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ABSTRACT   

The estimates of the uncertainty for the model simulated subsea permafrost characteristics relative to the uncertainty of 
paleoclimatic reconstructions of ocean level are obtained. This is done by using the model for thermophysical processes 
in the subsea sediments. This model is driven by four time series of temperature at the sediment top, TB, which is 
constructed for the last 400 kyr by using different combinations of the same reconstruction of the past surface air 
temperature but different sea level reconstructions. At each time instant t and each variable Y, the uncertainty metric is 
defined as a ratio ΔY (t) / Ym(t), where ΔY (t) is spread of the values of Y for different TB time series, and Ym(t) is the 
mean of Y over different realizations corresponding to different TB. The root-mean-square calculated value of thus 
defined metric for different time intervals is ≤ 50% for permafrost base depth with the exception of isolated time 
intervals and / or the deepest part of the shelf. This uncertainty is not symmetric with respect to the sign of the sea level 
uncertainty. In turn, uncertainty for the hydrate stability zone thickness is small for shallow shelf but becomes 
pronounced for intermediate and deep shelves. The most uncertainty is due to uncertainty of dates for oceanic 
regressions and transgressions. 
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1. INTRODUCTION 

It is believed that the contemporary subsea permafrost  at the shelf developed during the Pleistocene glaciations [1, 2]. 

Thus, any simulation of past changes of the subsea permafrost is conditioned by time series of past climate changes [3-

6]. This uncertainty basically increases back in time. 

For instance, [7] reviewed uncertainty of different sea level reconstructions. They stated that typical uncertainty of these 

reconstructions may be as large as few tens of meters. The most accurate reconstructions are those based on corals [8-

12]. Their uncertainty for the last interglacial is few meters, but increases back in time. The typical uncertainty for 

reconstructions based on 
18

O content in the benthic foraminifera is ±20 m [13] (here and below, 1 standard error is 

reported as an uncertainty metric). Similar uncertainty is obtained for planctonic foraminifera-based reconstructions ± 

6 m for the last glacial cycle but is large as ±18 m for the middle Pleistocene [14]. The uncertainty amounting to ±13 m 

is estimated for the combined coral - bentic 
18

O content reconstruction [15] as well as for the inverted ice model 

reconstructions [16]. 
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The uncertainty estimates for two known reconstructions based on hydraulic control models of semi-isolated basins are ± 

12 m [17] and ± 20 m [18] (but decrease at coarser, millennium-scale time resolutions). In turn, the reported uncertainties 

for the reconstruction [7] is ± 7 m for the Last Glacial Maximum but increases up to ± 25 m back in time. 

All these uncertainty estimates are non-negligible in comparison to the depth of the contemporary shelf depths. When 

they are used to construct time series of temperature at the sediment top, TB, their uncertainty is translated into 

uncertainty of dates of sea transgression and regressions. These dates, in turn, impose a primary control on the subsea 

permafrost dynamics during the Pleistocene [2, 3, 19]. 

The goal of the present paper is to study uncertainty of the Pleistocene subsea permafrost on past sea level changes with 

a model for thermophysical processes in the sediments.  

2. MATERIALS AND METHODS 

We use the model for heat propagation in the subsea sediments [20, 21, 22]. The model solves the one-dimensional 

equation for heat diffusion in the sediments subject to boundary conditions for temperature at the sediments top and to 

prescribed heat flow from the Earth interior at the bottom of the computational domain. The depth of the latter is set to 

1.5 km, and the heat flow intensity is G = 60 mW m
-2

, which is estimated as a typical value of geothermal flux at the 

Eurasian shelf [23, 24].Temperature diffusivity in the sediments depends on their state and is set equal to 1.06·10
-6

 m
2
 s

-1
 

(0.64·10
-6

 m
2
 s

-1
) in the frozen (unfrozen) part of the sediment column. The sediment pores are completely filled with 

water. The freezing and melting temperature of the water in pores is set equal to TF = -1
o
C [25, 26]. In the model, the 

latent heat of fusion during because of formation and melting of the pore ice is taken into account, but neglect the 

respective heat released during dissociation of hydrates ignored. The difference of the latent heat of fusion between pure 

ice and ice with hydrates is ignored as well. Model equations are solved by using the sweep method at a vertical grid 

with the vertical step 0.5 m. Time stepping is implicit with the time step 1 month. Annual cycle is not resolved. Initial 

temperature distribution is prescribed as being in equilibrium with the initial temperature at the sediment top and with 

the time-invariant value of  G [27]. Methane hydrates stability zone (HSZ) is further computed by employing the 

equilibrium pressure-temperature curve from the TOUGH+HYDRATE reservoir simulator model [28]. 

Temperature TB at the sediment top is constructed as follows. When shelf is covered with water, TB = -1.8
o
C [2, 5]. 

When shelf is in direct contact with the air, TB = TA = TA,R + T'P, where TA,R = -12°C is equal to the present-day annual 

mean surface air temperature in the East Siberian shelf region [25], and T'P is a time-varying anomaly obtained from the 

EPICA (The European Project for Ice Coring in Antarctica) Dome C ice-drilling project data [29] (Fig. 1a). In previous 

studies [3, 4, 19], anomalies were used from Vostok borehole data for the last 400 kyr [30]. In present paper, these data 

are replaced by a newer data from EPICA. 

