МЕТРИКИ НА ПРОЕКТОРАХ АЛГЕБРЫ ФОН НЕЙМАНА, АССОЦИИРОВАННЫЕ СО СЛЕДОВЫМИ ФУНКЦИОНАЛАМИ

А. М. Бикчентаев

Аннотация. Пусть φ — положительный функционал на алгебре фон Неймана \mathscr{A} , $\mathscr{A}^{\operatorname{pr}}$ — решетка проекторов в \mathscr{A} . Для всех P,Q из $\mathscr{A}^{\operatorname{pr}}$ положим $\rho_{\varphi}(P,Q)=\varphi(|P-Q|)$ и $d_{\varphi}(P,Q)=\varphi(P\vee Q-P\wedge Q)$. Тогда $\rho_{\varphi}(P,Q)\leq d_{\varphi}(P,Q)$ для всех P,Q из $\mathscr{A}^{\operatorname{pr}}$ и $\rho_{\varphi}(P,Q)=d_{\varphi}(P,Q)$ при PQ=QP. Отображение ρ_{φ} (или d_{φ}) удовлетворяет неравенству треугольника тогда и только тогда, когда функционал φ следовый. Для точного следового функционала τ отображения ρ_{τ} и d_{τ} являются метриками на $\mathscr{A}^{\operatorname{pr}}$. Если, кроме того, функционал τ нормален, то ($\mathscr{A}^{\operatorname{pr}}, \rho_{\tau}$) и ($\mathscr{A}^{\operatorname{pr}}, d_{\tau}$) являются полными метрическими пространствами. Сходимости в метриках ρ_{τ} и d_{τ} эквивалентны тогда и только тогда, когда алгебра \mathscr{A} абелева, при этом $\rho_{\tau}=d_{\tau}$. В терминах неравенств установлен еще один критерий абелевости алгебры \mathscr{A} .

 $DOI\,10.33048/smzh.2019.60.603$

Ключевые слова: гильбертово пространство, линейный ограниченный оператор, алгебра фон Неймана, проектор, перестановочность, нормальный функционал, состояние, след.

1. Определения и обозначения

Пусть \mathscr{H} — гильбертово пространство над полем \mathbb{C} , $\mathscr{B}(\mathscr{H})$ — *-алгебра всех линейных ограниченных операторов в \mathscr{H} . Пусть $\operatorname{pr}(X)$ — проектор на замыкание области значений оператора $X \in \mathscr{B}(\mathscr{H}), I$ — тождественный оператор в \mathscr{H} . Если $P,Q \in \mathscr{B}(\mathscr{H})^{\operatorname{pr}}$, то $P^{\perp} = I - P \in \mathscr{B}(\mathscr{H})^{\operatorname{pr}}$ и проектор $P \wedge Q$ определяется равенством $(P \wedge Q)\mathscr{H} = P\mathscr{H} \cap Q\mathscr{H}$, а $P \vee Q = (P^{\perp} \wedge Q^{\perp})^{\perp}$ проектирует на $\overline{\operatorname{lin}}(P\mathscr{H} \cup Q\mathscr{H})$. Коммутантом множества $\mathscr{X} \subset \mathscr{B}(\mathscr{H})$ называется множество

$$\mathscr{X}' = \{Y \in \mathscr{B}(\mathscr{H}) : XY = YX$$
 для всех $X \in \mathscr{X}\}.$

Алгеброй фон Неймана, действующей в гильбертовом пространстве \mathscr{H} , называется *-подалгебра \mathscr{A} алгебры $\mathscr{B}(\mathscr{H})$, для которой $\mathscr{A} = \mathscr{A}''$. Для алгебры фон Неймана \mathscr{A} через \mathscr{A}^+ и $\mathscr{A}^{\mathrm{pr}}$ будем обозначать ее подмножества положительных элементов и решетку проекторов соответственно.

