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METRICS ON PROJECTIONS OF THE VON NEUMANN

ALGEBRA ASSOCIATED WITH TRACIAL FUNCTIONALS

A. M. Bikchentaev UDC 517.98

Abstract: Let ϕ be a positive functional on a von Neumann algebra A and let A pr be the projection
lattice in A . Given P,Q ∈ A pr, put ρϕ(P,Q) = ϕ(|P −Q|) and dϕ(P,Q) = ϕ(P ∨Q− P ∧Q). Then
ρϕ(P,Q) ≤ dϕ(P,Q) and ρϕ(P,Q) = dϕ(P,Q) provided that PQ = QP . The mapping ρϕ (or dϕ) meets
the triangle inequality if and only if ϕ is a tracial functional. If τ is a faithful tracial functional then ρτ
and dτ are metrics on A pr. Moreover, if τ is normal then (A pr, ρτ ) and (A pr, dτ ) are complete metric
spaces. Convergences with respect to ρτ and dτ are equivalent if and only if A is abelian; in this case
ρτ = dτ . We give one more criterion for commutativity of A in terms of inequalities.
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1. Definitions and Notations

LetH be a Hilbert space over the field C, let B(H ) be the ∗-algebra of all bounded linear operators
in H , let pr(X) be the projection to the closure of the range of X ∈ B(H ), and let I be the identity
operator on H . If P,Q ∈ B(H )pr, then P⊥ = I − P ∈ B(H )pr and the projection P ∧ Q is defined
as (P ∧Q)H = PH ∩QH , while P ∨Q = (P⊥ ∧Q⊥)⊥ projects to lin(PH ∪QH ). The commutant
of X ⊂ B(H ) is

X ′ = {Y ∈ B(H ) : XY = Y X for all X ∈X }.
A von Neumann algebra acting on H is a ∗-subalgebra A of B(H ) satisfying A = A ′′. Given a von
Neumann algebra A , we denote the subset of positive elements of A by A + and the projection lattice,
by A pr.
Given P,Q ∈ A pr, write P ∼ Q (the Murray–von Neumann equivalence) if P = U∗U and Q = UU∗

for some U ∈ A . Projections P,Q ∈ A are called isoclinic (we write P
θ≈ Q for the angle θ ∈ (0, π/2)) if

PQP = cos2 θ P and QPQ = cos2 θ Q. If A ∈ A , then |A| = √A∗A ∈ A + and the projection pr(A) to
the closure of the range of A lies in A . A positive functional ϕ on a von Neumann algebra A is called
faithful if ϕ(A) = 0 (A ∈ A +) ⇒ A = 0; while ϕ is tracial if ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ A ; normal
if Ai ↗ A (Ai, A ∈ A +)⇒ ϕ(A) = supi ϕ(Ai); and ϕ is a state if ϕ(I) = 1.

2. Metrics on AAA pr Associated with a Tracial State

Lemma 1 [1, Proposition 4.4]. The real function λ �→ √λ is operator monotone on R+.
Let A be a von Neumann algebra. Given P,Q ∈ A pr, put

P ◦Q = 2−1(PQ+QP ), P �Q = P ∨Q− P ∧Q.
We have P ◦Q ∈ A + ⇔ PQ = QP (see the lemma in [2]). If U ∈ A is unitary, then

U(P ◦Q)U∗ = (UPU∗) ◦ (UQU∗), U(P �Q)U∗ = (UPU∗)� (UQU∗).
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Lemma 2. Let A be a von Neumann algebra and P,Q ∈ A pr. Then
(i) |P ◦Q|2 ≤ 4−1(P +Q)2;
(ii) P ∧Q ≤ |P ◦Q| ≤ 2−1(P +Q) ≤ P ∨Q;
(iii) P �Q = Q� P = pr(|P −Q|);
(iv) P �Q = P⊥ �Q⊥;
(v) |P −Q|a ≤ P �Q for all a > 0;
(vi) I � P = P⊥, 0� P = P , P � P⊥ = I, and P � P = 0;
(vii) if PQ = QP , then P �Q = |P −Q|.
Proof. It suffices to verify the inequality P ∧ Q ≤ |P ◦ Q| and item (i) for rank one projection

