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Abstract. In our paper we discuss the k-ary Euclid Algorithm for counting the great common 

divisor (GCD) of two or more integers and suggest some improvements. This gives us a 

possibility to parallelize and speed up the calculating of GCD, which has a variety of 

applications in the Number Theory, Modular Arithmetic and the Cryptography Algorithms 

such as RSA, ElGamal encryption system and others. 

1. Introduction 

Classical Euclid Algorithm is used to count the great common divisor d of two natural numbers 

(𝐴, 𝐵) where 𝐴 ≥ 𝐵 > 0.  

It is based on a recurrent formula 

𝐺𝐶𝐷(𝐴, 𝐵)  =  𝐺𝐶𝐷(𝐵, 𝐴 𝑚𝑜𝑑 𝐵), 

which is applied to diminish pairs (𝐴, 𝐵) while the second argument is greater than 0. Then the 

procedure stops returning the first argument as the GCD of the origin pair (𝐴, 𝐵). 

This procedure has numerous applications in the Number Theory. Its extended version is used to 

count inverse elements in the finite fields. The last operation is required for generating keys of the 

RSA encrypting algorithm, for doubling and adding points on elliptic curves and for many others 

cryptographical algorithms [1]. 

So, even a modest acceleration of the Euclid GCD allows the researchers to save millions hours of 

computer time. 

2. k-ary Euclid Algorithm 

The k-ary GCD was invented by J. Sorenson (see [2, 3]). Let k be an even power of two, for example 

𝑘 = 16. Sorenson himself suggested to choose k equal to a power of a (large) prime but later Weber 

[4] showed that the choice 𝑘 = 22𝑠, where s is a natural number, is more e effective. 

Let base 𝑘 = 𝑚2 of the algorithm chosen and 𝐴 ≥ 𝐵 > 0 be integers that have no common divisors 

with m. The main idea of a step of the algorithm is to find some small integers x and y such that 

𝐴𝑥 + 𝐵𝑦 ≡ 0 𝑚𝑜𝑑 𝑘,    (1) 

Then, set 𝐶 = (𝐴𝑥 + 𝐵𝑦)/𝑘 and replace the pair (𝐴, 𝐵) by a minor pair (𝐵, 𝐶) or (𝐶, 𝐵) depending on 

if 𝐵 > 𝐶 holds or does not. Additionally, it may require a cyclic reduction of C by two until C become 

odd. The algorithm is based on the following theorem: 

mailto:safadi121979@yahoo.com
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Theorem 1. (J. Sorenson). For any 𝐴 ≥ 𝐵 > 0 incomparable with 𝑘 = 𝑚2, there exist non-zero 

𝑥, 𝑦, |𝑥|, |𝑦| ≤ 𝑚 such that relation 

𝐴𝑥 + 𝐵𝑦 ≡ 0 𝑚𝑜𝑑 𝑘 

holds. 

Proof. Fix A and B such as in the theorem and let set 𝑀 = (𝑥, 𝑦) to consist of all pairs (𝑥, 𝑦) 

satisfying 

−𝑚/2 < 𝑥, 𝑦 < 𝑚/2, 𝑥 ≠ 0, 𝑦 ≠ 0. 

Note that the power of M is exactly k. 

Define function h realize a map from M to [0; 𝑘 − 1] as follows: 

ℎ(𝑥, 𝑦) = (𝐴𝑥 + 𝐵𝑦) 𝑚𝑜𝑑 𝑘. 

Let us consider two possible cases: 

1. Function h is injective. Then h performs a 1-1 map from M to 𝑍𝑘 and there exist non-zero x, y 

with ℎ(𝑥, 𝑦) = 0. Clearly, (𝑥, 𝑦) satisfies the theorem. In this case 

|𝑥|, |𝑦| ≤ 𝑘/2.    

2. Function h is not injective. Then there exist different pairs (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2) such that ℎ(𝑥1, 𝑦1) = ℎ(𝑥2, 𝑦2). 

Define 𝑥 = 𝑥1 − 𝑥2 and 𝑦 = 𝑦1 − 𝑦2, then 

𝐴𝑥 + 𝐵𝑦 𝑚𝑜𝑑 𝑘 = (𝐴𝑥1 + 𝐵𝑦1) 𝑚𝑜𝑑 𝑘 − (𝐴𝑥2 + 𝐵𝑦2) 𝑚𝑜𝑑 𝑘 = 0. 

This proves the theorem. 

