oxide (GO) has several apparent advantages as a
structural support for growing metal nanoparticles. GO con-
tains oxygen functional groups that facilitate uniform deposi-
tion of metals on its surface, and longer exposition, formation,
and stabilization of metal clusters. Another advantage of GO
is its ability to form stable solutions in several solvents by
exfoliating to single-atomic-layer sheets. The solution phase
provides easy and unimpeded access of reactants to the GO
surface, opening unlimited venues for liquid phase processing.
This property of GO makes it possible to uniformly cover
the GO surface with nucleation centers of metal nanoclusters
made from iron ions present in a bulk salt solution. In our
experiment, we have used the solution phase reaction between
GO and iron (III) nitrate, Fe(NO3)3.

The iron ions uniformly cover the GO surface due to the
formation of chemical bonding between the Fe(III) cation and
GO: the oxygen functional groups of GO serve as ligands,
replacing water molecules from the first coordination sphere

of the Fe(III) cation. The process can be further complicated
by the tendency of Fe(III) to hydrolyze in aqueous solutions.
The hydrolysis of Fe(III) ions causes the formation of hydrox-
ocomplexes of iron on the GO surface, i.e., the clusters where
several Fe(III) cations bind to each other via the hydroxide ion
bridges (OH−). Undoubtedly, the chemical properties of the
material will depend on the presence and number of different
types of transition-metal centers present in it.

The Mössbauer spectrum of the as-formed Fe-GO sample
is shown in Fig. 8(a). It is a quadrupole doublet with slightly
asymmetric lines. The doublet hyperfine parameters are IS =
0.36 mm/s, QS = 0.71 mm/s, which are the center shift and
quadrupole splitting of the lines in the doublet. The line broad-
ening and their amplitude asymmetry can be explained by the
distribution of quadrupole splittings and center shifts by the
Gol’danskii-Karyagin effect due to texture or by the presence
of several centers of iron ions. Unfortunately, mathematical
processing of the spectrum cannot give an obvious preference
to one of the above explanations. The Mössbauer spectrum
of this sample with time selection is shown in Fig. 8(b).
The features associated with the presence of two centers of
iron atoms are clearly visible in the spectrum. Mathematical
treatment of this spectrum actually reveals the presence of two
quadrupole doublets with the following hyperfine parameters:
IS = 0.37 mm/s and QS = 1.12 mm/s for one center, and
IS = 0.4 mm/s and QS = 65 mm/s for another center. It is
likely that in the as-formed Fe-GO there are two types of iron:
the Fe(III) ions bonded to the GO functional groups, and the
Fe(III) ions bonded to OH− with the formation of clusters.
Depending on the reaction conditions, the percentage of two
types of iron in Fe-GO may vary [23].

V. CONCLUSION

The delayed photon counts technique is promising in op-
tical and gamma-domain Mössbauer spectroscopy. The in-
terference of the incident and coherently scattered radiation
fields plays a crucial role in this technique. The radiation
field of the source and the radiation field coherently scattered
by nuclei in the absorber have different frequencies, i.e., ωS

and ωA, respectively. Interference of these fields results in
intensity beats with a frequency difference 	 = ωS − ωA. If
we do not collect photon counts within a preset time interval
(0, T ), the phase shift 	T , accumulated in this interval, will
be revealed in the signal detected at a later time. If T > T1, this
interference results in the enhancement of spectral resolution.

