METRICS ON PROJECTIONS OF THE VON NEUMANN ALGEBRA ASSOCIATED WITH TRACIAL FUNCTIONALS

A. M. Bikchentaev UDC 517.98

Abstract: Let φ be a positive functional on a von Neumann algebra \mathscr{A} and let $\mathscr{A}^{\operatorname{pr}}$ be the projection lattice in \mathscr{A} . Given $P,Q\in\mathscr{A}^{\operatorname{pr}}$, put $\rho_{\varphi}(P,Q)=\varphi(|P-Q|)$ and $d_{\varphi}(P,Q)=\varphi(P\vee Q-P\wedge Q)$. Then $\rho_{\varphi}(P,Q)\leq d_{\varphi}(P,Q)$ and $\rho_{\varphi}(P,Q)=d_{\varphi}(P,Q)$ provided that PQ=QP. The mapping ρ_{φ} (or d_{φ}) meets the triangle inequality if and only if φ is a tracial functional. If τ is a faithful tracial functional then ρ_{τ} and d_{τ} are metrics on $\mathscr{A}^{\operatorname{pr}}$. Moreover, if τ is normal then $(\mathscr{A}^{\operatorname{pr}}, \rho_{\tau})$ and $(\mathscr{A}^{\operatorname{pr}}, d_{\tau})$ are complete metric spaces. Convergences with respect to ρ_{τ} and d_{τ} are equivalent if and only if \mathscr{A} is abelian; in this case $\rho_{\tau}=d_{\tau}$. We give one more criterion for commutativity of \mathscr{A} in terms of inequalities.

DOI: 10.1134/S003744661906003X

Keywords: Hilbert space, bounded linear operator, von Neumann algebra, projection, commutativity, normal functional, state, trace

1. Definitions and Notations

Let \mathscr{H} be a Hilbert space over the field \mathbb{C} , let $\mathscr{B}(\mathscr{H})$ be the *-algebra of all bounded linear operators in \mathscr{H} , let $\operatorname{pr}(X)$ be the projection to the closure of the range of $X \in \mathscr{B}(\mathscr{H})$, and let I be the identity operator on \mathscr{H} . If $P,Q \in \mathscr{B}(\mathscr{H})^{\operatorname{pr}}$, then $P^{\perp} = I - P \in \mathscr{B}(\mathscr{H})^{\operatorname{pr}}$ and the projection $P \wedge Q$ is defined as $(P \wedge Q)\mathscr{H} = P\mathscr{H} \cap Q\mathscr{H}$, while $P \vee Q = (P^{\perp} \wedge Q^{\perp})^{\perp}$ projects to $\overline{\operatorname{lin}(P\mathscr{H} \cup Q\mathscr{H})}$. The commutant of $\mathscr{X} \subset \mathscr{B}(\mathscr{H})$ is

$$\mathscr{X}' = \{ Y \in \mathscr{B}(\mathscr{H}) : XY = YX \text{ for all } X \in \mathscr{X} \}.$$

A von Neumann algebra acting on \mathcal{H} is a *-subalgebra \mathscr{A} of $\mathscr{B}(\mathcal{H})$ satisfying $\mathscr{A} = \mathscr{A}''$. Given a von Neumann algebra \mathscr{A} , we denote the subset of positive elements of A by \mathscr{A}^+ and the projection lattice, by $\mathscr{A}^{\mathrm{pr}}$.

Given $P, Q \in \mathscr{A}^{\operatorname{pr}}$, write $P \sim Q$ (the Murray-von Neumann equivalence) if $P = U^*U$ and $Q = UU^*$ for some $U \in \mathscr{A}$. Projections $P, Q \in \mathscr{A}$ are called *isoclinic* (we write $P \stackrel{\theta}{\approx} Q$ for the angle $\theta \in (0, \pi/2)$) if $PQP = \cos^2\theta P$ and $QPQ = \cos^2\theta Q$. If $A \in \mathscr{A}$, then $|A| = \sqrt{A^*A} \in \mathscr{A}^+$ and the projection $\operatorname{pr}(A)$ to the closure of the range of A lies in \mathscr{A} . A positive functional φ on a von Neumann algebra \mathscr{A} is called faithful if $\varphi(A) = 0$ ($A \in \mathscr{A}^+$) $\Rightarrow A = 0$; while φ is tracial if $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathscr{A}$; normal if $A_i \nearrow A$ ($A_i, A \in \mathscr{A}^+$) $\Rightarrow \varphi(A) = \sup_i \varphi(A_i)$; and φ is a state if $\varphi(I) = 1$.

