Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras

A. M. Bikchentaev*

(Submitted by S. A. Grigoryan)

N. I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga region) Federal University, Kazan, Tatarstan, 420008 Russia Received April 20, 2019; revised April 29, 2019; accepted May 5, 2019

Abstract—Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} , and \mathcal{M}^{u} be a unitary part of \mathcal{M} . We prove a new property of rearrangements of some tripotents in \mathcal{M} . If $V \in \mathcal{M}$ is an isometry (or a coisometry) and U - V is τ -compact for some $U \in \mathcal{M}^{\mathrm{u}}$ then $V \in \mathcal{M}^{\mathrm{u}}$. Let \mathcal{M} be a factor with a faithful normal trace τ on it. If $V \in \mathcal{M}$ is an isometry (or a coisometry) and U - V is compact relative to \mathcal{M} for some $U \in \mathcal{M}^{\mathrm{u}}$ then $V \in \mathcal{M}^{\mathrm{u}}$. We also obtain some corollaries.

DOI: 10.1134/S1995080219100068

Keywords and phrases: *Hilbert space, linear operator, isometry, unitary operator, idempotent, tripotent, projection, compact operator, von Neumann algebra, trace, rearrangement.*

1. INTRODUCTION

A bounded linear operator A on a Hilbert space \mathcal{H} is called a *tripotent* if $A=A^3$, an *idempotent* if $A=A^2$, and a *projection* if $A=A^2=A^*$. Let P and Q be idempotents on \mathcal{H} . Various properties of the difference P-Q (invertibility, Fredholm property, trace-class property, positivity, etc.) were studied in [1-11]. Every tripotent is the difference P-Q of some idempotents P and Q with PQ=QP=0 [7, Proposition 1]. Hence tripotents inherit some properties of idempotents [8].

The results obtained in this paper are as follows. Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} , I be the unit of \mathcal{M} . Denote by $\mu_t(X)$ a rearrangement of an operator $X \in \mathcal{M}$, and by $\mathcal{M}^{\mathrm{pr}}$, $\mathcal{M}^{\mathrm{id}}$ and \mathcal{M}^{u} the subsets of projections, idempotents, and unitary operators $(A^*A = AA^* = I)$ in \mathcal{M} , respectively.

For every $P \in \mathcal{M}^{\mathrm{id}}$ there exists a unique decomposition $P = \widetilde{P} + Z$, with $\widetilde{P} \in \mathcal{M}^{\mathrm{pr}}$ and nilpotent $Z \in \mathcal{M}, Z^2 = 0$, moreover, $Z\widetilde{P} = 0, \widetilde{P}Z = Z$, see [9, Theorem 1.3]. Let a tripotent $A \in \mathcal{M}$ be such that A = P - Q with $P \in \mathcal{M}^{\mathrm{id}}, \ Q \in \mathcal{M}^{\mathrm{pr}}$ and PQ = QP = 0. Let $P = \widetilde{P} + Z$ be the decomposition described above. Then $\widetilde{P}Q = 0$ and for $R = \widetilde{P} + Q \in \mathcal{A}^{\mathrm{pr}}$, and for all t > 0 we have $\mu_t(A) = \mu_t(A)\chi_{[0,\tau(R))}(t) \geq \mu_t(R) = \chi_{[0,\tau(R))}(t)$ (Theorem 1); here χ_B is the indicator function of a set $B \subset \mathbb{R}$. The condition $Q = Q^*$ is essential in Theorem 1. Corollary 1 gives an application to F-normed symmetic spaces on (\mathcal{M}, τ) .

If $V \in \mathcal{M}$ is an isometry (or a coisometry) and U - V is τ -compact for some $U \in \mathcal{M}^{\mathrm{u}}$ then $V \in \mathcal{M}^{\mathrm{u}}$ (Theorem 3). Let a number $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and a τ -compact operator $K \in \mathcal{M}$ be such that an operator $\lambda I + K$ is an isometry. Then the operator K is normal (Corollary 3). Let \mathcal{M} be a factor with a faithful normal trace τ on it. If $V \in \mathcal{M}$ is an isometry (or a coisometry) and U - V is compact relative to \mathcal{M} for some $U \in \mathcal{M}^{\mathrm{u}}$ then $V \in \mathcal{M}^{\mathrm{u}}$ (Theorem 4).