Для $P,Q\in\mathscr{A}^{\mathrm{pr}}$ пишем $P\sim Q$ (эквивалентность Мюррея — Дж. фон Неймана), если $P=U^*U$ и $Q=UU^*$ для некоторого $U\in\mathscr{A}$. Проекторы $P,Q\in\mathscr{A}$ называются изоклинными (с углом $\theta\in(0,\pi/2)$, пишем $P\stackrel{\theta}{\approx}Q$),

Работа выполнена за счет субсидии, выделенной Казанскому (Приволжскому) федеральному университету для выполнения государственного задания в сфере научной деятельности (1.9773.2017/8.9).

если $PQP = \cos^2\theta P$ и $QPQ = \cos^2\theta Q$. Если $A \in \mathscr{A}$, то $|A| = \sqrt{A^*A} \in \mathscr{A}^+$ и проектор $\operatorname{pr}(A)$ на замыкание области значений оператора A лежит в \mathscr{A} . Положительный функционал φ на алгебре фон Неймана $\mathscr A$ называется mountum, если $\varphi(A)=0$ $(A\in\mathscr{A}^+)\Rightarrow A=0;$ следовым, если $\varphi(Z^*Z)=\varphi(ZZ^*)$ для всех $Z\in\mathscr{A};$ нормальным, если $A_i\nearrow A\ (A_i,A\in\mathscr{A}^+)\Rightarrow \varphi(A)=\sup \varphi(A_i);$ cocmoянием, если $\varphi(I) = 1$.

2. Метрики на $\mathscr{A}^{\mathrm{pr}}$, ассоциированные со следовым состоянием

Лемма 1 [1, предложение 4.4]. Вещественная функция $\lambda \mapsto \sqrt{\lambda}$ операторно монотонна на \mathbb{R}^+ .

Пусть \mathscr{A} — алгебра фон Неймана. Для $P,Q \in \mathscr{A}^{\mathrm{pr}}$ положим

$$P \circ Q = 2^{-1}(PQ + QP), \quad P \ominus Q = P \lor Q - P \land Q.$$

Имеем $P \circ Q \in \mathscr{A}^+ \Leftrightarrow PQ = QP$ (см. лемму в [2]). Если $U \in \mathscr{A}$ унитарен, то

$$U(P \circ Q)U^* = (UPU^*) \circ (UQU^*), \quad U(P \ominus Q)U^* = (UPU^*) \ominus (UQU^*).$$

Лемма 2. Пусть \mathscr{A} — алгебра фон Неймана и $P,Q \in \mathscr{A}^{\operatorname{pr}}$. Тогда

- (i) $|P \circ Q|^2 \le 4^{-1}(P+Q)^2$;
- (ii) $P \wedge Q \leq |P \circ Q| \leq 2^{-1}(P+Q) \leq P \vee Q;$ (iii) $P \ominus Q = Q \ominus P = \operatorname{pr}(|P-Q|);$
- (iv) $P \ominus Q = P^{\perp} \ominus Q^{\perp}$;
- $(\mathbf{v}) |P-Q|^a \le P \ominus Q$ для всех a>0;
- (vi) $I \ominus P = P^{\perp}$, $0 \ominus P = P$, $P \ominus P^{\perp} = I$, $P \ominus P = 0$;
- (vii) если PQ=QP, то $P\ominus Q=|P-Q|$.

Доказательство. Неравенство $P \wedge Q \leq |P \circ Q|$ и утверждение (i) достаточно проверить для одномерных проекторов $P,Q\in\mathbb{M}_2(\mathbb{C})$ (см. доказательство теоремы 1 в [3] или теоремы 1 в [4]). Не ограничивая общности, положим

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} t & \delta \sqrt{t(1-t)} \\ \bar{\delta} \sqrt{t(1-t)} & 1-t \end{pmatrix}$$

для $\delta \in \mathbb{C}$ с $|\delta|=1$ и $0 \le t \le 1$. Теперь неравенство $P \wedge Q \le |P \circ Q|$ очевидно и

$$(PQ + QP)^2 = t(P+Q)^2 \le (P+Q)^2. \tag{1}$$

В силу леммы 1 из (1) получаем $|P \circ Q| \le 2^{-1}(P+Q) \le P \lor Q$.