P,Q ∈M2(C) (see the proof of Theorem 1 in [3] or Theorem 1 in [4]). Without loss of generality, put

P =

(
1 0
0 0

)
, Q =

(
t δ

√
t(1− t)

δ̄
√
t(1− t) 1− t

)

for δ ∈ C with |δ| = 1 and 0 ≤ t ≤ 1. Now, the inequality P ∧Q ≤ |P ◦Q| is obvious and
(PQ+QP )2 = t(P +Q)2 ≤ (P +Q)2. (1)

By Lemma 1, from (1) we obtain |P ◦ Q| ≤ 2−1(P + Q) ≤ P ∨ Q. Items (iii) and (v) were established
in Theorem 2 of [5]. Since P − Q = Q⊥ − P⊥, (iv) follows from (iii). Item (vii) is established in
Proposition 1(iii) of [5]. The lemma is proven. �
Remark 1. Let us give a simple proof of the inequality |P ◦Q| ≤ P ∨Q. We have (P ±Q)2 ≥ 0 and

−2P ∨Q ≤ −P −Q ≤ PQ+QP ≤ P +Q ≤ 2P ∨Q, i.e., −P ∨Q ≤ P ◦Q ≤ P ∨Q. Then |P ◦Q| ≤ P ∨Q
by Theorem 2.4 of [6].

Definition. Given a positive functional ϕ on a von Neumann algebra A , we introduce the mappings
ρϕ, dϕ : A pr ×A pr → R+ by the formulas

ρϕ(P,Q) = ϕ(|P −Q|) and dϕ(P,Q) = ϕ(P �Q) for all P,Q ∈ A pr.

Proposition 1. The following are valid:
(i) ρϕ(P,Q) ≤ dϕ(P,Q) for all P,Q ∈ A pr;

(ii) dϕ(P,Q) ≤ sin−2 θ ρϕ(P,Q) for all P,Q ∈ A pr with P
θ≈ Q;

(iii) if PQ = QP , then ρϕ(P,Q) = dϕ(P,Q);

(iv) ρϕ(Q,P ) = ρϕ(P,Q) = ρϕ(P
⊥, Q⊥) for all P,Q ∈ A pr;

(v) dϕ(Q,P ) = dϕ(P,Q) = dϕ(P
⊥, Q⊥) for all P,Q ∈ A pr;

(vi) ρϕ(P, 0) = dϕ(P, 0) = ϕ(P ) for all P ∈ A pr;
(vii) ρϕ(P,Q) = dϕ(P,Q) = ϕ(P +Q) for all P,Q ∈ A pr with PQ = 0;
(viii) ϕ(||P ◦Q| − P ∧Q|) ≤ dϕ(P,Q) for all P,Q ∈ A pr;
(ix) ρϕ(P,Q) + ρϕ(Q,R) = ρϕ(P,R) for all P,Q,R ∈ A pr with P ≤ Q ≤ R;
(x) dϕ(P,Q) + dϕ(Q,R) = dϕ(P,R) for all P,Q,R ∈ A pr with P ≤ Q ≤ R.
Proof. Items (i), (iii), and (iv) follow from (v), (vii), and (iv) of Lemma 2 respectively. In particular,

if A is abelian, then ρϕ(P,Q) = dϕ(P,Q) for all P,Q ∈ A pr.
Show (ii). By (iii) of Theorem 10.5 of [1] P ∧ Q = 0 and P ∨ Q = sin−2 θ (P − Q)2 for P,Q ∈ A pr

with P
θ≈ Q. Since ‖P −Q‖ ≤ 1 for all P,Q ∈ A pr; therefore, (P −Q)2 ≤√(P −Q)2 = |P −Q|.

By Lemma 2(ii), for all P,Q ∈ A pr we obtain 0 ≤ |P ◦ Q| − P ∧ Q ≤ P � Q, which implies (viii).
The proposition is proven. �
Theorem 1. Let τ be a faithful tracial functional on a von Neumann algebra A . Then ρτ and dτ

are metrics on A pr.