^{*}E-mail: Airat.Bikchentaev@kpfu.ru

2. DEFINITIONS AND NOTATION

Let \mathcal{H} be a Hilbert space over the field \mathbb{C} , and let $\mathcal{B}(\mathcal{H})$ be the *-algebra of all bounded linear operators on \mathcal{H} . An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be an *isometry*, if $A^*A = I$; a *coisometry*, if A^* is an isometry; a *semiorthogonal projection*, if $A^*A = (A + A^*)/2$ [10, 11]. The *commutant* of a set $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ is defined as the set

$$\mathcal{X}' = \{ Y \in \mathcal{B}(\mathcal{H}) \colon XY = YX \text{ for all } X \in \mathcal{X} \}.$$

By a von Neumann algebra acting on a Hilbert space \mathcal{H} we mean a *-subalgebra \mathcal{M} of the algebra $\mathcal{B}(\mathcal{H})$, for which $\mathcal{M} = \mathcal{M}''$. Let I be the unit of an algebra \mathcal{M} .

For a von Neumann algebra \mathcal{M} , by $\mathcal{M}^{\mathrm{pr}}$, $\mathcal{M}^{\mathrm{id}}$, $\mathcal{M}^{\mathrm{tri}}$, \mathcal{M}^{u} and \mathcal{M}^{+} we denote the subsets of projections $(A=A^2=A^*)$, idempotents $(A=A^2)$, tripotents $(A=A^3)$, unitary elements $(A^*A=A^*=I)$ and positive elements of \mathcal{M} , respectively. If $A\in\mathcal{M}$, then $|A|=\sqrt{A^*A}\in\mathcal{M}^+$. A formula A=2T-I defines a bijection between the set $\mathcal{M}^{\mathrm{iso}}$ of all isometries and the set $\mathcal{M}^{\mathrm{sp}}$ of all semiorthogonal projections.

By a *trace* on a von Neumann algebra \mathcal{M} we mean a mapping $\varphi: \mathcal{M}^+ \to [0, +\infty]$ such that

$$\varphi(X+Y) = \varphi(X) + \varphi(Y), \quad \varphi(\lambda X) = \lambda \varphi(X) \quad \text{for all} \quad X, Y \in \mathcal{M}^+, \quad \lambda \ge 0$$

(here $0 \cdot (+\infty) \equiv 0$), and

$$\varphi(Z^*Z) = \varphi(ZZ^*)$$
 for all $Z \in \mathcal{M}$.

A trace φ is said to be *faithful*, if $\varphi(X) = 0 \Rightarrow X = 0$ for $X \in \mathcal{M}^+$; *semifinite*, if $\varphi(X) = \sup\{\varphi(Y) : Y \in \mathcal{M}^+, Y \leq X, \ \varphi(Y) < +\infty\}$ for every $X \in \mathcal{M}^+$; *normal*, if $X_i \nearrow X \ (X_i, X \in \mathcal{M}^+) \Rightarrow \varphi(X) = \sup \varphi(X_i)$.

An operator $A \in \mathcal{M}$ is *hyponormal*, if $A^*A \geq AA^*$; *normal*, if $A^*A = AA^*$. An operator $A \in \mathcal{M}$ is said to be *compact relative to a semifinite von Neumann algebra* \mathcal{M} , if it belongs to the two-sided closed ideal generated by the finite projections of \mathcal{M} .

A von Neumann algebra \mathcal{M} is said to be a *factor*, if $\mathcal{M} \cap \mathcal{M}' = \{\lambda I : \lambda \in \mathbb{C}\}.$

Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} . Denote by $\mu_t(X)$ a rearrangement of an operator $X \in \mathcal{M}$, i.e. nonincreasing right continuous function $\mu(X) \colon (0, +\infty) \to [0, +\infty)$, given by the formula

$$\mu_t(X) = \inf\{||XP||: P \in \mathcal{M}^{pr}, \quad \tau(I-P) \le t\}, \quad t > 0.$$

Define $\mu_{\infty}(X) = \lim_{t \to +\infty} \mu_t(X)$ for $X \in \mathcal{M}$. The set $\mathcal{M}_0 = \{X \in \mathcal{M} : \mu_{\infty}(X) = 0\}$ is an ideal of τ -compact operators in \mathcal{M} . Every operator $X \in \mathcal{M}_0$ is compact relative to the algebra $\mathcal{M}[12, p. 31]$.