Утверждения (iii) и (v) установлены в теореме 2 из [5]. Поскольку P- $Q = Q^{\perp} - P^{\perp}$, (iv) следует из (iii). Утверждение (vii) установлено в п. (iii) предложения 1 из [5]. Лемма доказана.

Замечание 1. Приведем простое доказательство неравенства $|P \circ Q| \le$ $P \vee Q$. Имеем $(P \pm Q)^2 \geq 0$ и $-2 P \vee Q \leq -P - Q \leq PQ + QP \leq P + Q \leq 2 P \vee Q$, т. е. $P \lor Q \le P \circ Q \le P \lor Q$. Тогда $|P \circ Q| \le P \lor Q$ в силу теоремы 2.4 из [6].

Определение. Для положительного функционала φ на алгебре фон Неймана $\mathscr A$ введем отображения $\rho_\varphi,d_\varphi:\mathscr A^\mathrm{pr} imes\mathscr A^\mathrm{pr} o\mathbb R^+$ по формулам

$$ho_{\varphi}(P,Q)=arphi(|P-Q|)$$
 и $d_{\varphi}(P,Q)=arphi(P\ominus Q)$ для всех $P,Q\in\mathscr{A}^{\mathrm{pr}}.$

Предложение 1. Справедливы следующие утверждения:

- (i) $\rho_{\varphi}(P,Q) \leq d_{\varphi}(P,Q)$ для всех $P,Q \in \mathscr{A}^{\mathrm{pr}}$;
- (ii) $d_{\varphi}(P,Q) \leq \sin^{-2}\theta \, \rho_{\varphi}(P,Q)$ для всех $P,Q \in \mathscr{A}^{\operatorname{pr}} \, c \, P \stackrel{\theta}{\approx} Q;$
- (iii) если PQ=QP, то $ho_{arphi}(P,Q)=d_{arphi}(P,Q);$
- (iv) $ho_{arphi}(Q,P)=
 ho_{arphi}(P,Q)=
 ho_{arphi}(P^{\perp},Q^{\perp})$ для всех $P,Q\in\mathscr{A}^{\mathrm{pr}};$
- (v) $d_{\varphi}(Q,P)=d_{\varphi}(P,Q)=d_{\varphi}(P^{\perp},Q^{\perp})$ для всех $P,Q\in\mathscr{A}^{\mathrm{pr}};$
- (vi) $ho_{arphi}(P,0)=d_{arphi}(P,0)=arphi(P)$ для всех $P\in\mathscr{A}^{\mathrm{pr}};$
- (vii) $ho_{\varphi}(P,Q)=d_{\varphi}(P,Q)=arphi(P+Q)$ для всех $P,Q\in\mathscr{A}^{\mathrm{pr}}$ с PQ=0;
- (viii) $\varphi(||P \circ Q| P \wedge Q|) \leq d_{\varphi}(P,Q)$ для всех $P,Q \in \mathscr{A}^{\operatorname{pr}}$;
- (ix) $ho_{arphi}(P,Q)+
 ho_{arphi}(Q,R)=
 ho_{arphi}(P,R)$ для всех $P,Q,R\in\mathscr{A}^{\mathrm{pr}}$ с $P\leq Q\leq R;$
- $(\mathbf{x})\ d_{arphi}(P,Q)+d_{arphi}(Q,R)=d_{arphi}(P,R)$ для всех $P,Q,R\in\mathscr{A}^{\mathrm{pr}}\ c\ P\leq Q\leq R.$

ДОКАЗАТЕЛЬСТВО. Утверждения (i), (iii) и (iv) вытекают из п. (v), (vii) и (iv) леммы 2 соответственно. В частности, если алгебра $\mathscr A$ абелева, то $\rho_{\varphi}(P,Q) = d_{\varphi}(P,Q)$ для всех $P,Q \in \mathscr A^{\operatorname{pr}}$.