We introduce a reduction coefficient  𝜌 = |𝐴/𝐶|. By theorem 1, there x and y such that 𝜌 ≥

√𝑘/2 = 𝑚/2. Indeed,  

𝜌 =
𝐴

𝐶
=

𝐴𝑘

𝐴𝑥+𝐵𝑦
≥

𝐴𝑘

2𝐴√𝑘
=

√𝑘

2
     (2) 

Remark. The k-ary GCD has a minor disadvantage that the GCD of B and 𝐶 = (𝐴𝑥 + 𝐵𝑦) 𝑚𝑜𝑑 𝑘 

is not obligatory to be equal to 𝐺𝐶𝐷(𝐴, 𝐵). But it can be checked that 𝐺𝐶𝐷(𝐴, 𝐵) is a factor of 

𝐺𝐶𝐷(𝐵, 𝐶). So the final value of GCD in k-ary method has the origin GCD as a factor. To find the 

origin GCD d we need to add at the end a final calculation: 

𝑑 = 𝐺𝐶𝐷(𝐴, 𝑑′),  𝑑′ = GCD(B, d′′), 

where d′′ is the GCD obtained by the k-ary algorithm. 

A search of suitable pair (𝑥, 𝑦) in the k-ary algorithm. 

Let 𝑘 = 𝑚2 for some natural 𝑚 ≥ 1, 𝑚 be even, and 𝐴 > 𝐵 > 0 be odd integers. We explain now 

how to choose the required x and y. The equation 𝐴𝑥 + 𝐵𝑦 ≡ 0 𝑚𝑜𝑑 𝑘 has several decisions, and the 

main problem is to choose a pair (𝑥, 𝑦) with a minimal |𝐴𝑥 + 𝐵𝑦|. Since 𝐴 > 𝐵 the decision (𝑥, 𝑦) is 

better, if x is a small positive and y is negative and 𝑦 ≈ 𝑟𝑥, where 𝑟 = −𝐴/𝐵. Then additives Ax and 

By bilateral reduce each other. 

Let 𝑟0 = 𝐴/𝐵 𝑚𝑜𝑑 𝑘, 0 < 𝑟0 < 𝑘. From 𝐴𝑥 + 𝐵𝑦 ≡ 0 𝑚𝑜𝑑 𝑘 we have 
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𝑦 ≡ −𝐴𝑥/𝐵 = −𝑟0𝑥 𝑚𝑜𝑑 𝑘. 

We define 𝑦 = −𝑟0𝑥 +  𝑘𝑠, 𝑠 ∈ ℤ and a rational  𝛼 = 𝐴/𝐵, 𝛼 > 1. Then 

|𝐴𝑥 + 𝐵𝑦| = 𝐵|𝛼𝑥 + 𝑦| = 𝐵|𝛼𝑥 − 𝑟0𝑥 + 𝑘𝑠| = 𝐵|(𝛼 − 𝑟0)𝑥 + 𝑘𝑠|, 

so our task is to find integers y and s such that function 

                                           𝑑(𝑥, 𝑠) = |(𝛼 − 𝑟0)𝑥 + 𝑘𝑠|                                               (3) 

takes a minimal value. 

Example. 𝐴 = 12169, 𝐵 = 583, 𝑘 = 16 

𝑟0 =
𝐴

𝐵
 𝑚𝑜𝑑 𝑘 =

12169

583
 𝑚𝑜𝑑 16 =

9

7
 𝑚𝑜𝑑 16 = 15, 

𝛼 =
𝐴

𝐵
= 20,9. 

     𝑑(𝑥, 𝑠) = |(𝛼 − 𝑟0)𝑥 + 𝑘𝑠| = |(20,9 − 15)𝑥 + 𝑘𝑠| = |5,9𝑥 + 𝑘𝑠|. 

We consider two possible variants: 

1. 𝑥 = 3, 𝑠 = −1. 

𝑑(𝑥, 𝑠) = |5,9 ∙ 3 − 16|  = 1,7, 

𝑦 = −𝑟0𝑥 + 𝑘𝑠 = −15 ∙ 3 − 16 = −61. 

𝐶1 = |
𝐴𝑥+𝐵𝑦

𝑘
| = |

3∙12169−61∙583

16
| = 59. 

 

2. 𝑥 = 1, 𝑠 = 0. 

𝑑(𝑥, 𝑠) = |4,9 ∙ 1 − 0|  = 4,9. 

𝑦 = −𝑟0𝑥 + 𝑘𝑠 = −15. 

𝐶2 = |
𝐴𝑥+𝐵𝑦

𝑘
| = |

12169−15∙583

16
| = 214. 

After reduction by 2 we obtain 𝐶2 = 107. We see that first variant is better since 𝐶1 < 𝐶2 even the 

last was reduced. 

3. Conclusion 

In this paper, we introduced a special function 𝑑(𝑥, 𝑠) which helps us to choose at a stage of the k-ary 

algorithm best parameters x and y to increase its performance. Such modification gives an 

improvement not only to the k-ary itself, but also to the so called Weber-Jebelean algorithm. 

Moreover, function 𝑑(𝑥, 𝑠) helps effectively define which algorithm should be applied to current A 

and B, k-ary or Weber dmod. 
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