Lemma 1 (see [13]). Let $X, Y \in \mathcal{M}$. Then

- 1) $\mu_t(X) = \mu_t(|X|) = \mu_t(X^*)$ for all t > 0;
- 2) if $|X| \leq |Y|$ then $\mu_t(X) \leq \mu_t(Y)$ for all t > 0;
- 3) $\mu_{s+t}(XY) \le \mu_s(X)\mu_t(Y)$ for all s, t > 0;
- 4) $\mu_t(f(|X|)) = f(\mu_t(X))$ for all continuous increasing functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ and t > 0;
- 5) $\mu_{0+}(X) = \lim_{t \to 0+} \mu_t(X) = \sup_{t > 0} \mu_t(X) = ||X||.$

One can define a rearrangement for every τ -measurable operator X, i.e. for every $X \in \widetilde{\mathcal{M}}$, see [13]. An F-normed subspace $\mathcal{E} \subset \widetilde{\mathcal{M}}$ is said to be a symmetric F-normed space on (\mathcal{M}, τ) , if

$$Y \in \mathcal{E}, X \in \widetilde{\mathcal{M}} \quad \text{and} \quad \mu(X) \leq \mu(Y) \Rightarrow X \in \mathcal{E} \quad \text{and} \quad ||X||_{\mathcal{E}} \leq ||X||_{\mathcal{E}}.$$

Let m be a linear Lebesgue measure on \mathbb{R} . A noncommutative L_p -Lebesgue space $(0 affiliated with <math>(\mathcal{M}, \tau)$ can be defined as

$$L_p(\mathcal{M}, \tau) = \{ X \in \widetilde{\mathcal{M}} : \mu(X) \in L_p(\mathbb{R}^+, m) \}$$

with the *F*-norm (the norm for $1 \le p < +\infty$) $||X||_p = ||\mu(X)||_p$, $X \in L_p(\mathcal{M}, \tau)$.

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$ and $\tau = \text{tr}$ is the canonical trace then \mathcal{M}_0 coincides with the ideal $\mathfrak{S}(\mathcal{H})$ of all compact operators on \mathcal{H} , and

$$\mu_t(X) = \sum_{n=1}^{\infty} s_n(X) \chi_{[n-1,n)}(t), \quad t > 0,$$

where $\{s_n(X)\}_{n=1}^{\infty}$ is a sequence of the operator X s-numbers [14, Ch. 1]; here χ_A is the indicator function of a set $A \subset \mathbb{R}$. Then the space $L_p(\mathcal{M}, \tau)$ is a Shatten-von Neumann ideal $\mathfrak{S}_p(\mathcal{H})$, 0 .

3. ON GENERALIZED SINGULAR NUMBERS OF TRIPOTENTS

For every $P \in \mathcal{M}^{\mathrm{id}}$ there exists a unique decomposition $P = \widetilde{P} + Z$, with $\widetilde{P} \in \mathcal{M}^{\mathrm{pr}}$ and nilpotent $Z \in \mathcal{M}$, $Z^2 = 0$, moreover, $Z\widetilde{P} = 0$, $\widetilde{P}Z = Z$, see [9, Theorem 1.3]. For every $A \in \mathcal{M}^{\mathrm{tri}}$ there exists a unique pair $P, Q \in \mathcal{M}^{\mathrm{id}}$ such that A = P - Q and PQ = QP = 0 [7, Proposition 1].

Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} . If $A \in \mathcal{M}^{\text{tri}}$ and $A = A^*$, then A = P - Q with $P, Q \in \mathcal{M}^{\text{pr}}$ and PQ = 0 [7, Corollary 3]. We have $A^2 = |A| = P + Q \in \mathcal{M}^{\text{pr}}$ and item 1) of Lemma 1 yields

$$\mu_t(A) = \mu_t(|A|) = \mu_t(P+Q) = \chi_{(0,\tau(P+Q))}(t)$$
 for all $t > 0$.

Theorem 1. Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} . Let $A \in \mathcal{M}^{tri}$ be such that A = P - Q with $P \in \mathcal{M}^{id}$, $Q \in \mathcal{M}^{pr}$ and PQ = QP = 0. Let $P = \widetilde{P} + Z$ be the decomposition described above. Then $\widetilde{P}Q = 0$ and for $R = \widetilde{P} + Q \in \mathcal{M}^{pr}$, and for all t > 0 we have

$$\mu_t(A) = \mu_t(A)\chi_{[0,\tau(R))}(t) \ge \mu_t(R) = \chi_{[0,\tau(R))}(t). \tag{1}$$

Proof. We have

$$PQ = \widetilde{P}Q + ZQ = 0, (2)$$

and passing to adjoint operators, we conclude that $Q\widetilde{P}+QZ^*=0$. Now from the equality $QP=Q\widetilde{P}+QZ=0$ we have $QZ=QZ^*$. Multiplying both sides of the last equality from the left by the operator ZQ, we obtain $0=QZ^*ZQ=|ZQ|^2$. Hence ZQ=0 and by (2) we obtain $\widetilde{P}Q=0$. Therefore, $R=\widetilde{P}+Q\in\mathcal{M}^{pr}$. Since $A^2\in\mathcal{M}^{id}$ for every $A\in\mathcal{M}^{tri}$, we infer that $A^2=R+Z$ is the decomposition described above by [9, Theorem 1.3]. It is easy to see that $\widetilde{P}Z^*=(Z\widetilde{P})^*=0$ and

$$AA^* = (\widetilde{P} + Z - Q)(\widetilde{P} + Z^* - Q) = \widetilde{P} + Q + ZZ^* = R + ZZ^*.$$

For all t>0 we have $\mu_t(R)=\chi_{[0,\tau(R))}(t)\in\{0,1\}$ and

$$\mu_t(A) = \mu_t(|A^*|) = \sqrt{\mu_t(|A^*|^2)} = \sqrt{\mu_t(R + ZZ^*)} \ge \sqrt{\mu_t(R)} = \mu_t(R)$$

by items 1), 2) and 4) of Lemma 1 and monotonocity of the real function $f(\lambda) = \sqrt{\lambda}$ on \mathbb{R}^+ . Note that RA = A. If $\tau(R) = +\infty$, then (1) holds. If $a = \tau(R) < +\infty$, then $b = \tau(\widetilde{P}) = \tau(P) = a - \tau(Q)$ [15, Theorem 4.6] and $\mu_t(R) = \chi_{[0,a)}(t)$ for all t > 0. Let t > a be arbitrary and $s \in [0,1]$ be such that st > a. Then

$$\mu_t(A) = \mu_t(RA) \le \mu_{st}(R)\mu_{(1-s)t}(A) = 0$$

by item 3) of Lemma 1. Therefore, (1) holds and Theorem 1 is proved.

Remark 1. If $\tau(R) < \infty$ then by (1) we have $A \in \mathcal{M}_0$. If Q = 0 then by Theorem 1 for $P \in \mathcal{M}^{\text{id}}$ we obtain $\mu_t(P) \subset \{0\} \cup [1, ||P||]$, cf. with [16, Lemma 3.8].

Remark 2. The condition $Q = Q^*$ is essential in Theorem 1. Consider the idempotents

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$$

П

in $(\mathbb{M}_2(\mathbb{C}), \text{tr})$. Then PQ = QP = 0 and for the tripotent A = P - Q we have $\mu_t(A) = \sqrt{3 - 2\sqrt{2}} \in (0, 1)$ for 1 < t < 2. See also [17].