Покажем (ii). Для $P,Q \in \mathscr{A}^{\mathrm{pr}}$ с $P \stackrel{\theta}{\approx} Q$ в силу п. (iii) теоремы 10.5 из [1] имеем $P \wedge Q = 0$ и $P \vee Q = \sin^{-2}\theta \, (P-Q)^2$. Поскольку $\|P-Q\| \leq 1$ для всех $P,Q \in \mathscr{A}^{\mathrm{pr}}$, имеем $(P-Q)^2 \leq \sqrt{(P-Q)^2} = |P-Q|$.

Из п. (ii) леммы 2 для всех $P,Q\in\mathscr{A}^{\mathrm{pr}}$ получаем $0\leq |P\circ Q|-P\wedge Q\leq P\ominus Q,$ что влечет (viii). Предложение доказано. $\ \square$

Теорема 1. Пусть τ — точный следовый функционал на алгебре фон Неймана \mathscr{A} . Тогда ρ_{τ} и d_{τ} являются метриками на $\mathscr{A}^{\mathrm{pr}}$.

Доказательство. Пусть $P,Q,R\in\mathscr{A}^{\mathrm{pr}}$. Для каждой пары операторов $X,Y\in\mathscr{A}$ существуют такие частичные изометрии $U,V\in\mathscr{A}$, что $|X+Y|\leq U|X|U^*+V|Y|V^*$ [7, теорема 2.2]. Взяв X=P-R и Y=R-Q, получаем неравенство треугольника для ρ_{τ} .

Из п. (ііі) леммы 2 следует, что $d_{\tau}(P,Q) = d_{\tau}(Q,P)$ и $d_{\tau}(P,Q) = 0 \Leftrightarrow P = Q$. Если $A,B \in \mathscr{A}^{\mathrm{pr}}$, то $A \vee B - B \sim B - A \wedge B$ [8, гл. III, теорема 1.1.3]. Следовательно,

$$\tau(A \vee B) + \tau(A \wedge B) = \tau(A) + \tau(B). \tag{2}$$

Докажем неравенство треугольника для d_{τ} , т. е.

$$\tau(P \vee Q) - \tau(P \wedge Q) \le \tau(P \vee R) - \tau(P \wedge R) + \tau(R \vee Q) - \tau(R \wedge Q). \tag{3}$$

Из (2) имеем $\tau(A \wedge B) = \tau(A) + \tau(B) - \tau(A \vee B)$, поэтому (3) перепишется в виде

$$\tau(P \vee Q) \le \tau(P \vee R) + \tau(R \vee Q) - \tau(R). \tag{4}$$

Положив $A = P \vee R, B = R \vee Q$ в (2), имеем

$$\tau(P \vee R) + \tau(R \vee Q) = \tau(P \vee Q \vee R) + \tau((P \vee R) \wedge (R \vee Q)). \tag{5}$$

Перепишем (4) с учетом (5):

$$\tau(P \vee Q) < \tau(P \vee Q \vee R) + \tau((P \vee R) \wedge (R \vee Q)) - \tau(R). \tag{6}$$

Поскольку $P \lor Q \lor R \ge P \lor Q$ и $(P \lor R) \land (R \lor Q) \ge R$, в силу монотонности следового функционала τ на \mathscr{A}^+ неравенство (6) выполнено. Следовательно, (3) также выполнено. Теорема доказана. \square

Теорема 2. Если в условиях теоремы 1 функционал τ нормален, то $(\mathscr{A}^{\mathrm{pr}}, \rho_{\tau})$ и $(\mathscr{A}^{\mathrm{pr}}, d_{\tau})$ являются полными метрическими пространствами.

Доказательство. В алгебре \mathscr{A} вводится топология t_{τ} сходимости по мере [9], фундаментальную систему окрестностей нуля которой образуют множества

$$U(\varepsilon,\delta) = \{X \in \mathscr{A} : \exists P \in \mathscr{A}^{\operatorname{pr}} \ (\|XP\| \le \varepsilon \text{ if } \tau(P^{\perp}) \le \delta)\}, \quad \varepsilon > 0, \ \delta > 0.$$

Известно, что $\langle \mathscr{A}, t_{\tau} \rangle$ является метризуемой топологической *-алгеброй. Определим L_1 -норму на \mathscr{A} , положив $\|X\|_1 = \tau(|X|)$ для всех $X \in \mathscr{A}$. Пусть $\mathscr{A}_1 = \{X \in \mathscr{A} : \|X\| \leq 1\}$.