2. Metrics on $\mathscr{A}^{\mathrm{pr}}$ Associated with a Tracial State

Lemma 1 [1, Proposition 4.4]. The real function $\lambda \mapsto \sqrt{\lambda}$ is operator monotone on \mathbb{R}^+ . Let \mathscr{A} be a von Neumann algebra. Given $P, Q \in \mathscr{A}^{\operatorname{pr}}$, put

$$P\circ Q=2^{-1}(PQ+QP),\quad P\ominus Q=P\vee Q-P\wedge Q.$$

We have $P \circ Q \in \mathscr{A}^+ \Leftrightarrow PQ = QP$ (see the lemma in [2]). If $U \in \mathscr{A}$ is unitary, then

$$U(P\circ Q)U^*=(UPU^*)\circ (UQU^*),\quad U(P\ominus Q)U^*=(UPU^*)\ominus (UQU^*).$$

The research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project 1.9773.2017/8.9.

Original article submitted April 6, 2018; revised December 19, 2018; accepted July 24, 2019.

Lemma 2. Let \mathscr{A} be a von Neumann algebra and $P,Q \in \mathscr{A}^{\operatorname{pr}}$. Then

- (i) $|P \circ Q|^2 \le 4^{-1}(P+Q)^2$;
- (ii) $P \wedge Q \leq |P \circ Q| \leq 2^{-1}(P + Q) \leq P \vee Q$;
- (iii) $P \ominus Q = Q \ominus P = \operatorname{pr}(|P Q|);$
- (iv) $P \ominus Q = P^{\perp} \ominus Q^{\perp}$;
- (v) $|P Q|^a \le P \ominus Q$ for all a > 0;
- (vi) $I \ominus P = P^{\perp}$, $0 \ominus P = P$, $P \ominus P^{\perp} = I$, and $P \ominus P = 0$;
- (vii) if PQ = QP, then $P \ominus Q = |P Q|$.

PROOF. It suffices to verify the inequality $P \wedge Q \leq |P \circ Q|$ and item (i) for rank one projection $P, Q \in \mathbb{M}_2(\mathbb{C})$ (see the proof of Theorem 1 in [3] or Theorem 1 in [4]). Without loss of generality, put

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} t & \delta\sqrt{t(1-t)} \\ \bar{\delta}\sqrt{t(1-t)} & 1-t \end{pmatrix}$$

for $\delta \in \mathbb{C}$ with $|\delta| = 1$ and $0 \le t \le 1$. Now, the inequality $P \land Q \le |P \circ Q|$ is obvious and

$$(PQ + QP)^2 = t(P+Q)^2 \le (P+Q)^2.$$
(1)

By Lemma 1, from (1) we obtain $|P \circ Q| \le 2^{-1}(P+Q) \le P \lor Q$. Items (iii) and (v) were established in Theorem 2 of [5]. Since $P-Q=Q^{\perp}-P^{\perp}$, (iv) follows from (iii). Item (vii) is established in Proposition 1(iii) of [5]. The lemma is proven. \square

REMARK 1. Let us give a simple proof of the inequality $|P \circ Q| \leq P \vee Q$. We have $(P \pm Q)^2 \geq 0$ and $-2P \vee Q \leq -P - Q \leq PQ + QP \leq P + Q \leq 2P \vee Q$, i.e., $-P \vee Q \leq P \circ Q \leq P \vee Q$. Then $|P \circ Q| \leq P \vee Q$ by Theorem 2.4 of [6].

DEFINITION. Given a positive functional φ on a von Neumann algebra \mathscr{A} , we introduce the mappings $\rho_{\varphi}, d_{\varphi} : \mathscr{A}^{\mathrm{pr}} \times \mathscr{A}^{\mathrm{pr}} \to \mathbb{R}^+$ by the formulas

$$\rho_{\varphi}(P,Q) = \varphi(|P-Q|) \quad \text{and} \quad d_{\varphi}(P,Q) = \varphi(P\ominus Q) \quad \text{ for all } P,Q \in \mathscr{A}^{\operatorname{pr}}.$$

Proposition 1. The following are valid:

- (i) $\rho_{\varphi}(P,Q) \leq d_{\varphi}(P,Q)$ for all $P,Q \in \mathscr{A}^{\mathrm{pr}}$;
- (ii) $d_{\varphi}(P,Q) \leq \sin^{-2}\theta \, \rho_{\varphi}(P,Q)$ for all $P,Q \in \mathscr{A}^{\mathrm{pr}}$ with $P \stackrel{\theta}{\approx} Q$;
- (iii) if PQ = QP, then $\rho_{\varphi}(P,Q) = d_{\varphi}(P,Q)$;
- (iv) $\rho_{\varphi}(Q, P) = \rho_{\varphi}(P, Q) = \rho_{\varphi}(P^{\perp}, Q^{\perp})$ for all $P, Q \in \mathscr{A}^{\mathrm{pr}}$;
- (v) $d_{\varphi}(Q, P) = d_{\varphi}(P, Q) = d_{\varphi}(P^{\perp}, Q^{\perp})$ for all $P, Q \in \mathscr{A}^{\operatorname{pr}}$;
- (vi) $\rho_{\varphi}(P,0) = d_{\varphi}(P,0) = \varphi(P)$ for all $P \in \mathscr{A}^{\mathrm{pr}}$;
- (vii) $\rho_{\varphi}(P,Q) = d_{\varphi}(P,Q) = \varphi(P+Q)$ for all $P,Q \in \mathscr{A}^{pr}$ with PQ = 0;
- (viii) $\varphi(||P \circ Q| P \wedge Q|) \leq d_{\varphi}(P,Q)$ for all $P,Q \in \mathscr{A}^{\operatorname{pr}}$;
- (ix) $\rho_{\varphi}(P,Q) + \rho_{\varphi}(Q,R) = \rho_{\varphi}(P,R)$ for all $P,Q,R \in \mathscr{A}^{\operatorname{pr}}$ with $P \leq Q \leq R$;
- (x) $d_{\varphi}(P,Q) + d_{\varphi}(Q,R) = d_{\varphi}(P,R)$ for all $P,Q,R \in \mathscr{A}^{\operatorname{pr}}$ with $P \leq Q \leq R$.

PROOF. Items (i), (iii), and (iv) follow from (v), (vii), and (iv) of Lemma 2 respectively. In particular, if $\mathscr A$ is abelian, then $\rho_{\varphi}(P,Q)=d_{\varphi}(P,Q)$ for all $P,Q\in\mathscr A^{\mathrm{pr}}$.

Show (ii). By (iii) of Theorem 10.5 of [1] $P \wedge Q = 0$ and $P \vee Q = \sin^{-2}\theta \, (P-Q)^2$ for $P, Q \in \mathscr{A}^{\mathrm{pr}}$ with $P \stackrel{\theta}{\approx} Q$. Since $\|P-Q\| \leq 1$ for all $P, Q \in \mathscr{A}^{\mathrm{pr}}$; therefore, $(P-Q)^2 \leq \sqrt{(P-Q)^2} = |P-Q|$.

By Lemma 2(ii), for all $P,Q \in \mathscr{A}^{\operatorname{pr}}$ we obtain $0 \leq |P \circ Q| - P \wedge Q \leq P \ominus Q$, which implies (viii). The proposition is proven. \square

Theorem 1. Let τ be a faithful tracial functional on a von Neumann algebra \mathscr{A} . Then ρ_{τ} and d_{τ} are metrics on $\mathscr{A}^{\mathrm{pr}}$.

PROOF. Take $P,Q,R\in\mathscr{A}^{\operatorname{pr}}$. For each pair of operators $X,Y\in\mathscr{A}$ there exist some partial isometries $U,V\in\mathscr{A}$ such that $|X+Y|\leq U|X|U^*+V|Y|V^*$ [7, Theorem 2.2]. Letting X=P-R and Y=R-Q, we obtain the triangle inequality for ρ_{τ} .