Corollary 1. Let $(\mathcal{E}, ||\cdot||_{\mathcal{E}})$ be a F-normed symmetric space on (\mathcal{M}, τ) . If $A \in \mathcal{A}^{tri}$ as in Theorem 1 lies in \mathcal{E} , then $R \in \mathcal{E}$ and $||R||_{\mathcal{E}} \leq ||A||_{\mathcal{E}}$.

Theorem 2. Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} , $A \in \mathcal{M}^{tri}$ and Z, R be as in Theorem 1. If $Z \neq 0$ and $\tau(R) < +\infty$, then there exists a number t > 0 such that $\mu_t(A) > \mu_t(R)$.

Proof. If $X,Y \in \mathcal{M}^+$, $Y \neq 0$ and $X \geq \mu_\infty(X) \cdot I$, then there exists a number t > 0 such that $\mu_t(X) < \mu_t(X+Y)$ [18, Proposition 2.2]. It remains to put X = R, $Y = ZZ^*$ and note that $\mu_\infty(X) = 0$. Theorem is proved.

Corollary 2. In conditions of Theorem 2 we have $||R||_p \le ||A||_p$ for all 0 .

4. WHEN AN ISOMETRY OPERATOR IS UNITARY?

Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} .

Theorem 3. If $V \in \mathcal{M}$ is an isometry (or a coisometry) and $U - V \in \mathcal{M}_0$ for some $U \in \mathcal{M}^u$ then $V \in \mathcal{M}^u$.

Proof. Step 1. Let $V \in \mathcal{M}$ be an isometry and let U = I. Then $K = I - V \in \mathcal{M}_0$ and $P = VV^* \in \mathcal{M}^{pr}$. We have

$$K^*K - KK^* = I - P \ge 0, (3)$$

i.e., an operator K is hyponormal. Then an operator K is normal by [19, Theorem 2.2] (or by [20, Corollary 4.3]). Now by (3) we have P = I and $V \in \mathcal{M}^{\mathrm{u}}$.

Step 2. Let an isometry $V \in \mathcal{M}$ and an operator $U \in \mathcal{M}^u$ be such that $U - V \in \mathcal{M}_0$. Since \mathcal{M}_0 is an ideal in \mathcal{M} , we have

$$(U-V)U^* = I - VU^* \in \mathcal{M}_0.$$

Obviously, $(VU^*)^* \cdot VU^* = I$, i.e. an operator VU^* is an isometry. By Step 1 we have $VU^* \in \mathcal{M}^u$. Therefore, $V = VU^* \cdot U \in \mathcal{M}^u$ as a product of unitary operators from \mathcal{M} .

Step 3. Let a coisometry $V \in \mathcal{M}$ and an operator $U \in \mathcal{M}^{\mathrm{u}}$ be such that $U - V \in \mathcal{M}_0$. Then V^* is an isometry, $U^* \in \mathcal{M}^{\mathrm{u}}$, and $U^* - V^* = (U - V)^* \in \mathcal{M}_0$. By Step 2 we have $V^* \in \mathcal{M}^{\mathrm{u}}$. Hence $V \in \mathcal{M}^{\mathrm{u}}$ and Theorem 3 is proved.

Corollary 3. Let a number $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and an operator $K \in \mathcal{M}_0$ be such that an operator $\lambda I + K$ is an isometry. Then the operator K is normal.

Corollary 4. Let $S, T \in \mathcal{M}^{sp}$ and $S - T \in \mathcal{M}_0$. If the operator T is normal then the operator S is also normal.

Proof. The formula $V_A = 2A - I$ $(A \in \mathcal{M}^{sp})$ determines a bijection between \mathcal{M}^{sp} and the set of all isometries from \mathcal{M} . Moreover, $V_A \in \mathcal{M}^u$ if and only if an operator A is normal.

Theorem 4. Let \mathcal{M} be a factor with a faithful normal trace τ on it. If $V \in \mathcal{M}$ is an isometry (or a coisometry) and U - V is compact relative to \mathcal{M} for some $U \in \mathcal{M}^u$ then $V \in \mathcal{M}^u$.

Proof. If an operator $T \in \mathcal{M}$ is hyponormal and compact relative to \mathcal{M} then T is normal [21, Theorem]. Therefore, we can repeat the proof of Theorem 3.