In spite of a longer time for data collection, this tech-
nique can disclose tiny details of the transmission spectra if
complete information about the energy-level structure and the
number of centers contributing to the observable signals are
not known in advance. One can also find another example of
the remarkable enhancement of measurement accuracy due
to interference phenomena in Refs. [24–27]. Determination
of the absorption line position with high accuracy in time-
domain experiments employing a modulation technique is
described in Refs. [24,25]. This modulation technique also
allows us to perform spatial displacement measurements with
subangstrom resolution [26,27].
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APPENDIX

For simplicity, we limit our consideration to the case �A =
�S = �. Then, with the help of approximation (33), we cal-
culated analytical expressions for the infinite-time spectrum
n∞(	), Eq. (20), and spectrum n0T (	), which is detected in
a short-time interval, Eq. (23). For the infinite-time spectrum,
the result is

n∞(	) = 1

�

[
1 − (C1 − C2)

�2

	2 + �2
+ 2C2

�4

(	2 + �2)2

]
,

(A1)

where C1 = a1d/2 and C2 = a2d2/8. Comparison of the
approximated result, Eq. (A1), with the exact dependence
n∞(	), Eq. (20), is shown in Fig. 9(a) for d = 1. The ap-
proximate dependence fits well with the exact result even for
absorbers with moderate thickness.

It is interesting to notice that the spectrum n∞(	) consists
of two lines. One of the lines, with the coefficient C1, has a
half-width �, and the other, with the coefficient C2, has a half-
width

√√
2 − 1� = 0.644�, which is 1.55 times narrower.

These lines are subtracted (the narrow from the broad) and
the result is the line with increased width.

A half-width �T h of this broadened line n∞(	) can be cal-
culated from the equation 1 − �n∞(�T h) = [1 − �n∞(0)]/2,
whose solution is

�T h/� =
√

A

B
+

√
1 + A2

B2
, (A2)

where A = a2d/2 and B = a1 − 3a2d/4. For d � 1 this solu-
tion can be approximated as

�T h/� =
√

1 + 1
2 (D + D2 + D3 + D4), (A3)

where D = da2/a1. This equation shows that for the absorber
with thickness T = 1, the half-width of the transmission line,
�T h, increases to 1.13�, i.e., by 13% compared with the half-
width � for a very thin sample.

1. Short-time interval (0, T )

For a short-time interval (0, T ), calculation of the integrals
in Eq. (23) with the help of approximation (33) gives

n0T (	) = n∞(	)(1 − e−�T ) + n1(	, T ) + n2(	, T ), (A4)

where

n1(	, T ) =
[
C3

� sin 	T

	
− C4

1 − cos 	T

	2
− C2�T cos 	T

]

× �e−�T

	2 + �2
, (A5)

C3 = C1 − C2(1 + �T ), (A6)

FIG. 9. (a) Dependence of the number of counts on the detun-
ing 	, which are collected in infinite time windows. The number
of counts is normalized to unity for 	 = ±∞. The solid red line
shows the exact result, Eq. (20), and the dotted blue line demonstrates
the approximation Eq. (A1). Spectra n0T (	) for T = 2T1 (b) and
T = T1/2 (c), which are calculated with the help of exact equations
(21), (28), and (29) (solid red line) and approximation Eq. (A4)
(dotted blue line). The optical thickness of the absorber is d = 1.

C4 = C1	
2 + C2�

2, (A7)

n2(	, T ) = 2C2

[
1 − cos 	T −

(
1 − 	2

�2

)
� sin 	T

2	

]

× �3e−�T

(	2 + �2)2
. (A8)
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Examples of spectra for time intervals (0, T ) with different
durations of T are shown in Figs. 9(b) and 9(c). When T
becomes shorter than the lifetime of the excited state T1, the
spectrum broadens appreciably.

Numerical analysis shows that very thin (d = 0.2) and
moderately thin (d = 1) absorbers have the transmission spec-
tra of almost the same shape and width. However, the values
of their dips at resonance are very different. Therefore, to
simplify analysis one can consider a very thin absorber with
d � 1 and take into account only the contribution of the
terms proportional to C1, which is linearly dependent on the
effective thickness of the absorber, d , and one can disregard
the contribution of C2 proportional to d2. Then, Eq. (A4) is
simplified as follows:

n0T (	) = 1

�
(1 − e−�T ) − C1Lb(	, T ), (A9)

where

Lb(	, T ) = �

	2 + �2
− e−�T sin(	T + ψ )