Proof. Take P,Q,R ∈ A pr. For each pair of operatorsX,Y ∈ A there exist some partial isometries
U, V ∈ A such that |X +Y | ≤ U |X|U∗+V |Y |V ∗ [7, Theorem 2.2]. Letting X = P −R and Y = R−Q,
we obtain the triangle inequality for ρτ .
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From (iii) of Lemma 2 it follows that dτ (P,Q) = dτ (Q,P ) and dτ (P,Q) = 0⇔ P = Q. If A,B ∈ A pr,
then A ∨B −B ∼ B −A ∧B [8, Chapter III, Theorem 1.1.3]. Consequently,

τ(A ∨B) + τ(A ∧B) = τ(A) + τ(B). (2)

Prove the triangle inequality for dτ ; i.e.,

τ(P ∨Q)− τ(P ∧Q) ≤ τ(P ∨R)− τ(P ∧R) + τ(R ∨Q)− τ(R ∧Q). (3)

From (2) τ(A ∧B) = τ(A) + τ(B)− τ(A ∨B); therefore, (3) can be rewritten as

τ(P ∨Q) ≤ τ(P ∨R) + τ(R ∨Q)− τ(R). (4)

Putting A = P ∨R and B = R ∨Q in (2), we have

τ(P ∨R) + τ(R ∨Q) = τ(P ∨Q ∨R) + τ((P ∨R) ∧ (R ∨Q)). (5)

Rewrite (4) using (5):

τ(P ∨Q) ≤ τ(P ∨Q ∨R) + τ((P ∨R) ∧ (R ∨Q))− τ(R). (6)

Since P ∨Q∨R ≥ P ∨Q and (P ∨R)∧ (R∨Q) ≥ R; therefore, (6) is valid by monotonicity of τ on A +.
Consequently, (3) is also valid. The theorem is proven. �

Theorem 2. If in the conditions of Theorem 1 τ is a normal state, then (A pr, ρτ ) and (A pr, dτ )
are complete metric spaces.

Proof. A von Neumann algebra A possesses the topology tτ of convergence in measure A (see [9])
whose fundamental system of neighborhoods of zero is constituted by the sets

U(ε, δ) = {X ∈ A : ∃P ∈ A pr (‖XP‖ ≤ ε and τ(P⊥) ≤ δ)}, ε > 0, δ > 0.

It is well known that 〈A , tτ 〉 is a metrizable topological ∗-algebra. Define the L1-norm on A by putting
‖X‖1 = τ(|X|) for all X ∈ A . Let A1 = {X ∈ A : ‖X‖ ≤ 1}.
For (A pr, ρτ ), the claim follows from the ‖ · ‖1-completeness of (A1, ‖ · ‖1), the continuity of the

embedding (A1, ‖ · ‖1) in the topological ∗-algebra (A , tτ ), and the tτ -closedness of A pr.
For (A pr, dτ ), the claim follows from coincidence of dτ to the restriction to A pr of the well-known

metric ds,τ (A,B) = τ(pr(|A−B|)), with A,B ∈ A , the continuity of the embedding (A , ds,τ ) in (A , tτ )
(see [10, 11]), and the tτ -closedness of A pr. The theorem is proven. �

Theorem 3. Let τ be a faithful tracial functional on a von Neumann algebra A . Convergences
with respect to the metrics ρτ and dτ are equivalent if and only if A is abelian.

Proof. If A is abelian, then ρτ (P,Q) = dτ (P,Q) for all P,Q ∈ A pr by assertion (iii) of Proposi-
tion 1.
If A is not abelian, then A has a ∗-subalgebra ∗-isomorphic to the complete matrix algebra M2(C).

Consider the sequence of rank one projections

Pn =

⎛
⎝ 1

n

√
1
n

(
1− 1n

)
√
1
n

(
1− 1n

)
1− 1n

⎞
⎠ , n ∈ N,

in M2(C). Then Pn → diag(0, 1) as n→∞ in ρτ , but {Pn}∞n=1 is not fundamental in the metric dτ , since
Pn ∨ Pm = I and Pn ∧ Pm = 0 for n �= m for all n ∈ N. The theorem is proven. �
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3. Characterization of Tracial Functionals

Show that ρϕ (or dϕ) satisfies the triangle inequality if and only if ϕ is tracial. Let P,Q,R ∈ A pr. The
triangle inequalities for ρϕ and dϕ with R = 0 take the form ρϕ(P,Q) ≤ ϕ(P+Q) and dϕ(P,Q) ≤ ϕ(P+Q)
respectively.