Для $(\mathscr{A}^{\mathrm{pr}}, \rho_{\tau})$ утверждение теоремы следует из $\|\cdot\|_1$ -полноты пространства $(\mathscr{A}_1, \|\cdot\|_1)$, непрерывности вложения $(\mathscr{A}_1, \|\cdot\|_1)$ в топологическую *-алгебру (\mathscr{A}, t_{τ}) и t_{τ} -замкнутости решетки $\mathscr{A}^{\mathrm{pr}}$.

Для $(\mathscr{A}^{\mathrm{pr}}, d_{\tau})$ утверждение теоремы следует из совпадения метрики d_{τ} с сужением известной метрики $d_{s,\tau}(A,B) = \tau(\mathrm{pr}(|A-B|)), \ A,B \in \mathscr{A}$, на $\mathscr{A}^{\mathrm{pr}}$, непрерывности вложения $(\mathscr{A}, d_{s,\tau})$ в (\mathscr{A}, t_{τ}) (см. [10,11]) и t_{τ} -замкнутости решетки $\mathscr{A}^{\mathrm{pr}}$. Теорема доказана. \square

Теорема 3. Пусть τ — точный следовый функционал на алгебре фон Неймана \mathscr{A} . Сходимости в метриках ρ_{τ} и d_{τ} эквивалентны тогда и только тогда, когда алгебра \mathscr{A} абелева.

Доказательство. Если алгебра $\mathscr A$ абелева, то $\rho_{\tau}(P,Q)=d_{\tau}(P,Q)$ для всех $P,Q\in\mathscr A^{\mathrm{pr}}$ в силу п. (iii) предложения 1.

Если алгебра фон Неймана \mathscr{A} не абелева, то она содержит *-подалгебру, *-изоморфную полной матричной алгебре $\mathbb{M}_2(\mathbb{C})$. Рассмотрим в $\mathbb{M}_2(\mathbb{C})$ последовательность одномерных проекторов

$$P_n = \left(egin{array}{cc} rac{1}{n} & \sqrt{rac{1}{n}\left(1-rac{1}{n}
ight)} \ \sqrt{rac{1}{n}\left(1-rac{1}{n}
ight)} & 1-rac{1}{n} \end{array}
ight), \quad n \in \mathbb{N}.$$

Тогда $P_n \to \operatorname{diag}(0,1)$ при $n \to \infty$ в метрике ρ_τ , но $\{P_n\}_{n=1}^\infty$ не фундаментальна в метрике d_τ : имеем $P_n \vee P_m = I$ и $P_n \wedge P_m = 0$ при $n \neq m$ для всех $n \in \mathbb{N}$. Теорема доказана. \square

3. Характеризация следовых функционалов

Покажем, что отображение ρ_{φ} (или d_{φ}) удовлетворяет неравенству треугольника тогда и только тогда, когда функционал φ следовый. Пусть $P,Q,R\in \mathscr{A}^{\mathrm{pr}}$. Неравенство треугольника для ρ_{φ} и d_{φ} при R=0 приобретает вид $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ и $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ соответственно.

Теорема 4. Для положительного нормального функционала φ на алгебре фон Неймана $\mathscr A$ следующие условия эквивалентны:

- (i) φ следовый;
- (ii) $ho_{arphi}(P,Q) \leq arphi(P+Q)$ для всех $P,Q \in \mathscr{A}^{\mathrm{pr}};$
- (iii) $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ для всех $P,Q \in \mathscr{A}^{\mathrm{pr}}$.

Доказательство. (i) \Longrightarrow (ii) Установлено в доказательстве теоремы 1.

- $(i) \Longrightarrow (iii)$ Следует из (2).
- $(ii) \Longrightarrow (i)$ Установлено в п. (v) теоремы 3.4 из [12].