To study the uncertainty with respect to prescribed sea level reconstructions, we combine the EPICA-derived T'P with 

four different sea level time series available for the last 400 kyr (Fig. 1b). The first one is the combined coral - bentic 
18

O 

content reconstruction [15] (WLB02 thereafter). Other three reconstructions are obtained from the supplementary 

information to [7] and in their paper referred to as 'PC1', '2.5%' and '97.5%' in their paper. Thereafter, we denote the 

latter three datasets as SP16PC1, SP16MIN, and SP16MAX correspondingly. In turn, the time series for TB are labeled 

by using the same names as for sea level dataset used in constructing these time series. 

All simulations are performed for three values of the contemporary shelf depth HB: 10 m (shallow shelf), 50 m 

(intermediate-depth shelf), and 100 m (deep shelf). For each time instant t and for each simulated variable Y, we define 

the following uncertainty metric  

1
max min

4
Y K K

K

R Y Y Y  
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where maximum, minimum and mean are calculated over the subscript K, which stands for a specific sea level 

reconstruction (thus, for specific TB). The uncertainty representative for a given time interval is calculated as a root-

mean-square (RMS) value for RY over this time interval. 

 

Figure 1. Change of surface air temperature TA (a) and sea level (b) employed in the present paper. 

3. RESULTS  

Subsea permafrost base depth hp appears rather sensitive to sea level prescription (Fig. 2). This sensitivity is larger for 

larger HB. We note that this sensitivity is symmetric with respect to sign of the sea level difference between different 

datasets. This is visible if one compares simulations SL16PC1 as a central estimate and SL16MIN and SL16MAX as 

lower and upper sea level limits. At shallow and intermediate-depth shelf, differences are larger when hp is smaller - 

thus, near  glacials ends (with a caveat for delay in hp response to changing TB [2, 3]. Because the same surface air 

temperature curve is prescribed for different runs, this means that the most uncertainty come from the dates of the 

oceanic regressions and transgressions. For the deep shelf, differences are large irrespective of time instants. They are 

differ by a factor around 1.5 for the Last Glacial maximum and by about twofold for the present day. 
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Figure 2. Depth (below the oceanic floor) of the subsea permafrost bas for shelf with the contemporary depth HB = 10, 50, and 100 m 

(upper, middle and lower rows correspondingly). Left column shows the respective time series vs. time. Right column shows the 

values for two to time instants: 20 kyr B.P. and for the present (0 kyr B.P.). 

Impact of sea level uncertainty on the results of our simulations is further illustrated by using RMS values either for the 

last 20 kyr (last deglaciation and the Holocene) and for the last 120 kyr (last glacial cycle) (Fig. 3). At first, for both time 

intervals, RMS uncertainty is much larger for HB = 100 m than for shallow and intermediate-depth shelves. Irrespective 

of the contemporary shelf depth, root-mean-square uncertainty is much larger for the whole glacial cycle than only for its 

deglaciation-Holocene part. 

Similar to that it was obtained for the subsea permafrost bas, the uncertainty for the HSZ thickness D is not larger than 

few per cent for shallow shelf (Fig. 4). However, it becomes pronounced for intermediate depth shelf when it shrinks. 

Again, this is a delayed response to warmings. The most marked examples are time intervals around 70 kyr B.P. and 

180 kyr B.P. Hydrate stability thickness uncertainty further exaggerates for the deep shelf. The most pronounced 

difference is around 50 kyr B.P., when HSZ exists for SL16MIN but is absent for other sea level reconstructions. 
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Figure 3. Root-mean-square uncertainty of the subsea permafrost thickness for shelf with the present-day depth indicated as abscissas. 

Calculations are done for the last 20 kyr and for the last 120 kyr. 

 

 

Figure 4. The thickness of the hydrate stability zone for shelf with the contemporary depth HB = 10, 50, and 100 m (upper, middle and 

lower rows correspondingly). Left column shows the respective time series vs. time. Right column shows the values for two to time 

instants: 20 kyr B.P. and for the present (0 kyr B.P.). 
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4. CONCLUSION 

In this paper, we quantified uncertainty of the simulated subsea permafrost characteristics relative to the uncertainty of 

paleoclimatic reconstructions. This was done by using the model for thermophysical processes in the subsea sediments. 

This model is driven by four time series of temperature at the sediment top, TB, which is constructed for the last 400 kyr 

by using different combinations of the same reconstruction of the past surface air temperature but different sea level 

reconstructions. At each time instant t and each variable Y, the uncertainty metric is defined as a ratio ΔY (t) / Ym(t), 

where ΔY (t) is spread of the values of Y for different TB time series, and Ym(t) is the mean of Y over different realizations 

corresponding to different TB.  

The root-mean-square of thus defined metric calculated for different time intervals for permafrost base depth is ≤ 50% 

with the exception of isolated time intervals and / or the deepest areas of the shelf. It is not symmetric with respect to the 

sign of the sea level uncertainty. In turn, uncertainty for the hydrate stability zone thickness is small for shallow shelf but 

becomes pronounced for intermediate and deep shelves. The most uncertainty is due to uncertainty of dates for oceanic 

regressions and transgressions. 
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