From (iii) of Lemma 2 it follows that $d_{\tau}(P,Q) = d_{\tau}(Q,P)$ and $d_{\tau}(P,Q) = 0 \Leftrightarrow P = Q$. If $A, B \in \mathscr{A}^{\mathrm{pr}}$, then $A \vee B - B \sim B - A \wedge B$ [8, Chapter III, Theorem 1.1.3]. Consequently,

$$\tau(A \vee B) + \tau(A \wedge B) = \tau(A) + \tau(B). \tag{2}$$

Prove the triangle inequality for d_{τ} ; i.e.,

$$\tau(P \vee Q) - \tau(P \wedge Q) \le \tau(P \vee R) - \tau(P \wedge R) + \tau(R \vee Q) - \tau(R \wedge Q). \tag{3}$$

From (2) $\tau(A \wedge B) = \tau(A) + \tau(B) - \tau(A \vee B)$; therefore, (3) can be rewritten as

$$\tau(P \vee Q) \le \tau(P \vee R) + \tau(R \vee Q) - \tau(R). \tag{4}$$

Putting $A = P \vee R$ and $B = R \vee Q$ in (2), we have

$$\tau(P \vee R) + \tau(R \vee Q) = \tau(P \vee Q \vee R) + \tau((P \vee R) \wedge (R \vee Q)). \tag{5}$$

Rewrite (4) using (5):

$$\tau(P \vee Q) \le \tau(P \vee Q \vee R) + \tau((P \vee R) \wedge (R \vee Q)) - \tau(R). \tag{6}$$

Since $P \vee Q \vee R \geq P \vee Q$ and $(P \vee R) \wedge (R \vee Q) \geq R$; therefore, (6) is valid by monotonicity of τ on \mathscr{A}^+ . Consequently, (3) is also valid. The theorem is proven. \square

Theorem 2. If in the conditions of Theorem 1 τ is a normal state, then $(\mathscr{A}^{\mathrm{pr}}, \rho_{\tau})$ and $(\mathscr{A}^{\mathrm{pr}}, d_{\tau})$ are complete metric spaces.

PROOF. A von Neumann algebra \mathscr{A} possesses the topology t_{τ} of convergence in measure \mathscr{A} (see [9]) whose fundamental system of neighborhoods of zero is constituted by the sets

$$U(\varepsilon,\delta) = \{X \in \mathscr{A} : \exists P \in \mathscr{A}^{\operatorname{pr}} \ (\|XP\| \le \varepsilon \text{ and } \tau(P^{\perp}) \le \delta)\}, \quad \varepsilon > 0, \ \delta > 0.$$

It is well known that $\langle \mathscr{A}, t_{\tau} \rangle$ is a metrizable topological *-algebra. Define the L_1 -norm on \mathscr{A} by putting $||X||_1 = \tau(|X|)$ for all $X \in \mathscr{A}$. Let $\mathscr{A}_1 = \{X \in \mathscr{A} : ||X|| \le 1\}$.

For $(\mathscr{A}^{\mathrm{pr}}, \rho_{\tau})$, the claim follows from the $\|\cdot\|_1$ -completeness of $(\mathscr{A}_1, \|\cdot\|_1)$, the continuity of the embedding $(\mathscr{A}_1, \|\cdot\|_1)$ in the topological *-algebra (\mathscr{A}, t_{τ}) , and the t_{τ} -closedness of $\mathscr{A}^{\mathrm{pr}}$.

For $(\mathscr{A}^{\operatorname{pr}}, d_{\tau})$, the claim follows from coincidence of d_{τ} to the restriction to $\mathscr{A}^{\operatorname{pr}}$ of the well-known metric $d_{s,\tau}(A,B) = \tau(\operatorname{pr}(|A-B|))$, with $A,B \in \mathscr{A}$, the continuity of the embedding $(\mathscr{A},d_{s,\tau})$ in (\mathscr{A},t_{τ}) (see [10,11]), and the t_{τ} -closedness of $\mathscr{A}^{\operatorname{pr}}$. The theorem is proven. \square

Theorem 3. Let τ be a faithful tracial functional on a von Neumann algebra \mathscr{A} . Convergences with respect to the metrics ρ_{τ} and d_{τ} are equivalent if and only if \mathscr{A} is abelian.

PROOF. If \mathscr{A} is abelian, then $\rho_{\tau}(P,Q) = d_{\tau}(P,Q)$ for all $P,Q \in \mathscr{A}^{\mathrm{pr}}$ by assertion (iii) of Proposition 1.