Ниже показывается, что аналогично тому, как было проделано в ряде других подобных случаев (см. [13] или [14]), доказательство импликации (iii) \Longrightarrow (i) для произвольной алгебры фон Неймана сводится к случаю алгебры $\mathbb{M}_2(\mathbb{C})$.

Известно [13], что положительный нормальный функционал φ на алгебре фон Неймана \mathscr{A} является следом тогда и только тогда, когда $\varphi(P) = \varphi(Q)$ для всех $P,Q \in \mathscr{A}^{\mathrm{pr}}$ с PQ = 0 и $P \sim Q$ (см. также [14, лемма 2]). Пусть *-алгебра \mathscr{B} в редуцированной алгебре $(P+Q)\mathscr{A}(P+Q)$ порождена частичной изометрией $V \in \mathscr{A}$, реализующей эквивалентность P и Q. Тогда \mathscr{B} *-изоморфна $\mathbb{M}_2(\mathbb{C})$, а неравенство в (ii) остается справедливым для операторов из \mathscr{B} и ограничения функционала $\varphi|\mathscr{B}$. Покажем, что такое ограничение является следовым функционалом на \mathscr{B} , поэтому $\varphi(P) = \varphi(Q)$.

Известно, что каждый линейный функционал φ на $\mathbb{M}_2(\mathbb{C})$ может быть представлен в виде $\varphi(\cdot)=\operatorname{tr}(S_\varphi\cdot)$. Матрица $S_\varphi\in\mathbb{M}_2(\mathbb{C})$ называется матрицей плотности для φ . Следуя доказательству теоремы 4 из [15], предположим, что S_φ имеет два собственных значения λ и μ , и пусть u и v — соответствующие взаимно ортогональные собственные векторы. Пусть P_w — ортогональный проектор на прямую $\mathbb{C}w$, число $\varepsilon>0$ произвольно. Выберем линейно независимые векторы x и y так, что $|\varphi(P_x-P_v)|<\varepsilon$, $|\varphi(P_y-P_v)|<\varepsilon$. Заметим, что $P_x\vee P_y=I$ и $P_x\wedge P_y=0$. Поскольку

$$\lambda + \mu = \operatorname{tr}(S_{\varphi}) = \varphi(I) = \varphi(P_x \vee P_y - P_x \wedge P_y) \le \varphi(P_x) + \varphi(P_y)$$
$$\le 2\varphi(P_y) + 2\varepsilon = 2\mu + 2\varepsilon,$$

имеем $\lambda \leq \mu + 2\varepsilon$. Так как число ε произвольное и λ , μ можно поменять ролями, получаем $\lambda = \mu$. Теорема доказана. \square

О других характеризациях следа см. [16–18] и библиографию в них.

Замечание 2. Известно, что неравенство $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ выполнено для каждого положительного нормального функционала φ на алгебре фон Неймана $\mathscr A$ и каждой пары перестановочных проекторов $P,Q \in \mathscr A^{\operatorname{pr}}$ [19, с. 168]. В силу п. (iii) предложения 1 неравенство $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ также выполнено для каждого положительного нормального функционала φ на алгебре фон Неймана $\mathscr A$ и каждой пары перестановочных проекторов $P,Q \in \mathscr A^{\operatorname{pr}}$. Теорема 4 показывает, что любое из этих неравенств выполняется для всех пар $P,Q \in \mathscr A^{\operatorname{pr}}$ тогда и только тогда, когда φ следовый.

Следствие. Для алгебры фон Неймана $\mathscr A$ следующие условия эквивалентны:

- (i) алгебра Я абелева;
- (ii) $\rho_{\varphi}(P,Q) \leq \varphi(P+Q)$ для всех нормальных состояний φ на $\mathscr A$ и $P,Q \in \mathscr A^{\mathrm{pr}}$:
- (iii) $d_{\varphi}(P,Q) \leq \varphi(P+Q)$ для всех нормальных состояний φ на $\mathscr A$ и $P,Q \in \mathscr A^{\mathrm{pr}}.$

Доказательство. В силу теоремы 4 каждое нормальное состояние на \mathscr{A} следовое. Множество нормальных состояний на \mathscr{A} разделяет точки \mathscr{A} [8, гл. III, теорема 2.4.5], поэтому алгебра \mathscr{A} коммутативна. \square

Автор благодарит рецензента за ценные советы.