Theorem 4. For a positive normal functional ϕ on a von Neumann algebra A the following are
equivalent:

(i) ϕ is tracial;

(ii) ρϕ(P,Q) ≤ ϕ(P +Q) for all P,Q ∈ A pr;

(iii) dϕ(P,Q) ≤ ϕ(P +Q) for all P,Q ∈ A pr.

Proof. (i) =⇒ (ii) is established in the proof of Theorem 1.
(i) =⇒ (iii) follows from (2).
(ii) =⇒ (i) is established in item (v) of Theorem 3.4 of [12].
Below, we show that the proof of (iii) =⇒ (i) for an arbitrary von Neumann algebra is reduced to the

case of the algebra M2(C), in the same manner as it was done in a series of other similar cases (see [13]
or [14]).

It is well known [13] that a positive normal functional ϕ on a von Neumann algebra A is tracial if
and only if ϕ(P ) = ϕ(Q) for all P,Q ∈ A pr with PQ = 0 and P ∼ Q (see also [14, Lemma 2]). Let
the ∗-algebra B in the reduced algebra (P +Q)A (P +Q) be generated by the partial isometry V ∈ A
realizing the equivalence of P and Q. Then B is ∗-isomorphic toM2(C) and the inequality in (ii) remains
valid for the operators in B and the restriction ϕ|B. Show that this restriction is a tracial functional
on B which implies that ϕ(P ) = ϕ(Q).

It is well known that each linear functional ϕ on M2(C) can be presented as ϕ(·) = tr(Sϕ ·). The
matrix Sϕ ∈ M2(C) is called the density matrix for ϕ. Following the proof of Theorem 4 of [15],
suppose that Sϕ has two eigenvalues λ and μ, while u and v are the corresponding mutually orthogonal
eigenvectors. Let Pw be an orthogonal projection to the straight line Cw and ε > 0 is an arbitrary
positive real. Choose linearly independent vectors x and y so that |ϕ(Px−Pv)| < ε and |ϕ(Py−Pv)| < ε.
Note that Px ∨ Py = I and Px ∧ Py = 0. Since

λ+ μ = tr(Sϕ) = ϕ(I) = ϕ(Px ∨ Py − Px ∧ Py) ≤ ϕ(Px) + ϕ(Py) ≤ 2ϕ(Pv) + 2ε = 2μ+ 2ε,

we obtain λ ≤ μ + 2ε. Since ε is arbitrary while λ and μ are interchangeable, λ = μ. The theorem is
proven. �

For other characterizations of a trace, see [16–18] and the references therein.

Remark 2. It is well known that dϕ(P,Q) ≤ ϕ(P + Q) for every positive normal functional ϕ on
a von Neumann algebra A and every pair of commutative projections P,Q ∈ A pr [19, p. 168]. By (iii) of
Proposition 1, ρϕ(P,Q) ≤ ϕ(P +Q) for every positive normal functional ϕ on a von Neumann algebra A
and each pair of commutative projections P,Q ∈ A pr. Theorem 4 demonstrates that each of these
inequalities holds for all pairs P,Q ∈ A pr if and only if ϕ is tracial.

Corollary. For a von Neumann algebra A the following are equivalent:

(i) A is abelian;

(ii) ρϕ(P,Q) ≤ ϕ(P +Q) for all normal states ϕ on A and P,Q ∈ A pr;

(iii) dϕ(P,Q) ≤ ϕ(P +Q) for all normal states ϕ on A and P,Q ∈ A pr.

Proof. By Theorem 4, every normal state on A is tracial. The set of normal states on A separates
the points of A [8, Chapter III, Theorem 2.4.5]; therefore, A is commutative. �

The author is grateful to the referee for valuable advice.
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