If \mathscr{A} is not abelian, then \mathscr{A} has a *-subalgebra *-isomorphic to the complete matrix algebra $\mathbb{M}_2(\mathbb{C})$. Consider the sequence of rank one projections

$$P_n = \begin{pmatrix} \frac{1}{n} & \sqrt{\frac{1}{n} \left(1 - \frac{1}{n}\right)} \\ \sqrt{\frac{1}{n} \left(1 - \frac{1}{n}\right)} & 1 - \frac{1}{n} \end{pmatrix}, \quad n \in \mathbb{N},$$

in $\mathbb{M}_2(\mathbb{C})$. Then $P_n \to \operatorname{diag}(0,1)$ as $n \to \infty$ in ρ_τ , but $\{P_n\}_{n=1}^\infty$ is not fundamental in the metric d_τ , since $P_n \vee P_m = I$ and $P_n \wedge P_m = 0$ for $n \neq m$ for all $n \in \mathbb{N}$. The theorem is proven. \square

3. Characterization of Tracial Functionals

Show that ρ_{φ} (or d_{φ}) satisfies the triangle inequality if and only if φ is tracial. Let $P, Q, R \in \mathscr{A}^{\operatorname{pr}}$. The triangle inequalities for ρ_{φ} and d_{φ} with R=0 take the form $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ and $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ respectively.

Theorem 4. For a positive normal functional φ on a von Neumann algebra $\mathscr A$ the following are equivalent:

- (i) φ is tracial;
- (ii) $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ for all $P,Q \in \mathscr{A}^{\mathrm{pr}}$;
- (iii) $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ for all $P,Q \in \mathscr{A}^{\mathrm{pr}}$.

PROOF. (i) \Longrightarrow (ii) is established in the proof of Theorem 1.

- $(i) \Longrightarrow (iii)$ follows from (2).
- (ii) \Longrightarrow (i) is established in item (v) of Theorem 3.4 of [12].

Below, we show that the proof of (iii) \Longrightarrow (i) for an arbitrary von Neumann algebra is reduced to the case of the algebra $\mathbb{M}_2(\mathbb{C})$, in the same manner as it was done in a series of other similar cases (see [13] or [14]).

It is well known [13] that a positive normal functional φ on a von Neumann algebra \mathscr{A} is tracial if and only if $\varphi(P) = \varphi(Q)$ for all $P, Q \in \mathscr{A}^{\operatorname{pr}}$ with PQ = 0 and $P \sim Q$ (see also [14, Lemma 2]). Let the *-algebra \mathscr{B} in the reduced algebra $(P+Q)\mathscr{A}(P+Q)$ be generated by the partial isometry $V \in \mathscr{A}$ realizing the equivalence of P and Q. Then \mathscr{B} is *-isomorphic to $\mathbb{M}_2(\mathbb{C})$ and the inequality in (ii) remains valid for the operators in \mathscr{B} and the restriction $\varphi(\mathscr{B})$. Show that this restriction is a tracial functional on \mathscr{B} which implies that $\varphi(P) = \varphi(Q)$.

It is well known that each linear functional φ on $\mathbb{M}_2(\mathbb{C})$ can be presented as $\varphi(\cdot) = \operatorname{tr}(S_{\varphi} \cdot)$. The matrix $S_{\varphi} \in \mathbb{M}_2(\mathbb{C})$ is called the *density matrix* for φ . Following the proof of Theorem 4 of [15], suppose that S_{φ} has two eigenvalues λ and μ , while u and v are the corresponding mutually orthogonal eigenvectors. Let P_w be an orthogonal projection to the straight line $\mathbb{C}w$ and $\varepsilon > 0$ is an arbitrary positive real. Choose linearly independent vectors x and y so that $|\varphi(P_x - P_v)| < \varepsilon$ and $|\varphi(P_y - P_v)| < \varepsilon$. Note that $P_x \vee P_y = I$ and $P_x \wedge P_y = 0$. Since

$$\lambda + \mu = \operatorname{tr}(S_{\varphi}) = \varphi(I) = \varphi(P_x \vee P_y - P_x \wedge P_y) \le \varphi(P_x) + \varphi(P_y) \le 2\varphi(P_v) + 2\varepsilon = 2\mu + 2\varepsilon,$$

we obtain $\lambda \leq \mu + 2\varepsilon$. Since ε is arbitrary while λ and μ are interchangeable, $\lambda = \mu$. The theorem is proven. \square

For other characterizations of a trace, see [16–18] and the references therein.

REMARK 2. It is well known that $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ for every positive normal functional φ on a von Neumann algebra \mathscr{A} and every pair of commutative projections $P,Q \in \mathscr{A}^{\operatorname{pr}}$ [19, p. 168]. By (iii) of Proposition 1, $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ for every positive normal functional φ on a von Neumann algebra \mathscr{A} and each pair of commutative projections $P,Q \in \mathscr{A}^{\operatorname{pr}}$. Theorem 4 demonstrates that each of these inequalities holds for all pairs $P,Q \in \mathscr{A}^{\operatorname{pr}}$ if and only if φ is tracial.