ЛИТЕРАТУРА

- Шерстнев А. Н. Методы билинейных форм в некоммутативной теории меры и интеграла.
 М.: Физматлит. 2008.
- Uchiyama M. Commutativity of selfadjoint operators // Pac. J. Math. 1993. V. 161, N 2. P. 385–392.

- Бикчентаев А. М. Перестановочность проекторов и характеризация следа на алгебрах фон Неймана. II // Мат. заметки. 2011. Т. 89, № 4. С. 483–494.
- 4. Бикчентаев А. М. Перестановочность операторов и характеризация следа на C^* -алгебрах // Докл. АН. 2013. Т. 448, № 5. С. 506–509.
- 5. Бикчентаев А. М. Разности идемпотентов в C^* -алгебрах // Сиб. мат. журн. 2017. Т. 58, № 2. С. 243–250.
- **6.** Bikchentaev A. M. On hermitian operators X and Y meeting the condition $-Y \le X \le Y$ // Lobachevskii J. Math. 2013. V. 34, N 3. P. 227–233.
- Akemann C. A., Anderson J., Pedersen G. K. Triangle inequalities in operator algebras // Lin. Multilin. Algebra. 1982. V. 11, N 2. P. 167–178.
- Blackadar B. Operator algebras. Theory of C*-algebras and von Neumann algebras. Operator algebras and non-commutative geometry. III. Berlin: Springer-Verl., 2006. (Encycl. Math. Sci.; V. 122).
- 9. Nelson E. Notes on non-commutative integration // J. Funct. Anal. 1974. V. 15, N 2. P. 103-116.
- Ciach L. J. Linear-topological spaces of operators affiliated with a von Neumann algebra // Bull. Acad. Pol. Sci. Math. 1983. V. 31, N 3–4. P. 161–166.
- Бикчентаев А. М. О минимальности топологии сходимости по мере на конечных алгебрах фон Неймана // Мат. заметки. 2004. Т. 75, № 3. С. 342–349.
- Бикчентаев А. М. Перестановочность проекторов и характеризация следа на алгебрах фон Неймана // Сиб. мат. журн. 2010. Т. 51, № 6. С. 1228–1236.
- Gardner L. T. An inequality characterizes the trace // Can. J. Math. 1979. V. 31, N 6. P. 1322–1328.
- Tikhonov O. E. Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals // Positivity. 2005. V. 9, N 2. P. 259–264.
- Petz D., Zemánek J. Characterizations of the trace // Linear Algebra Appl. 1988. V. 111. P. 43–52.
- Bikchentaev A. M. Commutation of projections and characterization of traces on von Neumann algebras. III // Int. J. Theor. Phys. 2015. V. 54, N 12. P. 4482–4493.
- 17. Бикчентаев А. М. Неравенство для следа на унитальной C^* -алгебре // Мат. заметки. 2016. Т. 99, № 4. С. 483–488.
- **18.** Бикчентаев А. М. След и разности идемпотентов в C^* -алгебрах // Мат. заметки. 2019. Т. 105, № 5. С. 647–655.
- Kadison R. V., Ringrose J. R. Fundamentals of the theory of operator algebras. V. I. Elementary theory. New York; London: Acad. Press, 1983. (Pure Appl. Math.; V. 100).

Поступила в редакцию 6 апреля 2018 г.

После доработки 19 декабря 2018 г.

Принята к публикации 24 июля 2019 г.

Бикчентаев Айрат Мидхатович

Институт математики и механики им. Н. И. Лобачевского

Казанского (Приволжского) федерального университета,

ул. Кремлевская, 18, Казань 420008

 ${\tt Airat.Bikchentaev@kpfu.ru}$