Corollary 5. Let \mathcal{M} be a factor with a faithful normal trace τ on it. Let a number $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and a compact relative to \mathcal{M} operator K be such that an operator $\lambda I + K$ is an isometry. Then the operator K is normal.

Corollary 6. Let \mathcal{M} be a factor with a faithful normal trace τ on it. Let $S, T \in \mathcal{M}^{sp}$ and S - T be compact relative to \mathcal{M} . If the operator T is normal then the operator S is also normal.

ACKNOWLEDGMENTS

Research was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.9773.2017/8.9).

REFERENCES

- 1. J. J. Koliha and V. Rakočević, "Fredholm properties of the difference of orhogonal projections in a Hilbert space," Integral Equat. Oper. Theory **52**, 125–134 (2005).
- 2. A. M. Bikchentaev, "On idempotent τ -measurable operators affiliated to a von Neumann algebra," Math. Notes **100**, 515–525 (2016).
- 3. J. Avron, R. Seiler, and B. Simon, "The index of a pair of projections," J. Funct. Anal. 120, 220–237 (1994).
- 4. A. M. Bikchentaev, "Differences of idempotents in C^* -algebras," Siber. Math. J. 58, 183–189 (2017).
- 5. A. M. Bikchentaev, "Differences of idempotents in C^* -algebras and the quantum Hall effect," Theor. Math. Phys. **195**, 557–562 (2018).
- 6. A. M. Bikchentaev, "Trace and differences of idempotents in C^* -algebras," Math. Notes **105**, 641–648 (2019).
- 7. A. M. Bikchentaev and R. S. Yakushev, "Representation of tripotents and representations via tripotents," Linear Algebra Appl. **435**, 2156–2165 (2011).
- 8. A. M. Bikchentaev, "Tripotents in algebras: invertibility and hyponormality," Lobachevskii J. Math. **35** (3), 281–285 (2014).
- 9. J. J. Koliha, "Range projections of idempotents in C^* -algebras," Demonstratio Math. **24**, 91–103 (2001).
- 10. J. Gross, G. Trenkler, and S.-O. Troschke, "On semi-orthogonality and a special class of matrices," Linear Algebra Appl. 289, 169–182 (1999).
- 11. A. M. Bikchentaev, "Ideal F-norms on C^* -algebras. II," Russ. Math. **63** (3), 78–82 (2019).
- 12. V. I. Ovchinnikov, "Compact operators relative to a von Neumann algebra," Funct. Anal. Appl. **6** (1), 31–34 (1972).
- 13. T. Fack and H. Kosaki, "Generalized s-numbers of τ -measurable operators," Pacif. J. Math. **123**, 269–300 (1986).
- 14. I. C. Gohberg and M. G. Krein, *Introduction to the Theory of Linear Nonselfadjoint Operators*, Vol. 18 of *Translations of Mathematical Monographs* (Am. Math. Soc., Providence, RI, 1969).
- 15. A. M. Bikchentaev, "Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra," Math. Notes **98**, 382–391 (2015).
- 16. A. M. Bikchentaev, "Local convergence in measure on semifinite von Neumann algebras," Proc. Steklov Inst. Math. **255**, 35–48 (2006).
- 17. A. S. Householder and J. A. Carpenter, "The singular values of involutory and idempotent matrices," Numer. Math. **5**, 234–237 (1963).
- 18. V. I. Chilin, A. V. Krygin, and Ph. A. Sukochev, "Extreme points of convex fully symmetric sets of measurable operators," Integral Equat. Operator Theory 15, 186–226 (1992).
- 19. A. M. Bikchentaev, "On normal τ -measurable operators affiliated with semifinite von Neumann algebras," Math. Notes **96**, 332–341 (2014).
- 20. A. M. Bikchentaev, "Paranormal measurable operators affiliated with a semifinite von Neumann algebra," Lobachevskii J. Math. **39** (6), 731–741 (2018).
- 21. M. G. Ben-Jacob, "Hyponormal operators compact relative to a W^* -algebra," Bull. London Math. Soc. 13, 229–230 (1981).