Corollary. For a von Neumann algebra \mathscr{A} the following are equivalent:

- (i) \mathscr{A} is abelian;
- (ii) $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ for all normal states φ on \mathscr{A} and $P,Q \in \mathscr{A}^{\operatorname{pr}}$;
- (iii) $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ for all normal states φ on \mathscr{A} and $P,Q \in \mathscr{A}^{\mathrm{pr}}$.

PROOF. By Theorem 4, every normal state on \mathscr{A} is tracial. The set of normal states on \mathscr{A} separates the points of \mathscr{A} [8, Chapter III, Theorem 2.4.5]; therefore, \mathscr{A} is commutative. \square

The author is grateful to the referee for valuable advice.

References

- 1. Sherstnev A. N., Methods of Bilinear Forms in Noncommutative Measure and Integral Theory [Russian], Fizmatlit, Moscow (2008).
- 2. Uchiyama M., "Commutativity of selfadjoint operators," Pacific J. Math., vol. 161, no. 2, 385–392 (1993).
- 3. Bikchentaev A. M., "Commutation of projections and trace characterization on von Neumann algebras. II," Math. Notes, vol. 89, no. 4, 461–471 (2011).
- Bikchentaev A. M., "Commutativity of operators and characterization of traces on C*-algebras," Dokl. Math., vol. 87, no. 1, 79–82 (2013).
- 5. Bikchentaev A. M., "Differences of idempotents in C^* -algebras," Sib. Math. J., vol. 58, no. 2, 183–189 (2017).
- 6. Bikchentaev A. M., "On hermitian operators X and Y meeting the condition $-Y \le X \le Y$," Lobachevskii J. Math., vol. 34, no. 3, 227–233 (2013).
- 7. Akemann C. A., Anderson J., and Pedersen G. K., "Triangle inequalities in operator algebras," Linear Multilinear Algebra, vol. 11, no. 2, 167–178 (1982).
- 8. Blackadar B., Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Operator Algebras and Non-Commutative Geometry. III, Springer-Verlag, Berlin (2006) (Encycl. Math. Sci.; V. 122).
- 9. Nelson E., "Notes on non-commutative integration," J. Funct. Anal., vol. 15, no. 2, 103–116 (1974).
- 10. Ciach L. J., "Linear-topological spaces of operators affiliated with a von Neumann algebra," Bull. Acad. Pol. Sci. Math., vol. 31, no. 3–4, 161–166 (1983).
- 11. Bikchentaev A. M., "Minimality of convergence in measure topologies on finite von Neumann algebras," Math. Notes, vol. 75, no. 3, 315–321 (2004).
- 12. Bikchentaev A. M., "Commutativity of projections and characterization of traces on von Neumann algebras," Sib. Math. J., vol. 51, no. 6, 971–977 (2010).
- 13. Gardner L. T., "An inequality characterizes the trace," Canad. J. Math., vol. 31, no. 6, 1322–1328 (1979).
- 14. Tikhonov O. E., "Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals," Positivity, vol. 9, no. 2, 259–264 (2005).
- 15. Petz D. and Zemánek J., "Characterizations of the trace," Linear Algebra Appl., vol. 111, 43-52 (1988).
- 16. Bikchentaev A. M., "Commutation of projections and characterization of traces on von Neumann algebras. III," Int. J. Theor. Phys., vol. 54, no. 12, 4482–4493 (2015).
- 17. Bikchentaev A. M., "Inequality for a trace on a unital C^* -algebra," Math. Notes, vol. 99, no. 4, 487–491 (2016).
- 18. Bikchentaev A. M., "Trace and differences of idempotents in C*-algebras," Math. Notes, vol. 105, no. 5, 641–648 (2019).
- 19. Kadison R. V. and Ringrose J. R., Fundamentals of the Theory of Operator Algebras. V. I. Elementary Theory, Acad. Press, New York and London (1983) (Pure Appl. Math.; V. 100).

A. M. BIKCHENTAEV

LOBACHEVSKII INSTITUTE OF MATHEMATICS AND MECHANICS OF KAZAN (VOLGA REGION) FEDERAL UNIVERSITY, KAZAN, RUSSIA

 $E\text{-}mail\ address{:}\quad \texttt{Airat.Bikchentaev@kpfu.ru}$