	

√
1 + 	2

�2

, (A10)

ψ = tan−1(	/�). (A11)

Since the shape of the transmission dip is well described by
Eq. (A9) for arbitrary absorber thickness, one can substitute
the numerical coefficient C1 in Eq. (A9) by the rescaling
parameter

KB(d, T ) = 1 − e−�T − �n0T (0)

1 − e−�T (1 + �T )
, (A12)

and obtain a formula that quantitatively describes the dip
in the transmission spectrum (its shape and depth) for an
arbitrary value of d . Here, the number of counts n0T (0) for
	 = 0 is calculated numerically with the help of Eq. (21) for
a given value of d , which is not small. After such a rescaling,
Eq. (A9) describes very well the dip in the transmission
spectrum (see Fig. 3) where d = 4.

The width of the line Lb(	, T ) is defined by the competi-
tion of the contributions of two terms in Eq. (A10), i.e., the
Lorentzian and sinc function. Numerical analysis shows that
if T = T1/2, the transmission line becomes six times broader
than the Lorentzian, and if T = T1, the line broadens three
times with respect to the line collected in the infinite-time
interval (0,∞).

2. Delayed photon counts

If we collect photon counts in a delayed time interval
(T,∞), the spectrum narrows. This spectrum is described by
the simple equation

nT ∞(	) = n∞(	) − n0T (	). (A13)

Now, the broad line n0T (	) is subtracted from the narrow line
n∞(	), which results in the line narrowing effect. Examples
of the line narrowing effect are shown in Fig. 10.

To analyze the line narrowing effect, we express Eq. (A13)
as follows:

nT ∞(	) = e−�T

�

[
1 − F1(	, T )�2

	2 + �2
+ F2(	, T )�4

(	2 + �2)2

]
,

(A14)

FIG. 10. Time-delayed spectra. Time T when count collection
starts is 0.3T1 (a), T1 (b), and 2T1 (c). The solid red line corresponds
to the exact result. The dotted blue line is plotted with the help of
approximation (A14). Optical thickness is d = 1.

where

F1(	, T ) = C1 − C2 + C3
� sin 	T

	
− C4

1 − cos 	T

	2

−C2�T cos 	T, (A15)

F2(	, T ) = 2C2

[
cos 	T +

(
1 − 	2

�2

)
� sin 	T

2	

]
. (A16)

For a thin absorber, the contribution of the term C2 = a2d2/8
could be neglected, and Eq. (A14) is approximated as follows:

nT ∞(	) ≈ e−�T

�

[
1 − C1

�2 sin(	T + ψ )

	
√

�2 + 	2

]
. (A17)
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Analysis of this expression shows that, for example, for
T = 2T1 = 2/� the function sin(	T + ψ )/	 reaches its first
zero at 	 = ±1.14�. These detunings correspond to the first
maxima of the transmission spectra; see Fig. 10. Therefore,
the half-width of the absorption dip in the spectrum is located
between 	 = 0 and, for example, 	 = 1.14�. This half-width
is equal to 0.57�, i.e., it becomes nearly two times smaller
than the half-width of the stationary spectrum.

Numerical analysis shows that the negative contribution
of the thickness line broadening to the line narrowing effect
is quite small in time-delayed photon counts. Following this
result, we extend the validity of Eq. (A17) to the case of thick

absorbers and rewrite it as follows:

nT ∞(	) ≈ e−�T

�

[
1 − KN(d, T )

�2 sin(	T + ψ )

	
√

�2 + 	2

]
, (A18)

where the rescaling coefficient

KN(d, T ) = 1 − �nT ∞(0)e�T

1 + �T
(A19)

is introduced to have a true value of the dip in the transmission
spectrum of the absorber with effective thickness d > 1. Here
nT ∞(0) (not approximated) is calculated with the help of
Eqs. (A13), (21), and (32).
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